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Background: Changes in Ca2� handling in tumor cells might provide novel targets for cancer.
Results: Colon carcinoma cells show enhanced store-operated Ca2� entry and currents and depleted Ca2� stores associated
with changes in STIM1/STIM2 ratio and TRPC1.
Conclusion: Ca2� remodeling in colon cancer is driven by a reciprocal shift in TRPC1 and STIM2.
Significance: STIM1/STIM2 and TRPC1 should be investigated further as novel targets for colon cancer.

We have investigated the molecular basis of intracellular
Ca2� handling in human colon carcinoma cells (HT29) versus
normal human mucosa cells (NCM460) and its contribution to
cancer features. We found that Ca2� stores in colon carcinoma
cells are partially depleted relative to normal cells. However,
resting Ca2� levels, agonist-induced Ca2� increases, store-oper-
ated Ca2� entry (SOCE), and store-operated currents (ISOC) are
largely enhanced in tumor cells. Enhanced SOCE and depleted
Ca2� stores correlate with increased cell proliferation, invasion,
and survival characteristic of tumor cells. Normal mucosa cells
displayed small, inward Ca2� release-activated Ca2� currents
(ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells
showed mixed currents composed of enhanced ICRAC plus a
nonselective ISOC mediated by TRPC1. Tumor cells display
increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and
STIM1. In contrast, STIM2 protein was nearly depleted in
tumor cells. Silencing data suggest that enhanced ORAI1 and
TRPC1 contribute to enhanced SOCE and differential store-op-
erated currents in tumor cells, whereas ORAI2 and -3 are seem-
ingly less important. In addition, STIM2 knockdown decreases
SOCE and Ca2� store content in normal cells while promoting
apoptosis resistance. These data suggest that loss of STIM2 may
underlie Ca2� store depletion and apoptosis resistance in tumor
cells. We conclude that a reciprocal shift in TRPC1 and STIM2
contributes to Ca2� remodeling and tumor features in colon
cancer.

Critical cancer hallmarks include enhanced cell prolifera-
tion, apoptosis resistance, and acquired ability to migrate and
invade foreign tissues (1), cell functions that are regulated by
intracellular Ca2� signals. Increasing evidence suggests that
tumor cells may undergo a deep remodeling of their Ca2�

homeostasis (2, 3), likely contributing to cancer features. How-
ever, mechanisms and contribution of Ca2� deregulation are
largely unknown (4), and no data are available in many types of
cancer, including colon cancer. Store-operated Ca2� entry
(SOCE),4 a ubiquitous Ca2� entry pathway involved in many
physiological functions, particularly in nonexcitable cells, has
been proposed to be remodeled in some cancers (5). This path-
way is triggered by the release of Ca2� from intracellular stores
induced by phospholipase C activation after receptor stimula-
tion. SOCE is believed to be mediated by the interaction of
Stim1 (6), a Ca2� sensor at the endoplasmic reticulum (ER), and
Orai1, a pore-forming protein of store-operated channels
(SOCs) at the plasma membrane that enables Ca2� influx (7, 8).
It is also widely accepted that STIM1/ORAI1 interactions are
responsible for ICRAC activation underlying SOCE in some cell
types (8). However, other store-operated currents (ISOC) less
selective for Ca2� might be mediated by canonical transient
receptor potential (TRPC) channels, particularly TRPC1 and
TRPC4 (2, 9).

Some of the above proteins have been reported to be up-reg-
ulated in cancer. For instance, TRP channels, including several
TRPCs, TRPV6, and TRPM8, are overexpressed in several
tumor cells, thus suggesting they may have oncogenic potential
(10 –13). SOCE and TRPC6 have been reported to control
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cell migration and invasion (10, 14). STIM1 and ORAI1 under-
lie ICRAC and regulate glioblastoma cell proliferation, apoptosis,
and invasion (15, 16) and are involved in neuroblastoma prolif-
eration as well (17). ORAI3 may form Ca2�-permeable chan-
nels with roles in breast cancer (18) and in non-small cell lung
adenocarcinoma (19). The Ca2� sensor STIM1 may also play an
important role in cervical cancer growth, migration, and angio-
genesis (20), and its knockdown suppresses SOCE, cell prolif-
eration, and tumorigenesis in human epidermoid carcinoma
cells (21). Stim2 is overexpressed in glioblastoma multiforme
and colon cancer, but no functional data are available yet (22,
23). Here, we have investigated the deep remodeling of Ca2�

handling in human colon carcinoma, one of the most wide-
spread and deadly forms of cancer. In addition, we have
addressed the mechanisms involved in the remodeling and
their contribution to the hallmarks of cancer.

EXPERIMENTAL PROCEDURES

Materials—NCM460 and NCM356 cells were obtained after
a material transfer agreement with INCELL Corp. (San Anto-
nio, TX). HT29 cells were donated by Dr. J. C. Fernández-
Checa (Consejo Superior de Investigaciones Científicas, Barce-
lona, Spain), and SW480-ADH and SW480-R cells were
donated by Prof. A. Muñoz (Consejo Superior de Investigacio-
nes Científicas, Madrid, Spain). Dulbecco’s modified Eagle’s
medium (DMEM), penicillin, streptomycin, L-glutamine, and
fetal bovine serum were from Lonza (Basel, Switzerland).
M3:10TM medium was from INCELL Corp. Detachin was from
Gelantis (San Diego). Fura2/AM, Fura4F/AM, and Fluo4/AM
were from Invitrogen. 2-Aminoethoxydiphenylborate and
H2O2 were from Calbiochem. Thapsigargin and antibodies
against TRPC1, ORAI1, ORAI2, and STIM1 were from Alo-
mone Labs (Jerusalem, Israel). Antibodies against STIM2 and
ORAI3 were from Santa Cruz Biotechnology. Anti-�-actin was
from Abcam (Cambridge, UK). Caged-IP3 was from Sachem
GmbH (Bremen, Germany). Glass bottom culture dishes were
from MatTek (Ashland, MA). FITC annexin V was from BD
Biosciences. Propidium iodide was from Sigma. SYBR Green I
was from Kappa Biosystems (Boston, MA). Primers were
obtained from Thermo Scientific (Ulm, Germany).

