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Mycobacterium tuberculosis (Mtb) lipids are indelibly imprinted in just about every key
aspect of tuberculosis (TB) basic and translational research. Although the interest in these
compounds originally stemmed from their abundance, structural diversity, and antigenicity,
continued research in this field has been driven by their important contribution to TB path-
ogenesis and their interest from the perspective of drug, vaccine, diagnostic, and biomarker
development. This article summarizes what is known of the roles of lipids in the physiology
and pathogenicityof Mtb and the exciting developments that have occurred in recent years in
identifying new lead compounds targeting their biogenesis.

The mycobacterial cell envelope is the domi-
nant feature of the biology of Mycobacteri-

um tuberculosis (Mtb) and other mycobacteria,
based on sugars and lipids of exceptional struc-
ture. Cell envelope lipids constitute �40% of the
cell dry mass, although this percentage may vary
depending on species/isolate and growth con-
ditions (Goren and Brennan 1979; Minnikin
et al. 1982). The particular chemical structures
and organization of these lipids between the in-
ner and outer membrane of the mycobacterial
cell envelope account for much of its imperme-
ability to biocides and for the unique stain-
ing properties of mycobacteria that aid in the
diagnosis of infected specimens (Goren and
Brennan 1979; Jarlier and Nikaido 1994; Bren-
nan and Nikaido 1995). Being located at the
interface between the bacterium and the host,
the outer membrane and capsular lipids of

Mtb also play important roles in directing
host–pathogen interactions. Several lipid com-
ponents of Mtb (e.g., isoprenoid lipids, glycero-
phospholipids, phosphatidylinositol manno-
sides, lipoarabinomannan, mycolic acids, and
trehalose mycolates) are produced by all myco-
bacterial species, consistent with their require-
ment for growth. The biosynthesis of some
of these lipids is the site of action of anti-TB
drugs such as isoniazid (INH) and ethion-
amide (ETH), as well as multiple other lead com-
pounds under development. Other lipids (e.g.,
long-chain polymethyl-branched fatty acid–
containing acyltrehaloses and long-chain diols)
are not essential for growth but are unique to
pathogenic mycobacteria and have been in-
volved in pathogenesis.

Studies initiated in 1927 by R.J. Anderson
and colleagues mark the beginning of the pio-

Editors: Stefan H.E. Kaufmann, Eric J. Rubin, and Alimuddin Zumla

Additional Perspectives on Tuberculosis available at www.perspectivesinmedicine.org

Copyright # 2014 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a021105

Cite this article as Cold Spring Harb Perspect Med 2014;4:a021105

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



neering work that has led to the discovery and
early structural definition of some of the most
biologically relevant lipids of Mtb, including
phosphatidylinositol mannosides, mycolic ac-
ids, and branched fatty acids and polyols (Goren
and Brennan 1979). Studies conducted for de-
cades to follow by generations of outstanding
biochemists in France, the United Kingdom,
and the United States, in particular, have result-
ed in a thorough understanding of the chemical
structures of these lipids. Their detailed descrip-
tions have been compiled in several recent
books and reviews and the reader is referred to
these for further reading on this topic (Brennan
1988; Barry et al. 1998; Kaur et al. 2009; Daffé
et al. 2014). Developments in the genetic ma-
nipulation of mycobacteria in the 1990s and
the release of the first complete genome se-
quence of Mtb in 1998 have provided a major
impetus to the study of the biosynthesis of these
compounds with the result that many of the
enzymes and transporters involved in their bio-
genesis have now been identified. Following the
classification of Mtb into six major genetic lin-
eages associated with specific geographical re-
gions (Gagneux and Small 2007), recent years
have also seen a return of interest in comparative
analyses of the lipid content of clinical isolates
from different regions of the world in the hope
of identifying correlates of pathogenicity. Inter-
estingly, not only are these studies providing
new insights into the biochemical diversity of
Mtb and the putative roles of some lipids in
host–pathogen interactions (Daffé et al. 1991;
Constant et al. 2002; Reed et al. 2004, 2007;
Tsenova et al. 2005; Sinsimer et al. 2008; Huet
et al. 2009; Krishnan et al. 2011), they are also
shedding light on the genetic basis of observa-
tions made some 20 to 40 years ago by early
investigators in the field (Goren et al. 1974a;
Daffé et al. 1991; Krishnan et al. 2011; Supply
et al. 2013). What is known of the biosynthesis
of Mtb lipids has been reviewed recently (Daffé
et al. 2014). This review focuses on our current
understanding of the roles of cell wall lipids in
the physiology and pathogenicity of Mtb and
describes ongoing drug discovery efforts aimed
at targeting their biosynthesis, export, and reg-
ulation.

PHYSICAL ORGANIZATION AND
PHYSIOLOGICAL ROLES OF Mtb CELL
ENVELOPE LIPIDS

Architecture of the Mtb Cell Envelope

A schematic representation of the cell envelope’s
architecture of Mtb is presented in Figure 1. The
innermost layer is the plasma membrane that
seems typical of bacterial membranes. Outside
the plasma membrane is a massive cell wall
“core” comprised of peptidoglycan (PG) cova-
lently attached to the heteropolysaccharide ara-
binogalactan (AG), in turn esterified at its non-
reducing ends to a-alkyl, b-hydroxy long-chain
(C60-C90) mycolic acids. Intercalated within this
lipid environment are the “free” (noncovalent-
ly linked) lipids and lipoglycans that have in-
trigued researchers for more than eight decades:
the phosphatidylinositol mannosides (PIMs),
the phthiocerol dimycocerosates (PDIMs), the
phenolic glycolipids (PGLs), a variety of acyltre-
haloses, mannose-capped lipoarabinomannan
(ManLAM), etc. (Figs. 2 and 3). The covalently
bound mycolic acids of the cell wall core and the
free lipids form the inner and outer leaflets, re-
spectively, of a highly impermeable asymmetri-
cal bilayer (known as the “mycomembrane” or
outer membrane) that confers to mycobacteria
their characteristic resistance to many therapeu-
tic agents (Minnikin et al. 1982; Jarlier and Ni-
kaido 1994; Hoffmann et al. 2008; Zuber et al.
2008) (Fig. 1). Finally, a loosely attached capsu-
lar-like structure outside the outer membrane of
Mtb was shown to mainly consist of polysaccha-
rides and proteins with only minor amounts of
lipids (2%–3% of the material) (Lemassu and
Daffé 1994; Ortalo-Magné et al. 1995; Sani et al.
2010) (Fig. 1). Thus, in spite of being Gram-
positive bacteria, mycobacteria possess a cell en-
velope characterized by the presence of an outer
membrane and a periplasmic space.