Cell Culture—Cells were cultured in DMEM 1 g/liter glucose
or in M3:10TM medium as reported previously (24, 25) and
supplemented with 1% penicillin/streptomycin, 1% L-gluta-
mine, and 10% fetal bovine serum. Cells were maintained under
standard conditions (37 °C, 10% CO2) and subcultured once a
week. All cells were used at passages 3–10.

Cytosolic Ca2� Imaging—[Ca2�]cyt was monitored as reported
previously (25) by fluorescence imaging of cells using an inverted
Zeiss Axiovert microscope equipped with an OrcaER Hamamatsu
digital camera (Hamamatsu Photonics France). Cells were loaded
with Fura2/AM (4 �M, 60 min) in external saline solution contain-
ing (in mM) the following: 145 NaCl, 5 KCl, 1 CaCl2, 1 MgCl2,
glucose 10, Hepes/Na 10, pH 7.42. For SOCE, cells were washed
twice and treated with thapsigargin (1 �M, 10 min) in the same
medium except that it was devoid of Ca2� and also contained 0.5
mM EGTA. Cells were located on a PH1 platform (Warner Instru-
ments) attached on the stage of an inverted microscope and sub-
jected to fluorescence imaging while continuously perfused with

external medium at 37 °C. Cells were epi-illuminated alternately at
340 and 380 nm using bandpass filters, and light emitted above 520
nm at both excitation lights was filtered by the dichroic mirror,
collected every 5–10 s with a �40, 1.4 NA, oil objective. For esti-
mation of Ca2� store content, we assessed the effects of cyclopi-
azonic acid or ionomycin on [Ca2�]cyt in the absence of extracel-
lular Ca2�. In the case of ionomycin, the increases in [Ca2�]cyt
tended to saturate Fura2 signals. Accordingly, experiments with
ionomycin were performed using the low affinity probe
Fura4F/AM.

Cell Proliferation—Cells were seeded in 6-well plates at about
10 � 105 cells and incubated with supplemented DMEM or
containing test solutions. Wells were counted by triplicate at
time 0 and after 72 or 96 h. Cell viability was estimated using
trypan blue staining.

Flash Photolysis of Caged-IP3 and Confocal Microscopy—
Cells were plated in glass bottom culture dishes and loaded with
Fluo4/AM (2 �M) and caged-IP3 (0.5 �M) for 1 h. Images were
taken using a Leica TCS SP5 confocal microscope (Leica Micro-
systems, Mannheim, Germany) using a �40 objective. Fluo4
was excited at 488 nm, and emissions between 503 and 571 nm
were collected every 3 s. Photolysis of caged-IP3/acetoxymethyl
ester was performed at 405 nm. The images were analyzed in
LAS AF Lite software (Leica Microsystems, Mannheim, Ger-
many). Background was subtracted from all images, and fluo-
rescence intensity (F) was normalized to the resting fluores-
cence intensity (F0).

Invasion Assay—Cell invasion assay was performed using BD
BiocoatTM MatrigelTM invasion chambers (BD Biosciences)
containing a membrane with 8-�m pores. HT29 cells (1 � 106

cells) in DMEM were seeded to the upper chamber. DMEM
containing 20% FBS was added in the lower chamber as che-
moattractant. After 48 h, noninvading cells were removed with
a cotton swab from the upper chamber. Cells invading the outer
side of the insert were fixed in methanol and stained with tolu-
idine blue solution and 1% chloride double salt (Panreac, Bar-
celona, Spain). Cells per field were counted randomly at �200
magnification.

Annexin V Staining Assay—Cell survival assay was per-
formed by flow cytometry using FITC annexin V (BD Biosci-
ences) and propidium iodide (Sigma). Cells were treated with 1
or 2 mM H2O2 for 30 or 150 min, respectively, depending on the
experiment and then detached with trypsin/EDTA, centrifuged
at 290 � g, and washed with cold PBS. The cells were then
suspended in binding buffer (0.1 M Hepes, pH 7.4, 1.4 M NaCl,
and 25 mM CaCl2) at a density of 1 � 106 cells/ml. After that,
1 � 105 cells were incubated with 5 �l of annexin V and 10 �l of
propidium iodide (50 �g/ml) for 15 min at room temperature in
the dark. Cells were analyzed using Gallios Flow Cytometer
(Beckman Coulter, Brea, CA), and the results were processed
with Kaluza Analysis Software (Beckman Coulter, Brea, CA).

Electrophysiological Recordings—ISOC in colonic cells was
recorded using a Port-a-Patch planar patch clamp system
(Nanion Technologies, Munich, Germany) in the whole-cell,
voltage clamp configuration at room temperature (20 � 2 °C).
Cultured cells (3–5 days after plating) were detached with
Detachin and suspended at a cell density of 1–5 � 106 cells/ml
in external recording solution contained (in mM) the following:
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145 NaCl, 2.8 KCl, 2 MgCl2, 10 CaCl2, 10 Hepes, 10 D-glucose,
pH 7.4. For siRNA assays, recordings were performed 48 h after
silencing. Suspended cells were placed on the NPC©1 chip sur-
face, and the whole-cell configuration was achieved. Internal
recording solution containing (in mM) 50 CsCl, 60 CsF, 10
NaCl, 20 EGTA, 10 Hepes, 2 Na�-ATP, pH 7.2 (adjusted with
CsOH), was deposited in recording chips, having resistances of
3–5 megohms. The high concentration of EGTA was used to
deplete stores and to activate ISOC in intact and in silenced cells.
In some experiments in which ISOC was activated with thapsi-
gargin or ATP, internal EGTA was diminished from 20 to 0.2
mM and supplemented with a mitochondrial mixture (in mM) of
2 pyruvic acid, 2 malic acid, and 1 NaH2PO4. ISOC was assessed
using voltage ramps (�100 to � 100 mV in 200 ms) applied
every 5 s, from a holding potential of 0 mV and acquired with an
EPC-10 patch clamp amplifier (HEKA). Immediately after the
whole-cell configuration was established, the cell capacitance
and the series resistances (�10 megohms) were measured.
During recordings, these two parameters were measured, and if
they exceeded �10% with respect to the initial value, the exper-
iment was discontinued. Resting membrane potentials were
estimated by reading the potential of the recorded cell imme-
diately after rupturing the membrane in the current-clamp
configuration. Leak currents were eliminated by subtracting
the average of the first five ramp currents (obtained just after
whole-cell configuration was reached) to all subsequent cur-
rents. Inward and outward current amplitudes were measured
at �80 and �80 mV, respectively. Data were normalized with
respect to cell capacitance. Liquid junction potential and capac-
itive currents were cancelled using the automatic compensa-
tion of the EPC-10. Data were filtered at 10 kHz and sampled at
5 kHz.

Conventional and Quantitative PCR—Total cellular RNA
was isolated from cells using TRIzol reagent (Invitrogen).
Extracted RNA integrity was tested by electrophoresis on aga-
rose gels, and the purity and concentration were determined by
spectrophotometry. RNA was reverse-transcribed using a high
capacity cDNA reverse transcription kit (Applied Biosystems,
Foster City, CA) and the cDNA diluted prior to PCR amplifica-
tion. Nucleotide sequences of the STIM1, ORAI1, ORAI2, and
ORAI3 primers used were taken from Ref. 26 and �-actin from
Ref. 27. The remaining primers were designed with Primer-
BLAST (28). Table 1 shows all primer sequences used. Qualita-
tive PCR was performed on a TGradient system (Biometra,
Goettingen, Germany) using a Taq polymerase (Fermentas).
The reaction protocol consisted of 3 min at 94 °C, 35 cycles of 1
min at 94 °C, 1 min at 57 °C, and 30 s at 72 °C and finished at
72 °C for 10 min. Real time quantitative-PCR was performed
using a SYBR Green I detection in a LightCycler rapid thermal
cycler (Roche Applied Science). The PCR protocol started with
5 min at 95 °C followed by 45 cycles of 15 s at 95 °C, 20 s at 57 or
60 °C, and 5 s at 72 °C. �-Actin was used as housekeeping gene.
The data were normalized by PCR analysis of �-actin. Melting
curves were used to determine the specificity of PCR products
(data not shown).

Western Blotting—Total protein was extracted from cells and
used to quantify expression of TRPC1, ORAI1, ORAI2, ORAI3,
STIM1, and STIM2. Whole-cell lysate was obtained using RIPA

buffer (20 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1% Triton
X-100, 1% deoxycholic acid, 1 mM EDTA, 0.05% SDS) supple-
mented with a protease inhibitor mixture. Protein concentra-
tions were determined by a Bradford protein assay. Proteins
were fractionated by SDS-PAGE, electroblotted onto PVDF
membranes, and probed with the antibodies at a dilution of
1:200, except the anti-�-actin was used at dilution 1:5000. Anti-
bodies were visualized by addition of goat anti-rabbit IgG
(TRPC1, ORAI1, ORAI2, ORAI3, STIM1, and STIM2) or rabbit
anti-mouse IgG (Stim2 and �-actin). Detection was performed
using Pierce ECL Western blotting substrate (Thermo Scien-
tific) and VersaDoc Imaging System (Bio-Rad). Quantification
of protein expression was carried out using Quantity One soft-
ware (Bio-Rad).

Gene Silencing—siRNA sequences of human TRPC1, ORAI1,
ORAI2, ORAI3, and STIM2 were obtained from Santa Cruz
Biotechnology, as well as control siRNA. NCM460 and HT29
cells (1 � 106) were transfected transiently with 50 pmol of
siRNA using Nucleofector II (Amaxa Biosystems, Cologne,
Germany) and the W-017 program according to the manufa-
cturer’s instructions. After transfection, cells were grown in
culture for 48 h, and then imaging, electrophysiology, and cell
survival experiments were performed. The effectiveness of
silencing was tested by real time qRT-PCR.

Statistics—When only two means were compared, Student’s t
test was used. For more than two groups, statistical significance
of the data was assessed by analysis of variance and compared
using Bonferroni’s multiple comparison tests. Differences were
considered significant at p � 0.05.

RESULTS

Store-operated Ca2� Entry and Cell Proliferation in Colon
Carcinoma Cells—Cell proliferation and SOCE were tested in a
series of human colon mucosa (NCM460 and NCM356) and
human colon carcinoma cell lines (HT29, SW480-ADH, and

TABLE 1
Primers used for PCR experiments
ORAI1, ORAI2, ORAI3, and STIM1 primers were taken from Takahashi et al. (26)
and �-actin primers from Wang et al. (27). The remaining primers were designed
using BLAST primer software (28). F indicates forward, and R indicates reverse.

Name Primers (5� to 3�) Predicted size

bp
TRPC1 F, TACTTGCACAAGCCCGGAAT 209

R, ACCCGACATCTGTCCAAACC
TRPC6 F, ATCTGGTGCCGAGTCCAAAG 364

R, TCCTTCAGTTCCCCTTCGTTC
TRPV4 F, GGGTGGATGAGGTGAACTGG 182

R, GTCCGGGTTCGAGTTCTTGT3
TRPV6 F, CTGGCTCTGCCAAGTGTAAC 364

R, GAGGAGACTCCCAGATCCTCTT
TRPM8 F, GATTCCAAGGCCACGGAGAA 345

R, GGACTGCGCGATGTAGATGA
ORAI1 F, AGCAACGTGCACAAATCTCAA 344

R, GTCTTATGGCTAACCAGTGA
ORAI2 F, CGGCCATAAGGGCATGGATT 333

R, TTGTGGATGTTGCTCACGGC
ORAI3 F, CTCTTCCTTGCTGAAGTTGT 380

R, CGATTCAGTTCCTCTAGTTC
STIM1 F, AGGGTACTGAGAATGAGCGGA 399

R, CACAGAGGATCTCGATCTGT
STIM2 F, TGTCACTGAGTCCACCATGC 469

R, GGGCGTGTTAGAGGTCCAAA
�-Actin F, TACGCCAACACAGTGCTGTCTGG 206

R, TACTCCTGCTTGCTGATCCACAT
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SW480-R cells). SOCE was monitored by imaging the increase
in cytosolic Ca2� concentration ([Ca2�]cyt) induced by Ca2�

re-addition to cells previously treated with thapsigargin (1 �M,
10 min) in Ca2�-free medium. Under these conditions, Ca2�

stores are empty (data not shown). Therefore, this procedure
enables monitoring maximally activated SOCE when Ca2�

stores are fully depleted. We found that SOCE is small in nor-
mal colon mucosa cell lines, and it is largely up-regulated in all
three human colon carcinoma cell lines tested (Fig. 1, A and B).
Cell proliferation is low in normal mucosa cell lines and
increases in carcinoma cells as expected (Fig. 1C). We found
that there is an excellent correlation between SOCE and cell
proliferation in all five cell lines tested (Fig. 1D) suggesting that