Mycolic Acids

The interest in drugs targeting the biosynthesis
of mycolic acids is clearly illustrated by the ther-
apeutic efficacy of INH and ETH (Table 1). This
essentially owes to their role as key structural
elements of the outer membrane. The mycolic
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acids covalently linked to AG represent about
half of the weight of the cell wall core (Draper
1998). Mycolic acids also occur as acyl substit-
uents esterifying a variety of outer membrane
(glyco)lipids including trehalose mono- and di-
mycolates (Fig. 2), glycerol monomycolate, and
glucose monomycolate. They play key roles in
the permeability of the cell envelope, the ability
of Mtb to form biofilms (Ojha et al. 2005, 2010;
Sambandan et al. 2013), and the pathogenicity
of the bacterium during the actively replicating
and persistent stages of the infection (Barry
et al. 1998; Daffé and Draper 1998; Yuan et al.
1998; Dubnau et al. 2000; Glickman et al. 2000;
Sugawara et al. 2002; Vander Beken et al. 2011).

Inner and Outer Membrane Extractable Lipids

Glycerophospholipids, PIM, LM, and ManLAM.
Glycerophospholipids (phosphatidylinositol
[PI], phosphatidylglycerol, phosphatidylserine
[PS], phosphatidylethanolamine [PE], cardio-
lipin [CL]), and mannosylated forms of PI
known collectively as PIMs (Fig. 2) are the ma-
jor lipid constituents of the plasma membrane
of Mtb. In addition, the plasma membrane of
Mtb contains major lipoglycans known as lip-
omannan (LM) and ManLAM (Fig. 3) (Pit-
arque et al. 2008), and a number of isoprenoids
that play various critical functions in the cell.
Among them, decaprenyl phosphate (Dec-P)

TDM

D-mannan

ManLAM

D-arabino-D-mannan

Capsule

Outer
membrane

Inner
membrane

AG

PG

LM α-D-glucan

TMM PATSL
PIM DAT

Phospholipid
PDIM/PGL

ManLAM

Figure 1. Schematic representation of the Mtb cell envelope. Many of the classes of (glyco)lipids discussed in the
text are represented schematically and are shown in probable locations in the cell envelope. Light blue symbols
represent arabinose residues, red symbols represent galactose residues, brown symbols represent mannose
residues, and black circles represent glucose residues. D-arabino-D-mannan, D-glucan, and D-mannan are cap-
sular polysaccharides. Mycolic acid chains are shown in dark green. LM, lipomannan; ManLAM, mannose-
capped lipoarabinomannan; AG, arabinogalactan; PG, peptidoglycan.
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serves as a carrier of activated sugars in the syn-
thesis of essential cell envelope polymers in-
cluding PG, AG, LM, and ManLAM (Kaur et
al. 2009), and menaquinones are essential com-
ponents of the respiratory chain (Weinstein
et al. 2005; Dhiman et al. 2009). Thus, as in
other bacteria, plasma membrane lipids play a
vital role in Mtb, providing a selective perme-
ability barrier around the cell and participating

in a number of critical physiological processes,
including electron transport, ATP formation,
DNA replication, and the biosynthesis of a va-
riety of cell envelope components.

Glycerophospholipids (particularly PE),
PIM, LM, and ManLAM are also found in the
outermost layers of the cell envelope of Mtb and
other Mycobacterium species where they may
interact with the host (Ortalo-Magné et al.
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Figure 3. Structures of Mtb lipoglycans. Mannose-capped lipoarabinomannan (ManLAM); the mannan moiety
of ManLAM consists of �20–30 Manp residues and the arabinan polymers of �60 Araf units; the precise
number of arabinan chain(s) attached to mannan is still uncertain. Lipomannan (LM) is devoid of the arabinan
chains of ManLAM. R1, R2, R3, R4 are tuberculostearic acid, oleic acid, or palmitic acid.

Figure 2. (Continued) (A) Structures of acyltrehaloses: trehalose monomycolate (TMM); trehalose dimycolate
(TDM); sulfolipid (SL-I); diacyltrehalose (DAT); polyacyltrehalose (PAT); and the lipooligosaccharide (LOS) of
Mtb Canettii (R¼Ac). The major sulfolipid SL-I (2,3,6,60-tetraacyl a-a0-trehalose-20-sulfate) is represented. In
SL-I, trehalose is sulfated at the 20 position and esterified with palmitic acid and the multimethyl-branched
phthioceranic and hydroxyphthioceranic acids. In DAT (2,3-di-O-acyltrehalose), trehalose is esterified with
palmitic acid and the multimethyl-branched mycosanoic acid. In PAT, trehalose is esterified with palmitic acid
and the multimethyl-branched mycolipenic acids. (B) Structures of the phthiocerol dimycocerosate (PDIM)
and phenolic glycolipid (PGL) of Mtb. p, p0 ¼ 3–5; n, n0 ¼ 16–18; m1 ¼ 20–22; m2 ¼ 15–17; R ¼ CH2-CH3

or CH3. (C) Structure of the predominant mannosyl-b-1-phosphomycoketide (MPM) from Mtb H37Rv. (D)
Structure of a triacylated phosphatidylinositol dimannoside (PIM2), one of the major forms of PIMs produced
by Mtb.
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Table 1. TB drug discovery pipeline showing the inhibitors targeting lipid biosynthesis