increased SOCE contributes to enhanced proliferation in car-
cinoma cells. These data are consistent with our previous
report showing the correlation between SOCE inhibition and
prevention of HT29 cell proliferation (25, 29). Therefore,
increased SOCE may contribute to enhance cell proliferation of
colon carcinoma cells.
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We tested whether Ca2� fluxes induced by physiological ago-
nists were also remodeled in colon cancer. For this and subse-
quent studies, we selected NCM460 and HT29 cells as models
of normal and colon carcinoma cells, respectively. The physio-

logical agonist ATP increases [Ca2�]cyt in both normal and
colon carcinoma cells. However, ATP-induced increases in
[Ca2�]cyt in normal cells are small and transient, whereas in
tumor cells [Ca2�]cyt increases are much larger and sustained
(Fig. 2A). Fig. 2B shows that resting levels of [Ca2�]cyt are also
significantly larger in tumor cells. ATP induces both Ca2�

release and (store-operated) Ca2� entry. We tested both inde-
pendently in normal and tumor cells. Fig. 2, C and E, shows that
ATP-induced Ca2� release is significantly larger in tumor cells.
Similar results are obtained with carbachol (Fig. 2, D and F).
Surprisingly, both agonists induce Ca2� entry in tumor cells but
not in normal cells (Fig. 2, C–F) suggesting that SOCE activa-
tion in physiological conditions is somehow prevented in nor-
mal cells. Therefore, in normal colonic cells, physiological ago-
nists produce a small and transient increase in [Ca2�]cyt due
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induced Ca2� release is smaller in tumor cells than in normal cells. Fura2 and
Fura4F-loaded cells were subjected to fluorescence imaging for estimating
Ca2� store content. Recordings show the release of Ca2� induced by 30 �M

CPA in Ca2�-free medium (Ca0) in normal (black traces) and tumor (red traces)
cells loaded with Fura2/AM (mean � S.E.; n � 4). Bars represent area under
curve (mean � S.E.) of the records (*, p � 0.05). B, ionomycin-induced Ca2�

release is smaller in tumor cells than in normal cells. Recordings show the
release of Ca2� induced by 400 nM ionomycin in Ca2�-free medium (Ca0) in
normal (black traces) and tumor (red traces) cells loaded with Fura4F/AM
(mean � S.E.; n � 7). Bars represent area under curve (mean � S.E.) of the
records (*, p � 0.05). C, Ca2� store content after ATP-induced Ca2� release in
normal and tumor cells. Ca2� release induced by 200 �M ATP in Ca2�-free
medium was tested in normal and tumor cells. The remaining stored Ca2�

was estimated in the same cells by the adding 400 nM ionomycin (mean �
S.E.; n � 4 –7). Bars are Ca2� release-induced by ATP expressed as % of the
total area under the curves (mean � S.E., n �4, *, p � 0.05). D, estimation of
resting Ca2� store content in normal and tumor cells (area under curve of bars
in B) before (resting) and after ATP. Values after ATP were calculated by
decreasing resting Ca2� store content by the percent released estimated in C.
(a, p � 0.05 versus resting cells; b, p � 0.05 versus normal cells.)

FIGURE 4. Colon carcinoma cells are resistant to cell death. A, resistance of
NCM460 and HT29 cells to cell death induced by H2O2. Representative flow
cytometry assays of FITC annexin V- and propidium iodide (PI)-stained cells.
Viable cells are annexin V- and PI-negative; cells in early apoptosis are annexin
V-positive and PI-negative, and cells in late apoptosis or necrosis are annexin
V- and PI-positive. NCM460 and HT29 cells were treated with 2 mM H2O2 for
150 min. B, total cell death of treated and untreated cells with H2O2 (early
apoptosis, late apoptosis, and necrosis). Bars are mean � S.E. of the assay with
three replicates and representative of five experiments (a, p � 0.05 versus
untreated cells; b, p � 0.05 versus normal cells).
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solely to Ca2� release, whereas tumor cells display a much
larger increase due to both enhanced Ca2� release and SOCE.

Ca2� Release and Ca2� Store Content in Normal and Tumor
Cells—Experiments were designed to ascertain whether IP3
availability causes differential Ca2� release and as a conse-
quence different amplitudes of Ca2� increases between normal
mucosa and colon carcinoma cells. Flash photolysis of caged-
IP3 induces Ca2� release in both normal and tumor cells as
shown by confocal imaging of Fluo4-loaded cells. However, the
Ca2� release was still significantly larger in tumor cells (Fig. 2, G
and H) suggesting that tumor cells store more Ca2� and/or are
more sensitive to IP3 than normal cells. Ca2� store content in
normal and colon carcinoma cells was estimated by measuring
release of Ca2� induced by the sarcoplasmic and endoplasmic
reticulum Ca2�-ATPase pump blocker cyclopiazonic acid
(CPA) and by low concentrations of the Ca2� ionophore iono-

mycin. Unexpectedly, we found that CPA induces larger
[Ca2�]cyt increases in normal cells than in tumor cells (Fig. 3A)
consistently with a larger Ca2� store content in normal cells. In
fact, a few minutes after CPA treatment, normal cells still
responded largely to ATP, whereas tumor cell stores did not
respond at all (Fig. 3A). Consistently, ionomycin induces also a
larger [Ca2�]cyt increase in normal cells (Fig. 3B) than in tumor
cells. Thus, contrary to expectations, Ca2� store content is
seemingly larger in normal cells than in tumor cells.

The extent of agonist-induced Ca2� release relative to total
stored Ca2� was estimated next in normal and tumor cells. For
this end, the amount of Ca2� remaining in the store after ATP
was tested using ionomycin in Ca2�-free medium (Fig. 3C). We
found that ATP mobilizes about 20% of total stored Ca2� in
normal cells. In contrast, in tumor cells, ATP releases about
60% of total stored Ca2� (Fig. 3C). Fig. 3D shows the Ca2� store
content estimated before and after stimulation with ATP in
normal and tumor cells. Data indicate that Ca2� stores in nor-
mal cells are overloaded relative to tumor cells, and physiolog-
ical stimulation does not release much Ca2�, leaving stores
nearly intact. In contrast, Ca2� stores in tumor cells are sub-
stantially depleted in resting conditions and release relatively
more Ca2� in response to stimulation, thus likely enabling cells
to reach the threshold for SOCE activation.

It has been reported that Ca2� store content is critical for
apoptosis resistance and survival (4). Accordingly, we have
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assessed apoptosis resistance (survival) of normal mucosa and
carcinoma colon cells by flow cytometry after treatment with
H2O2, a well established agent that promotes oxidative stress,
apoptosis, and cell death. Consistently, colon carcinoma
(HT29) cells are much more resistant to cell death than normal
colonic epithelial (NCM460) cells (Fig. 4, A and B). These data
suggest that the low Ca2� store content of tumor cells may
contribute to apoptosis resistance characteristic of human
colon carcinoma cells.

Store-operated Currents (ISOC) in Normal and Colon Carci-
noma Cells—Ion currents involved in SOCE and agonist-in-
duced Ca2� entry were investigated next using planar patch
clamp electrophysiology in the whole-cell voltage clamp con-
figuration. The estimated resting membrane potential for
HT29 cells was �64 � 2 mV (n � 33) and for NCM460 cells was
�45 � 4 mV (n � 22). For ISOC activation, Ca2� stores were

passively depleted by dialyzing cells with a recording internal
solution containing 20 mM EGTA. NCM460 cells displayed
ISOC with small inward current amplitude (�2.3 � 0.3 pA/pF,
at �80 mV; n � 18) and without apparent outward current. The
current-voltage (I-V) relationship of these ISOC, observed
among all normal cells recorded (n � 82), displayed strong
inward rectification and very positive reversal potential (Fig.
5A). All these characteristics are similar to the previously
reported ICRAC (31). Fig. 5B shows the average time course
graph, constructed by plotting the amplitude of the ICRAC-like
current (at �80 mV) with respect to recording time, in which
the Ca2�-dependent inactivation was prevented by the pres-
ence of a high concentration of EGTA. ISOC currents in tumor
cells were quite different. In HT29 cells, ISOC has a small inward
current that was significantly greater than in normal cells
(�4.9 � 0.15 pA/pF, at �80 mV; n � 31; Student’s t test, p �
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0.05). In addition, I-V relationships of ISOC display complex
profiles that were classified in two principal groups as follows: a
ICRAC-like current presented in about 36% of cells (Fig. 5, C and
D; n � 11) and a mixture of a ICRAC-like plus a nonselective ISOC
obtained from about 64% of cells (Fig. 5E; n � 20). Both I-V
relationship profiles contain an inward component, without
significant current amplitude differences when comparing
them (Student’s t test, p � 0.05). The outward component has
an amplitude of 5.3 � 0.2 pA/pF at 80 mV (n � 20) and displays
rectification. Comparison of inward and outward currents in
normal and tumor cells is shown in Fig. 5F. The electrophysi-
ological data indicate that Ca2� store depletion in tumor cells
activates ICRAC-like currents with higher amplitude than in

normal cells, probably contributing to their increased SOCE.
Meanwhile, the nonselective ISOC observed in tumor cells could
be an additional pathway for more Ca2� influx. Similar results
are obtained when ISOC was induced by passive depletion of
intracellular Ca2� stores with thapsigargin or the physiological
agonist ATP (Fig. 6). Again, normal cells display only ICRAC-like
currents with low amplitude (�1.6 � 0.3 pA/pF, n � 17 for
thapsigargin; �1.4 � 0.6 pA/pF, n � 13 for ATP) compared
with inward ISOC of tumor cells (�4.0 � 0.4 pA/pF, n � 15 for
thapsigargin; �2.4 � 0.4 pA/pF, n � 13 for ATP). Tumor cells
show currents similar to ISOC activated with high intracellular
EGTA, thapsigargin as well as ATP activated ICRAC-like and
nonselective ISOC currents.
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Sensitivity to antagonists was tested next to identify further
the channels involved in ISOC in normal and tumor cells. Fig. 7
shows the effects of La3�, a classic SOCE antagonist of SOCs in
normal and tumor cells. La3� inhibited almost totally ICRAC-
like currents in normal cells and both inward and outward cur-
rents in tumor cells. Low concentrations (30 �M) of 2APB
largely inhibit the ICRAC-like current of normal cells (Fig. 8A)
and the ICRAC-like component of tumor cells (Fig. 8B), but they
have no effect on the outward ISOC. At 100 �M 2APB, the out-
ward component is now inhibited (Fig. 8C). Average results are
shown in Fig. 8D. 2APB is also more efficient in preventing
SOCE in normal cells than in tumor cells (data not shown).
Results suggest that normal and tumor cells express ISOC, sim-
ilar to ICRAC, which are sensitive to low concentrations of 2APB.
Yet the additional nonselective ISOC observed only in tumor
cells is less sensitive to this SOCE antagonist. It has been
reported that 2APB may enhance ISOC carried out by ORAI3
(32). In our hands 2APB did not potentiate ISOC in normal or
tumor cells (Fig. 8). It has been reported that SOCE is involved
in cell migration and invasion in tumor cells (30). Accordingly,
colon carcinoma cell invasion was tested in vitro by transwell
assay. HT29 cells displayed invasive characteristics. In addition,
HT29 cell invasion was inhibited significantly by classic SOCE
antagonist 2APB (Fig. 8E).

Ca2� selectivity and Ba2� permeability of ISOC was charac-
terized further. The inward component of ISOC was very selec-
tive for Ca2� because removal of Na� (substituted by NMDG�)
did not affect current amplitude (from �4.9 � 1.5 pA/pF for
Na

�

medium to �4.2 � 2.5 for Na�-free medium; n � 14 –31).
These data were consistent with the involvement of the high
Ca2�-selective ORAI1 channel. In contrast, the outward com-
ponent was nearly abolished in Na�-free medium (from 5.3 �
0.2 pA/pF for Na� medium to 0.2 � 0.7 for Na�-free medium;
n � 14 –31) suggesting that this cation is the main current car-
rier of this component. However, it has been reported that Ba2�

decreases currents mediated by ORAI1 but potentiate those
mediated by ORAI2 and ORAI3. We found that the inward ISOC
carried Ba2� ions, but the current amplitude was lower than
that transported by Ca2� (from �4.9 � 15 pA/pF for Ca2� to
�2.6 � 1.4 for Ba2�; n � 12–31) (data not shown). Data suggest
that ORAI1 channels, rather than ORAI2 and -3, contribute to
ICRAC-like currents in tumor cells. In addition, a nonselective
channel also contributes to ISOC in tumor cells but not in nor-
mal cells.