Pathway

targeted

(Proposed)

target protein

Inhibitor

Discovery

Preclinical

development

Clinical

development

Mycolic acids
InhA CD117

(Vilchèze et al. 2011)
Pyridomycin

(Hartkoorn et al. 2012)
Triclosan derivatives

(Pan and Tonge 2012; North et al.
2013)

Novel structural classes
(GlaxoSmithKline)

HadABC ISO and TAC analogs
(Phetsuksiri et al. 1999; Bhowruth
et al. 2006; Alahari et al. 2007; Shahab
et al. 2010; Coxon et al. 2013)

NAS-21, NAS-91 and analogs
(Bhowruth et al. 2008; Gratraud et al.
2008)

KasA/KasB Thiolactomycin and analogs
(Pan and Tonge 2012; North et al.
2013)

Pks13 Thiophene compounds; Compound 30

(Ioerger et al. 2013; Wilson et al. 2013)
FadD32 4,6-diaryl-5,7-dimethyl coumarins

(Stanley et al. 2013)
Antigen 85

A, B, and
C

Ebselen
(Favrot et al. 2013)

I3-AG85
(Warrier et al. 2012)

MmpL3 Adamantyl ureas
(Grzegorzewicz et al. 2012a)

BM212 and analogs
(La Rosa et al. 2012; Poce et al. 2013)

C215
(Stanley et al. 2012)

SPIRO2 and THPP1
(Remuinan et al. 2013)

Compound 2
(Ioerger et al. 2013)

SQ109
(Tahlan et al.
2012)
(Sequella)

Unknown
(Inhibition of
oxygenated
mycolic acid
biosynthesis)

PA-824
(Stover et al.
2000)

OPC-67683
(Matsumoto
et al. 2006)

Continued
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Table 1. Continued

Pathway

targeted

(Proposed)

target protein

Inhibitor

Discovery

Preclinical

development

Clinical

development

EthR ETH “boosters”: BDM 31343 and
analogs (Willand et al. 2009;
Villemagne et al. 2012)

Decaprenyl phosphate
IspC Fosfomidomycin analogs

(Obiol-Pardo et al. 2011; Uh et al.
2011)

Isoprenoid-based biosynthetic precursors
PG biosynthesis MraY Capuramycin analogs

(Sequella)
SQ641

(lead capuramycin
analog) (Sequella)

PG biosynthesis WecA Caprazamycin derivatives (CPZEN-45)
(Ishizaki et al. 2013)

LAM (and AG)
biosynthesis

DprE1 DNB1
(Christophe et al. 2009)

VI-9376
(Magnet et al. 2010)

377790
(Stanley et al. 2012)

TCA-1
(Wang et al. 2013)

Several synthetic compounds
(TB Alliance, Scripps)

Benzothiazinones
(BTZ043) (Makarov
et al. 2009)

Menaquinones
MenA Aurachin RE, Ro 48-8071 and analogs

(Dhiman et al. 2009; Debnath et al.
2012)

MenB 1,4-benzoxazines; 4-oxo-4-phenylbut-2-
enoates
(Li et al. 2010; 2011)

MenE Sulfonyladenosine analogs
(Lu et al. 2008; 2012)

PGL
FadD22 50-O-[N-(4-

hydroxybenzoyl)sulfamoyl]-
adenosine
(Ferreras et al. 2008)

Ser/Thr kinases
PknA
PknB
PknG

Several chemical scaffolds
(Vertex Pharmaceuticals Inc.)
(Magnet et al. 2010; Danilenko et al.
2011; Lougheed et al. 2011;
Chapman et al. 2012)

See text and the Working Group for New Drugs, Stop TB Partnership (http://www.newtbdrugs.org) for details.
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1996; Pitarque et al. 2008; Dhiman et al. 2011).
Whether Mtb requires phosphatidylglycerol,
CL, PS, and PE for growth is at present not
known. PI, PIM, LM, and ManLAM, in contrast,
are all required for the viability of Mtb in vitro
(Kaur et al. 2009; Guerin et al. 2010). Emerging
data indicate that PIM play important roles in
the permeability of the cell envelope, inner
membrane integrity, and regulation of cell sep-
tation and division (Parish et al. 1997; Kordu-
láková et al. 2002; Patterson et al. 2003; Morita
et al. 2005, 2006). Likewise, structural defects
in LM and ManLAM were shown to affect the
b-lactam susceptibility and acid-fast staining
properties of mycobacterial cells, indicating
an equally important role of these molecules
in cell envelope integrity (Fukuda et al. 2013).

Trehalose esters, PDIM, and PGL. Other outer
membrane/surface-exposed lipids include tre-
halose monomycolates (TMM) and trehalose
dimycolates (TDM), PDIM, sulfolipids (SL), di-
acyltrehaloses (DAT), polyacyltrehaloses (PAT),
phenolic glycolipids (PGL), and lipooligosac-
charides (LOS) (Fig. 2). In addition to serving
as a mycolic acid donor in the formation of
TDM and the cell wall core, TMM was recently
identified as the likely form under which my-
colic acids, which are synthesized in the cyto-
plasm, translocate to the periplasm or outer
membrane (Grzegorzewicz et al. 2012a). Con-
sistently, compounds that prevent TMM trans-
location are potent inhibitors of Mtb (Grzegor-
zewicz et al. 2012a; Tahlan et al. 2012; Stanley
et al. 2012; La Rosa et al. 2012; Remuinan et al.
2013). In contrast to TDM and TMM, which are
considered essential lipid components of the
cell envelope of all mycobacteria, SL, DAT,
PAT, and PDIM are more restricted in their dis-
tribution and are not essential for the growth of
Mtb in vitro, although they have been involved
in pathogenicity (see the section Roles of Mtb
Lipids in Pathogenicity). PDIM and closely re-
lated phthiocerol diphthioceranates are essen-
tially confined to pathogenic Mycobacterium
species (Daffé and Lanéelle 1988). Consistent
with their important roles in the permeability
of the cell envelope (Camacho et al. 2001) and
pathogenicity, PDIMs are apparently produced
by all virulent clinical isolates of Mtb. DAT and