Expression of SOCE Molecular Players in Normal and Tumor
Carcinoma Cells—Expression of molecular candidates involved
in ISOC and SOCE in normal and tumor cells was investigated
next. PCR analysis shows expression of probable TRP channels
involved in SOCE in normal and tumor cells. We found that
only TRPC1 is expressed in both normal and tumor cells (Fig.
9A). TRPV6 and TRPM8 were expressed in normal but not in
tumor cells (Fig. 9A). Consistently, TRPM8 agonist menthol
had no effect on ISOC in tumor cells (data not shown). Other
candidates tested, including TRPC6 and TRPV4, were missing
in both cell lines (Fig. 9A). Regarding candidates involved in
ICRAC, we found that all members of the ORAI (ORAI1, -2, and
-3) and STIM (STIM1 and -2) protein families are expressed in
both normal and tumor cells (Fig. 9B). Quantitative, real time

RT-PCR studies were carried out on those candidates
expressed in both normal and tumor cells (Fig. 9C). Expression
values were normalized relative to expression of �-actin. The
expression profile of these candidates in normal NCM460 cells
was STIM2 � ORAI2 � STIM1 � ORAI1 � ORAI3 �� TRPC1.
In HT29 colon carcinoma cells, the expression profile was
roughly similar except that STIM1 now doubled the ORAI1
expression (Fig. 9C). More importantly, we found that several
transcripts were increased significantly relative to normal cells,
including STIM2, ORAI2, STIM1, and TRPC1 (Fig. 9C). ORAI1
and ORAI3 transcripts were similar in normal and tumor cells
(Fig. 9C).

Western blotting analysis was carried out to test expression
of molecular candidates at the protein level. Fig. 10 shows that
expression of almost all tested proteins was increased in tumor
cells, including ORAI1, ORAI2, ORAI3, TRPC1, and STIM1
(Fig. 10, A–E), despite some of them showing no change at the
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FIGURE 9. mRNA expression levels of SOCE-related channels and Stim
proteins in normal (NCM460) and colon carcinoma (HT29) cells. A, mRNA
expression of selected transient receptor potentials in normal and colon car-
cinoma cells. Pictures show specific bands of RT-PCR products of TRPC1,
TRPC6, TRPV6, and TRP8. �-Actin expression was used as internal control. B,
mRNA expression of orai and stim family members in normal and colon car-
cinoma cells. Pictures show specific bands of RT-PCR products of ORAI1,
ORAI2, ORAI3, STIM1, and STIM2. �-Actin expression was used as internal con-
trol. C, transcript levels of TRPC1, ORAIS, and STIMs. mRNA levels of candidate
molecular players were measured in normal (black bars) and tumor (red bars)
cells by qPCR and normalized to �-actin. Data are mean � S.E. of at least three
experiments (*, p � 0.05).
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mRNA level. Relative changes were not similar. TRPC1 and
STIM1 increased 5.2 and 3.7 times in tumor cells, respectively.
ORAI1, ORAI2, and ORAI3 increased 2.3-, 2.9-, and 1.5-fold in
tumor cells, respectively (Table 2). Surprisingly, we found that
STIM2 protein is nearly lost in colon carcinoma HT29 cells
relative to normal colon NCM460 cells (Fig. 10F) despite that
stim2 was the most increased transcript in tumor cells (Fig. 9C).

An emerging concept in Ca2� signaling is that stoichiometry
of molecular components may influence SOCE and ISOC criti-
cally (33). Accordingly, we have estimated the fold change of
each component in tumor cells relative to the changes of the
remaining proteins. Table 3 shows the fold change ratios of
each protein relative to the changes of the rest of the proteins.

TRPC1/ORAI1, TRPC1/ORAI2, and TRPC1/ORAI3 ratios
increased 2.2-, 1.8-, and 3.5-fold, respectively, in tumor cells,
suggesting that SOCs in tumor cells are enriched in TRPC1. In
addition, fold change ratios for TRPC1/STIM2, ORAI1/
STIM2, ORAI2/STIM2, ORAI3/STIM2, and STIM1/STIM2
increased by 35-, 13-, 19-, 20-, and 25-fold, respectively. These
values suggest that, in tumor cells, STIM2 protein is essentially
removed from any possible interaction with other SOCE
molecular players. Interestingly, it has been reported that
STIM2 may inhibit STIM1-mediated SOCE (34) and may reg-
ulate Ca2� store content (35). Accordingly, loss of STIM2 may
impact on both SOCE and Ca2� store content. Knockdown
experiments were carried out next to ascertain the role of the
above-mentioned proteins on SOCE, ISOC, and Ca2� store
content.

Effects of TRPC1 and ORAI1 Silencing on SOCE and ISOC in
Normal and Tumor Cells—Results suggest that ORAI1 and
TRPC1 are likely involved in SOCE and ISOC in colon carci-
noma cells. To test for this possibility, ORAI1 and TRPC1 were
silenced in HT29 cells using small interference RNA (siRNA)
technology. siRNA probes against ORAI1 and TRPC1
decreased significantly the amount of corresponding mRNA
(Fig. 11, A and B). ORAI1 silencing decreases significantly
SOCE in HT29 cells almost as much as it decreases ORAI1
transcript (Fig. 11A). In contrast, TRPC1 knockdown fails to
reduce SOCE in tumor cells (Fig. 11B). The effects of silencing

FIGURE 10. Protein expression levels of SOCE-related channels and Stim proteins in normal (NCM460) and colon carcinoma (HT29) cells. A, Western blot
assay of ORAI1 protein expression in normal and tumor cells. In this and the following panels, bars are mean � S.E. values relative to normal cells (n �3; *, p �
0.05). B, Western blot assay of ORAI2 protein expression in normal and tumor cells. C, Western blot assay of ORAI3 protein expression in normal and tumor cells.
D, Western blot assay of TRPC1 protein expression in normal and tumor cells. E, Western blot assay of STIM1 protein expression in normal and tumor cells. F,
Western blot assay of STIM2 protein expression in normal and tumor cells.