PAT are confined to virulent isolates of the My-
cobacterium tuberculosis complex (Goren and
Brennan 1979; Jackson et al. 2007), and SL are
exclusively found in the human pathogen Mtb
(Goren 1990). Structural similarities between
SL, DAT, and PAT and, to some extent PDIM,
particularly the fact that they all are esterified
with long-chain polymethyl-branched fatty ac-
ids, is suggestive of at least partially redundant
functions in the cells. One of them is to alleviate
the propionate-mediated stress undergone by
Mtb when the bacterium switches to host cho-
lesterol and fatty acids as major carbon sources
(Singh et al. 2009; Lee et al. 2013). The propio-
nyl-CoA generated upon b-oxidation of cho-
lesterol is converted to methylmalonyl-CoA by
the propionyl-CoA carboxylase and then used
by dedicated polyketide synthases in the elon-
gation of the polymethyl-branched fatty acids
esterifying PDIM, SL, DAT, and PAT. Indepen-
dent from this metabolic function and sugges-
tive of their collective role in the permeability
of the cell envelope, Mtb mutants deficient
in the synthesis of more than one polymethyl-
branched fatty acid–containing lipid (either
PDIM and SL or DAT, PAT, and SL) but not
mutants lacking only one lipid species, lose
the ability to stain with neutral red (Cardona
et al. 2006). Finally, DAT and PAT have been
involved in the retention of the capsular mate-
rial at the surface of Mtb (Rousseau et al. 2003a).

PGL and LOS are other lipids acylated by
polymethyl-branched fatty acids produced by
Mtb and related tubercle bacilli, albeit not all
lineages (Fig. 2). LOS have thus far only been
found in Mycobacterium canettii (Daffé et al.
1991), a representative of smooth tubercle bacilli
that seem to have originated from the same pool
of ancestors as Mtb but rarely causes human
disease (Supply et al. 2013). Based on studies
performed in Mycobacterium marinum (Ren
et al. 2007), the presence of LOS in the cell en-
velope of M. canettii may account for the par-
ticular smooth colonial morphotype of this
strain. The ability to synthesize PGL, on the oth-
er hand, has only been retained by M. canettii
and some Mtb isolates of the East Asian/Beijing
lineage (Daffé et al. 1987; Constant et al. 2002;
Reed et al. 2004; Huet et al. 2009). PGL have
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been involved in pathogenicity (see the section
Roles of Mtb Lipids in Pathogenicity). In an at-
tempt to correlate the lipid content with the
virulence of Mtb isolates, Goren et al. character-
ized a methoxylated phenolphthiocerol (a non-
glycosylated variant of PGL), the so-called “at-
tenuation indicator lipid” (Goren et al. 1974a).
This lipid and its unmethylated form were de-
tected in East Asian/Beijing isolates and found
to accumulate in all Indo-Oceanic Mtb strains
examined (Krishnan et al. 2011). Similarly,
Beijing strains were reported to accumulate var-
iants of PDIM and eventually PGL, known
as phthiotriol and glycosylated phenolphthio-
triol dimycocerosates (Huet et al. 2009). The
correlation between the occurrence of these lip-
ids and variations in virulence remains, how-
ever, unclear (Huet et al. 2009; Krishnan et al.
2011). PGL and LOS are clearly not essential
for growth but they are potent B-cell antigens
making them potentially useful, albeit line-
age-specific, serodiagnostics (Brennan 1988;
He et al. 1991; Vera-Cabrera et al. 1994; Simon-
ney et al. 1995, 1996; Constant et al. 2002; Julian
et al. 2002).

Other Lipids

Another family of lipids known as the manno-
syl-b-1-phosphomycoketides (MPM) are pro-
duced by slow growing mycobacteria including
Mtb, Mycobacterium avium, and M. marinum
(Fig. 2). They are found inside the cells and
released in the culture medium. They are not
essential for the growth of Mtb but are thought
to be involved in pathogenicity (Matsunaga and
Sugita 2012).

Triglycerides (TAG) are considered intra-
cellular lipids of Mtb. They represent the main
apolar lipid when glycerol serves as the major
carbon source in the medium (Brennan 1988).
TAGs are thought to serve as an energy reserve
for the long-term survival of Mtb during the
persistence phase of infection (Brennan 1988;
Daniel et al. 2004), as well as a means by which
free fatty acids are detoxified. Mtb Beijing family
isolates accumulate large quantities of TAG,
possibly as a result of the up-regulation of the
TAG synthase, Rv3130c (Reed et al. 2007).