TABLE 2
Changes (fold increase) in proteins involved in SOCE in tumor cells
relative to normal cells
Values correspond to the fold increase for each protein in tumor cells relative to
normal cells. Thus, for instance, TRPC1 is 5.2 times more abundant in colon carci-
noma cells than in normal colonic cells. Data are taken from the bars shown in Fig.
7. All proteins are more abundant (fold change �1) in tumor cells except for Stim2,
which is decreased by 85% in tumor cells. The most important changes are those
observed in TRPC1, Stim1, and Stim2 (shown in boldface).

Fold change tumor vs. normal cells

TRPC1 5.20
ORAI1 2.30
ORAI2 2.90
ORAI3 1.50
STIM1 3.70
STIM2 0.15
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ORAI1 and TRPC1 on ISOC and ICRAC were tested next. In
tumor cells, scramble siRNA had no effect on the inward or the
outward ISOC (Fig. 11, C and F). As expected, ORAI1 silencing
decreases largely the inward ISOC (from �4.9 � 0.6 pA/pF for
scramble siRNA to �2,2 � 0.4 for ORAI1 siRNA; n � 13–19)
but also reduces significantly the outward component (from
4.5 � 1 pA/pF for scramble siRNA to 2.4 � 1 for ORAI1 siRNA;
n � 13–19) (Fig. 11, D and F). TRPC1 silencing nearly abolishes
the outward component of the ISOC (from 4.5 � 1 pA/pF for
scramble siRNA to 0.7 � 0.4 for TRPC1 siRNA; n � 13–17) and
also reduces significantly the inward component (from �4.9 �
0.6 pA/pF for scramble siRNA to �1.7 � 0.5 for TRPC1 siRNA;
n � 13–17) (Fig. 11, E and F). In normal cells, the results are
quite different (Fig. 12). TRPC1 silencing or scramble siRNA
has no effect on ICRAC (Fig. 12, A and B). However, silencing of
ORAI1 inhibits ICRAC in normal cells (Fig. 12C). Average data
are shown in Fig. 12D. Likewise, silencing of ORAI1 but not
TRPC1 inhibits SOCE in normal cells (data not shown). These
results indicate that both ORAI1 and TRPC1 contribute to ISOC
in colon carcinoma cells, although in normal cells ICRAC is
mediated only by ORAI1. We have also tested the contribution
of ORAI2 and ORAI3 on SOCE in tumor cells. Fig. 13 shows
that, paradoxically, silencing of either ORAI2 or ORAI3 in
HT29 cells tends to increase SOCE. However, differences were
not statistically significant (Fig. 13).

Finally, we have investigated the molecular basis and func-
tional significance of Ca2� store depletion in tumor cells. For
this end, we tested the effects of STIM2 silencing in normal
NCM460 cells on Ca2� store content, SOCE, and apoptosis
resistance. STIM2 silencing decreases STIM2 mRNA by 64 �
6% (data not shown).

We found that STIM2 silencing decreased the rise in
[Ca2�]cyt induced by ionomycin in Ca2�-free medium consis-
tently with decreased Ca2� store content in STIM2-silenced

cells (Fig. 14A). In addition, re-addition of external Ca2� to
ionomycin treated is decreased in STIM2-silenced cells sug-
gesting that STIM2 knockdown inhibits SOCE in normal cells.
Consistently, SOCE in cyclopiazonic acid-treated cells was
reduced in silenced cells (Fig. 14, A and B) relative to control
cells. Therefore, these data indicate that STIM2 contributes to
SOCE and Ca2� store content in normal cells, and its silencing
leads to decreased SOCE and Ca2� store content. As Ca2� store
content may be relevant for apoptosis resistance, we next tested
the effects of STIM2 silencing on apoptosis resistance. We
found that after strong oxidative damage (2 mM H2O2, 150
min), resistance to apoptosis was similar in control and silenced
cells (data not shown). However, when damage was less severe
(1 mM H2O2, 30 min), STIM2-silenced cells proved to be more
resistant to cell death than control cells (Fig. 14C). These data
indicate that STIM2 participates in SOCE in normal colon epi-
thelial cells, and the inhibition of its expression during tumor-
igenesis may contribute to Ca2� store depletion and apoptosis
resistance, which are characteristic of tumor cells.

DISCUSSION

We have investigated the remodeling of intracellular Ca2�

handling in colon cancer, its molecular basis, and its contribu-
tion to cancer hallmarks. To this end, functional parameters
and molecular players involved in Ca2� homeostasis were stud-
ied in normal human mucosa and colon carcinoma cells. All
colon carcinoma cell lines tested displayed a much larger SOCE
than normal cell lines, which correlated with increased cell pro-
liferation in tumor cells, thus suggesting that enhanced SOCE
contributes to increased tumor cell proliferation in colon can-
cer. Consistently, up-regulation of SOCE has been recently cor-
related with cancer features in a number of cancers (10, 12, 13,
16, 20, 21, 36). We have shown previously that SOCE antago-
nists inhibit colon carcinoma cell proliferation (25, 29). Now,

TABLE 3
Ratio of change in proteins involved in SOCE relative to the change observed in the remaining proteins
Each value corresponds to the fold change of a particular protein in tumor cells relative to the fold change of the remaining proteins. For instance, TRPC1 increases 5.2 fold
in tumor cells whereas Orai1 increases only 2.3 times. Thus, TRPC1 protein expression increases 2.2 times more than Orai1. These ratios are very large for any combination
of proteins with Stim2 in the denominator as this protein actually decreases in tumor cells.
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we show that SOCE antagonist 2APB also inhibits colon carci-
noma cell invasion suggesting contribution of SOCE to
enhanced proliferation and invasion in these cells. Accordingly,
we have investigated the mechanisms for increased SOCE in
human colon carcinoma cells. Importantly, NCM460 normal
and HT29 carcinoma colon cells have been recently validated as
normal and tumor cell models, respectively (37).