Regulation of Lipid Synthesis

The physiological status of mycobacterial bacilli
(i.e., age of the culture, actively replicating
vs. persistent) and a number of environmental
factors including temperature, oxygen tension,
and nitrogen and carbon sources are known to
impact their lipid composition, particularly
phospholipids, TAG, PIM, LM, ManLAM, my-
colic acid–based glycolipids, and polymethyl-
branched fatty acid–containing lipids (Brennan
1988; Barry et al. 1998; Daffé and Draper 1998;
Singh et al. 2009; Dhiman et al. 2011; Lee et al.
2013; Yang et al. 2013). Less is known of the
regulation of lipid synthesis during host infec-
tion. PDIM and mycolic acids are apparently
produced in abundant quantities by in vivo–
grown tubercle bacilli (Kanai et al. 1970; Bha-
midi et al. 2012). Yet, variations in the acid-fast
characteristics of Mtb during mouse and guinea
pig infection suggest that the bacterium under-
goes drastic adaptative changes of its lipid com-
position in vivo (Ryan et al. 2010). Increased
production of SL and DAT during host in-
fection is supported by the up-regulation of
biosynthetic genes on phagocytosis of Mtb by
human primary macrophages or during pro-
gressive pulmonary TB infection in mice (Gra-
ham and Clark-Curtiss 1999; Rodriguez et al.
2013). The virulence-associated two-compo-
nent regulator PhoP-PhoR may be involved in
this up-regulation as it has been found to coor-
dinately and positively regulate the synthesis of
SL, DAT, and PAT in Mtb (Gonzalo-Asencio et
al. 2006; Walters et al. 2006). The metabolic
switching of Mtb to host lipids as carbon sourc-
es during infection and the associated increase
in the production of PDIM, SL, DAT, and PAT
were shown to be facilitated by the regulatory
protein WhiB3 (Singh et al. 2009). In recent
years, PknA, PknB, and other members of the
Ser/Thr kinase family were found to regulate
the activity of multiple enzymes and transport-
ers involved in the biosynthesis of mycolic acids,
ManLAMs, and PDIMs (Molle and Kremer
2010). It is thus apparent that lipid synthesis
in Mtb is tightly controlled and that regulation
occurs both at the transcriptional and post-
translational levels.

Mtb Lipids
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ROLES OF Mtb LIPIDS IN PATHOGENICITY

Several excellent reviews have been published
about the biological activities of Mtb lipids, in-
cluding very recently (Daffé and Draper 1998;
Russell et al. 2002; Karakousis et al. 2004; Ber-
tozzi and Schelle 2008; Britton and Triccas 2008;
Gilleron et al. 2008; Glickman 2008; Guilhot
et al. 2008; Guenin-Macé et al. 2009; Neyrolles
and Guilhot 2011; Russell 2011; Daffé et al.
2014). Thus, only a brief overview of what is
known and remains to be investigated about
the involvement of lipids in the pathogenesis
of TB will be presented here.

The existence of a possible correlation be-
tween the lipid content of Mtb clinical isolates
and their pathogenicity was noted early on by
Middlebrook and Goren among others. These
studies led to the identification of SL, TDM,
and PDIM and derivatives as lipids of potential
relevance to TB immunopathogenesis (Bloch
1950; Goren et al. 1974a,b; Daffé and Draper
1998). Further work on the biological activities
of purified lipids in vitro and in vivo followed,
in the postgenomic era, by an examination of
the virulence phenotype and immune responses
induced by Mtb mutants deficient in various
aspects of their biosynthesis lent further sup-
port to the involvement of lipids in host–path-
ogen interactions. Their contribution to the in-
fection process accompanies every step of the
life cycle of the bacterium. The entry of Mtb
inside host macrophages and dendritic cells is
essentially mediated by specialized phagocytic
receptors including complement receptors,
scavenger receptors, and C-type lectins, such as
the mannose receptor, DC-SIGN, and Mincle.
PIM, TDM, and ManLAM are among the pre-
dominant glycolipids mediating Mtb’s interac-
tions with these receptors (Villeneuve et al.
2005; Schlesinger et al. 2008; Ishikawa et al.
2009; Neyrolles and Guilhot 2011). Once inside
phagocytic cells, Mtb resides in a phagosome
that fails to fuse with lysozymes. The isopren-
oid-derived compounds, isotuberculosinol and
tuberculosinol, ManLAM, TDM, PDIM, SL,
and DATall have been implicated in the impair-
ment of phagosome maturation, although the
mechanisms involved and amount of support-

ing data varies for each compound (Daffé and
Draper 1998; Brodin et al. 2010; Neyrolles and
Guilhot 2011; Russell 2011; Mann and Peters
2012). Inside the cells, Mtb releases significant
amounts of proteins and lipids, among them
TMM, TDM, PIM, PGL, PE, phosphatidylgly-
cerol, CL, and ManLAM, that traffic within the
cell and may be released through exocytosis
(Russell et al. 2002; Russell 2011). These mole-
cules are not only taken up by bystander anti-
gen-presenting cells, they also act as modula-
tors of the function of the host cell and
surrounding tissue, impacting the secretion of
pro- and anti-inflammatory cytokines (e.g.,
PGL, TDM, mycolic acids, SL, PIM, LM,
ManLAM, and lipoproteins), apoptosis (lipo-
proteins, PIM, ManLAM, and TDM), T-cell
functions (ManLAM, DAT, and PAT), the in-
duction of foamy macrophages (oxygenated
mycolates and TDM), and granuloma forma-
tion (TMM, TDM, and ManLAM) (Daffé and
Draper 1998; Jackson et al. 2007; Gilleron et al.
2008; Peyron et al. 2008; Guenin-Macé et al.
2009; Neyrolles and Guilhot 2011; Rajni et al.
2011; Russell 2011; Vander Beken et al. 2011; Li
et al. 2012; Sakamoto et al. 2013; Vir et al. 2013).
Importantly, several Mtb lipids, including diac-
ylated forms of SL, PIM, ManLAM, MPM, and
mycolyl lipids, represent themselves as antigens
for immune recognition and are presented to T
lymphocytes by MHC-I-like molecules of the
CD1 family (Matsunaga and Sugita 2012; Arora
et al. 2013; Ly et al. 2013; Van Rhijn et al. 2013).
Some of these lipids may show potential as sub-
unit vaccines (Guiard et al. 2009; Arora et al.
2013). Finally, ManLAM, SL, TDM, PGL, LOS,
DAT, and lipoproteins are also potent inducers
of humoral immune responses.

Although the critical involvement of PDIM
and TDM in TB pathogenesis is now supported
by a wealth of in vitro and in vivo data (Guilhot
et al. 2008; Neyrolles and Guilhot 2011; Rajni
et al. 2011; Li et al. 2012), the role(s) played by
other prominent (glyco)lipids including (iso)-
tuberculosinol, SL, DAT, PAT, PGL, some PDIM
variants, and ManLAM during host infection
are far from being as clear. Their roles in path-
ogenicity typically come into question when
their demonstrated biological activities in vitro

M. Jackson
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or in vivo (e.g., inhibition of phagosome matu-
ration and immunomodulatory activities), usu-
ally as purified molecules, fail to translate into a
clear “virulence” phenotype in Mtb strains ge-
netically engineered to produce or, on the con-
trary, lose the ability to produce them. Classical
examples of this include, for instance, SL, whose
plethora of biological activities (Goren and
Brennan 1979; Goren 1990; Daffé and Draper
1998; Bertozzi and Schelle 2008) fail to translate
into a clear replication or persistence advantage
in infected mice or guinea pigs (Rousseau et al.
2003b); DAT and PAT, whose absence from Mtb
H37Rv does not hamper the ability of this strain
to grow in mice (Rousseau et al. 2003a); or Man-
LAM, the suppression of the bioactive mannose
caps of which fails to translate into any detect-
able phenotype in macrophages and animal
models of infection (Afonso-Barroso et al.
2012). A combination of factors may account
for this. First, no pathogenic trait of Mtb is at-
tributable to a single virulence factor and so
compensatory mechanisms within certain lipid
families (e.g., polymethyl-branched fatty acid–
containing lipids) or cell ligands (e.g., Man-
LAMs and mannosylated glycoproteins) are
known to exist (Pitarque et al. 2005; Passemar
et al. 2014). Second, an inherent flaw associated
with studies that use purified molecules is that
they may not accurately mimic qualitatively
and/or quantitatively the way these molecules
are presented to the host when carried by whole
bacilli. Furthermore, the genetic background of
the Mtb strain in which they are produced is
likely to affect the way they interact with the
host and their subsequent contribution to path-
ogenicity (e.g., PGL) (Sinsimer et al. 2008).
Third, lipids such as SL and (iso)tuberculosinol
are restricted to the human pathogen, Mtb, and
may only show a clear phenotype in this specific
host. The facts that the ability of Mtb to produce
some PDIM variants and that PGL is relatively
restricted to East-Asian isolates (Constant et al.
2002; Reed et al. 2004; Huet et al. 2009) suggest
that the different Mtb lineages may even have
evolved regionally to tailor their lipid composi-
tion to the genetic background of their human
host (Neyrolles and Guilhot 2011). From a
mechanistic standpoint, concluding to the di-

rect effect of a lipid on a specific host function
can be challenging. This owes to the roles that
lipids often play in the structure and permeabil-
ity of the cell envelope in addition to potentially
interacting with the host. Thus, a deficiency in
their production may not only cause Mtb to
become more susceptible (i.e., more permeable)
to host defense mechanisms (e.g., PDIMs and
their impact on the resistance of Mtb to oxida-
tive stress) (Rousseau et al. 2004), it may also
profoundly alter the way other immunomodu-
latory antigens are presented at the cell surface
and interact with host functions.

Mtb LIPIDS IN THE CONTEXT OF DRUG
DISCOVERY

General Considerations

The previous sections have highlighted the
diversity, unique structures, and essential roles
played by cell envelope lipids in the physiology
and pathogenicity of Mtb. These features ac-
count for the specificity and therapeutic efficacy
of first- and second-line TB drugs such as INH
and ETH, which inhibit the biosynthesis of my-
colic acids (Banerjee et al. 1994; Vilchèze and
Jacobs 2007; Grzegorzewicz et al. 2012b) (Fig.
4), and those of ethambutol (EMB), which in-
hibits the formation of the arabinan domains of
ManLAM (Fig. 3) and AG (Mikušova et al.
1995). In addition, pyrazinamide was reported
to be an inhibitor of the fatty acid synthase I
(FAS-I) (Zimhony et al. 2000). With multidrug
resistance on the increase, recent years have seen
a marked intensification of TB drug discovery
efforts with the result that many new lead com-
pounds are now at various stages of the drug
discovery and preclinical development pipeline.
Interestingly, these efforts keep pointing at cell
envelope lipids as one of the Achille’s heels of
Mtb (Table 1) (Jackson et al. 2013). As impor-
tantly, they are leading the TB field to revisit
earlier impressions that drug targeting the bio-
genesis of the cell envelope lipids may not be
synergistic with other drugs, useful against
MRD-Mtb isolates, or active against persistent
bacilli. This section summarizes recent develop-
ments that have occurred in the discovery of
drugs targeting lipid synthesis in Mtb.

Mtb Lipids
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Drugs Targeting Mycolic Acid Biosynthesis
and Export

The biosynthesis of mycolic acids is shown sche-
matically in Figure 4. In the past 10 years, both
target-based and whole cell–based approaches
have been used toward the identification and
development of inhibitors acting on virtually
all portions of this biosynthetic pathway (Fig.
4 and Table 1). A comprehensive review of these
efforts was recently published by North et al.
(2013), and we will here only briefly describe
some of the most exciting developments that
have occurred in the last few years. Target-based
screening uses biochemical and structural ap-
proaches to design, screen, and further evaluate
a compound’s activity against a specific molec-
ular target. This type of approach has been used
extensively to rationally optimize inhibitors of
the FAS-II elongation cycle—in particular, an-
alogs of thiolactomycin as inhibitors of KasA/
KasB and triclosan derivatives as inhibitors of
InhA (Pan and Tonge 2012). The screening
of inhibitors showing activity against the Plas-
modium falciparum enoyl reductase and b-
hydroxyacyl-ACP dehydratase, FabZ, identified
compounds that appear to target the cor-
responding FAS-II enzymes in Mtb and dis-
play an MIC against whole mycobacterial cells
(Bhowruth et al. 2008; Gratraud et al. 2008;
Vilchèze et al. 2011). Pyridomycin, a cyclic dep-
sipeptide isolated from Streptomyces with an
MIC value of 0.4 mg/mL against Mtb, is now
known to also target InhA (Haatkoorn et al.
2012), as are novel structural classes of inhibi-
tors in the lead-optimization phase reported
by the Working Group on New TB Drugs (Table

1). Incidentally, the recent elucidation of the
mode of action of isoxyl (ISO) and thiacetazone
(TAC), two prodrugs formerly used in the clin-
ical treatment of Mtb, revealed that they both
inhibit the dehydration step of the FAS-II cycle
catalyzed by HadAB and HadBC (Grzegorze-
wicz et al. 2012b). The finding that relatively
simple structural modifications of the parent
ISO and TAC compounds can increase the po-
tency of analogs more than 20-fold is encour-
aging in that it suggests that it may be possible to
identify compounds that could be administered
at a lower dose, thereby reducing side effects
(Phetsuksiri et al. 1999; Bhowruth et al. 2006;
Alahari et al. 2007; Shahab et al. 2010; Coxon
et al. 2013).

Because of their pivotal roles in the final
assembly of mycolic acids and their transfer to
cell envelope acceptors, Pks13, FadD32, and the
mycoloyltransferases of the antigen 85 com-
plex are also receiving a lot of attention from
the perspective of drug development (Fig. 4).
High-throughput screening assays were report-
ed for FadD32 (Galandrin et al. 2013) and the
antigens 85 (Boucau et al. 2009; Elamin et al.
2009; Sanki et al. 2009; Favrot et al. 2013). The
latter assays led to the identification of a number
of inhibitors of antigens 85, one of them, known
as ebselen, also shows activity against Mtb in
culture (MIC of 20 mg/mL). The molecular
mechanism of inhibition of antigens 85 by eb-
selen was elucidated and found to be particular-
ly interesting in the sense that it is unlikely to
lead to the selection of drug-resistant isolates
(Favrot et al. 2013). Small molecule binders of
antigen 85C identified by magnetic resonance
spectroscopy also showed activity against Mtb in

Figure 4. (Continued) After reduction by the b-keto-acyl-ACP reductase MabA, dehydration by the (3R)-
hydroxyl-dehydratases HadAB and HadBC and reduction by the enoyl-CoA reductase InhA, either the b-
ketoacyl-ACP synthase KasA or KasB catalyzes the condensation of the resulting product with malonyl-ACP
units, thereby initiating the next round of elongation. Methyltransferases and other as yet unknown enzymes
modify the meromycolyl chain introducing double bonds, cyclopropyl, hydroxy, methoxy, and keto function-
alities. These two chains are coupled together via Claisen condensation by the acyl-AMP ligase FadD32 and the
polyketide synthase Pks13. Upon release from Pks13, reduction by CmrA yields mycolic acids, which are then
translocated to the periplasm under the form of TMM by partially elucidated translocation machinery involving
the essential integral membrane transporter, MmpL3, and attached to AG or another molecule of TMM to form
TDM, by the antigen 85 complex. The sites of action of Mtb inhibitors are indicated. Drugs presently or formerly
used in the clinical treatment of TB are in red; inhibitors under development are in blue (see Table 1). THL,
thiolactomycin; PZA, pyrazinamide.
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vitro and inside macrophages in the 100-mM

range (Warrier et al. 2012). The return of inter-
est in whole cell–based screening that the TB
field has witnessed in recent years has led to
the identification of thiophenes and other com-
pounds active against Pks13 (Ioerger et al. 2013;
Wilson et al. 2013), diaryl coumarin–based
compounds active against FadD32 (Stanley et
al. 2013), and diverse chemotypes active against
the TMM transporter, MmpL3 (Grzegorzewicz
et al. 2012a; Stanley et al. 2012; Ioerger et al.
2013; Remuinan et al. 2013). BM212 and deriv-
atives (La Rosa et al. 2012; Poce et al. 2013) and
SQ109, a drug candidate originally designed
to be an EMB analog and currently undergo-
ing phase II clinical trials (Sacksteder et al.
2012; Tahlan et al. 2012), were also shown to
kill Mtb through the inhibition of MmpL3.
The reason why so many different chemical scaf-
folds apparently inhibit the MmpL3-mediated
translocation of TMM is unclear. Establishing a
validated assay for the direct measurement of
MmpL3 inhibition is a high priority, because
it would greatly facilitate the further develop-
ment of these inhibitors and could potentially
reveal new scaffolds for development.

In summary, recent drug discovery efforts
have yielded a number of chemotypes inhibit-
ing various aspects of the synthesis of mycolic
acid, some of which are promising candidates
for further development. Inhibiting the FAS-II
system and MmpL3 currently appear to be the
most attractive/druggable targets for TB drug
discovery in this pathway.

Isoprenoids and Related Lipids

Inhibitors of the MEP pathway. As a lipid carrier
of activated saccharide subunits, polyisoprenyl
phosphate (Dec-P) is involved in the biosynthe-
sis of the arabinan portion of AG, the mannan
and arabinan domains of arabinomannan, LM,
and ManLAM, the lipid I and lipid II precursors
of PG, and the biosynthesis of the “linker unit”
between AG and PG (Kaur et al. 2009; Daffé et al.
2014) (Fig. 1). The discovery that Dec-P synthesis
in Mtb proceeds through the methylerythritol
phosphate pathway, which has no homolog in
humans, has provided stimulus for the charac-

terization and identification of inhibitors of the
relevant enzymes. Fosmidomycin, which is cur-
rently in clinical studies for the treatment of
malaria, is a competitive inhibitor of the second
enzyme of the pathway, 1-deoxy-D-xylulose-
5-phosphate reductoisomerase (IspC). Several
derivatives of this antibiotic have been synthe-
sized, some of which have shown promising re-
sults against Mtb (Jackson et al. 2013) (Table 1).

Inhibitors of lipid-linked biosynthetic precur-
sors. The phospho-N-acetylmuramyl pentapep-
tide translocase (MraY) catalyzes the exchange
of UDP-N-acetylmuramic acid pentapeptide
from UDP to Dec-P thereby generating lipid I
in PG biosynthesis. The synthesis of capuramy-
cin analogs as inhibitors of this enzyme has led
to the identification of several compounds with
2- to 4-mg/mL MICs against drug-susceptible
and MDR Mtb isolates (Jackson et al. 2013).
Although its mode of action has yet to be con-
firmed inwhole Mtb cells, one of them, SQ641, is
at the stage of preclinical development (Table 1).

Very recently, the caprazamycin derivative
CPZEN-45 was shown to be an inhibitor of
Mtb’s decaprenyl-phosphate-GlcNAc-1-phos-
phate transferase, WecA, in the biosynthesis of
AG (Ishizaki et al. 2013).

Decaprenylphosphoryl arabinose (DPA) is
the only known arabinose donor in the build-
ing of the arabinan domains of the two essen-
tial cell envelope (lipo)polysaccharides, AG, and
ManLAM. In the last 4 years, whole cell–based
screening of compounds against Mtb has pro-
duced several inhibitors of the essential epim-
erase DprE1 required for the formation of DPA
(Table 1). The molecular mechanism of action
of some of these compounds has been thor-
oughly investigated and several DPA inhibitors
are now reported to be in the hit-to-lead or
preclinical development phases (Table 1) (Jack-
son et al. 2013).

Menaquinones. The lipoquinones involved
in the respiratory chains of mycobacteria consist
of menaquinones (2-methyl-3-polyprenyl-1,4-
naphthoquinones) (Daffé et al. 2014). Evidence
based on transcriptomics profiling and the in-
hibitory activity of menaquinone inhibitors
against Mtb in culture has highlighted the re-
quirement of this bacterium for electron trans-
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port and, therefore, menaquinone synthesis
both during active replication and microaero-
philic persistence (Dhiman et al. 2009). Accord-
ingly, three key enzymes of the menaquinone
biosynthetic pathway of Mtb, MenB (1,4-dihy-
droxy-2-napthoic acid synthase), MenE (O-
succinylbenzoyl-CoA synthase), and MenA
(1,4-dihydroxy-2-napthoic acid octaprenyl
transferase) have been studied as potential drug
targets and a number of promising inhibitors
synthesized (Table 1).

Inhibition of PIM, LM, and ManLAM
Biosynthesis

The essential character of PIM, LM, and Man-
LAM, their restricted distribution to mycobac-
teria and closely related Actinomycetes, and
their demonstrated impact on the structure
and permeability of the cell envelope of Mtb
make the biosynthetic enzymes of these mole-
cules attractive candidates for the development
of specific Mtb inhibitors with the potential
to synergize with or potentiate the activity of
other drugs used in combination. Accordingly,
target-to-drug approaches are pursuing vari-
ous essential enzymes acting both at early (e.g.,
PimA, PimB’) and late (e.g., Emb proteins
and other lipid-linked sugar-utilizing glycosyl-
transferases) stages of the pathway. Innovative
high-throughput screening assays have been de-
veloped for some of these enzymes (Zhang et al.
2010, 2011). The most advanced ManLAM in-
hibitors to date are those targeting DPA synthe-
sis, as described in the previous section.

Targeting Lipids Involved in the Replication
and Persistence of Mtb In Vivo

Targeting TAG synthesis through inhibition of
the primary TAG synthase of Mtb, Rv3130c
(Daniel et al. 2004; Sirakova et al. 2006), may
represent a viable approach to the eradication
of persistent bacilli for the key role TAG is likely
to play as an energy reserve for the long-term
survival of Mtb during the persistence phase of
infection.

As detailed in the previous section, PDIMs
are critical components of the permeability bar-

rier surrounding Mtb and contribute to a sig-
nificant extent to the survival and ability of the
bacterium to replicate in vivo. To the best of our
knowledge, no specific PDIM inhibitors have
yet been reported but promising compounds
targeting the Ser/Thr kinases of Mtb that regu-
late their biosynthesis (among other physiolog-
ical processes) are under development (Jackson
et al. 2013) (Table 1). Another regulatory sys-
tem of interest in the context of drug develop-
ment is the two-component transcriptional reg-
ulator PhoP-PhoR, which regulates multiple
virulence-associated processes in Mtb, includ-
ing the biosynthesis of SL, DAT, and PAT (Gon-
zalo-Asencio et al. 2006). Finally, a compound
inhibiting the production of PGL in whole Mtb
cells has been reported (Ferreras et al. 2008).

CONCLUDING REMARKS

Mtb lipids have been for the last eight decades
and still remain today the object of much re-
search activity. One of the highlights of this
research in the last five years is undoubtedly
the discovery of a variety of novel chemical scaf-
folds inhibiting various aspects of lipid syn-
thesis, particularly mycolic acids, ManLAM,
and AG. Beyond their therapeutic applications,
lipids involved in the immunopathogenesis of
TB may also represent useful targets for future
preventive interventions, as illustrated by cur-
rent studies aimed at investigating the vaccine
potential of CD1-restricted lipid antigens (G
Puzo, pers. comm.) and that of an attenuated
phoP-based Mtb knockout mutant (Nambiar
et al. 2012). Although the interest in developing
TB serodiagnostics based on Mtb lipids seems to
have somewhat waned in the last decade, impor-
tant efforts are currently focusing on their po-
tential as biomarkers to monitor TB reactiva-
tion, as well as the efficacy of treatment and
vaccination (Shui et al. 2012; Wallis et al. 2013;
Chan et al. 2013).
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