Increased SOCE in colon carcinoma cells was associated with
enhanced resting [Ca2�]cyt, more negative membrane poten-
tial, increased ISOC, and enhanced agonist-induced Ca2�

release and entry. As a matter of fact, physiological agonists that
induce Ca2� release (ATP and carbachol) promoted Ca2� entry
only in tumor cells. This differential response could be due to

the fact that Ca2� stores in normal cells are overloaded relative
to tumor cells, and the agonist-induced Ca2� store emptying is
rather limited. In this scenario, the threshold for SOCE activa-
tion could be beyond reach, and SOCE is not permitted unless
Ca2� stores are fully depleted by, for instance, thapsigargin. In
contrast, Ca2� stores in tumor cells are substantially depleted,
and Ca2� release is enhanced, thus putting SOCE threshold at
reach and favoring SOCE activation in physiological condi-
tions. This partial Ca2� store depletion in colon carcinoma cells
could contribute also to cancer features. First, it favors SOCE
activation and therefore cell proliferation and invasion as stated
above. Second, it may also contribute to apoptosis resistance,
another hallmark of cancer cells. Interestingly, it has been
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reported recently that Ca2� store content may be critical for
survival. Specifically, large Ca2� stores favor enhanced transfer
to mitochondria and mitochondrial Ca2� overload, whereas
reduced Ca2� store content prevents mitochondrial Ca2� over-
load and apoptosis (38). Consistently, we show that colon car-
cinoma cells display substantially depleted stores and enhanced
resistance to cell death. Taken together, data suggest that the
“Ca2� signature” of colon carcinoma cells shown here and

made of enhanced SOCE and depleted Ca2� stores may con-
tribute to enhanced proliferation, invasion, and survival char-
acteristics of cancer cells.

What mechanisms underlie enhanced SOCE and depleted
Ca2� stores in human colon carcinoma cells? Regarding SOCE,
our combined functional and molecular analysis reveals that
SOCE enhancement in tumor cells is mediated by the following:
1) up-regulation of ORAI1 and STIM1 proteins, which likely
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FIGURE 12. Effects of ORAI1 and TRPC1 knockdown on ICRAC in normal (NCM460) cells. A, representative I-V relationships (left) and current kinetics of ICRAC
at �80 mV (right) in normal NCM460 cells transfected with scramble siRNA (n � 12). B, representative I-V relationships (left) and current kinetics of ICRAC at �80
mV (right) in normal NCM460 cells transfected with TRPC1 siRNA (n � 8). C, representative I-V relationships (left) and current kinetics of ICRAC at �80 mV (right)
in normal NCM460 cells transfected with ORAI1 siRNA (n � 14). D, average current density (pA/pF) of ICRAC at �80 mV for nonsilenced cells and cells transfected
with scramble siRNA, TRPC1 siRNA, and ORAI1 siRNA. Data are mean � S.E. of 8 –14 cells (*, p � 0.05), ns, nonsignificant.
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mediate enhanced ICRAC and SOCE in tumor cells; 2) overex-
pression of TRPC1 protein that correlated with the emergence
of a nonselective ISOC; and 3) the switch of the levels of expres-
sion between STIM1 and STIM2 Ca2� sensors proteins (Fig.
15). More specifically, differences in ion channel expression
and ER Ca2� sensors may contribute to enhance SOCE in
tumor cells. This possibility was addressed directly by mea-
suring SOCs in normal and tumor cells. Interestingly, ISOC
was strikingly different. Normal cells display a small ICRAC
current, whereas tumor cells showed a mix of currents,
including enhanced ICRAC plus and additional nonselective
ISOC. It has been reported that SOCE can be supported by
different ISOC expressed in the same cell (9, 39 – 41). To our
knowledge, this is the first report showing that ISOC currents
in normal cells are strikingly different compared with their
tumor cell counterparts.

ICRAC in normal and colon carcinoma cells is likely mediated
by ORAI1 and STIM1/STIM2 proteins because all of them are
expressed in both cell lines, and the biophysical and pharmaco-
logical characteristics of recorded currents match those
described for canonical ICRAC (31, 42, 43). In our hands, ICRAC
in both normal and tumor colon cells displayed voltage-inde-
pendent activation, strong inward rectification, and reversal
potential in very positive voltages. Also, ICRAC was inhibited by
2APB at a low concentration (30 �M). In addition, the well

known potentiating effect of low concentrations of 2APB on
ORAI3-containing SOCs (32, 44) was not observed. Moreover,
the extent of ICRAC was unaffected by the absence of extracel-
lular Na� ions and reduced when Ba2� was used instead Ca2�,
thus indicating a high Ca2� selectivity and the involvement of
ORAI1 channels (42, 45, 46).

However, the emergent ISOC restricted to tumor cells was
nonselective showing a reversal potential near 0 mV. Unlike
ICRAC, the emergent ISOC was not sensitive to low concentra-
tions of 2APB (30 �M), and the current amplitude of the out-
ward component was significantly decreased by removal of
extracellular Na� ions, thus suggesting involvement of a TRPC
member (47, 48). At the molecular level, several candidates
were excluded because they are not expressed in tumor cells,
including TRPV6, TRPM8, TRPC6, and TRPV4. In contrast,
TRPC1 was expressed in normal and tumor cells, and its abun-
dance increased quite significantly in colon cancer cells, thus
suggesting contribution of TRPC1 to the nonselective, emer-
gent ISOC of tumor cells. Knockdown experiments corrobo-
rated the molecular identity of SOCs underlying SOCE.
ORAI1-containing channels mediate ICRAC in normal and
tumor cells. Overexpression of ORAI1 and STIM1 is involved
in increased SOCE and ISOC in tumor cells. Consistently,
ORAI1 silencing prevented SOCE in tumor cells. However
silencing of either ORAI2 or ORAI3 had no significant effect on
SOCE in colon carcinoma (HT29) cells. Meanwhile, TRPC1
channels are involved in the nonselective ISOC but do not con-
tribute to SOCE. Moreover, the low Ca2� store content may, in
turn, modulate the expression of the TRPC1 channel. For
example, it has been shown that prolonged depletion of Ca2�

stores enhances TRPC1 expression and increases [Ca2�]cyt
responses to agonists without affecting SOCE (49). Silencing
data are also consistent with the possibility of functional inter-
actions between ORAI1 and TRPC1 channels. ORAI1 knock-
down prevents mainly ICRAC but also reduces significantly the
outward component mediated by TRPC1. Conversely, TRPC1
silencing nearly abolishes outward ISOC, but it also reduces sig-
nificantly the extent of the inward component. Consistently, it
has been shown that STIM1 may drive interactions between
ORAI1 and TRPC1 (39, 50).

Our results pose the question regarding what is the role
played by TRPC1 up-regulation in colon cancer. TRPC channel
has been the subject of a long term controversy about its role as
a SOC channel (33). In our experimental conditions, the non-
selective ISOC is likely mediated by TRPC1-containing chan-
nels. The most interesting matter is that, in human carcinoma
colon cells, TRPC1 protein showed the largest change (up-reg-
ulation) together with STIM2 (down-regulation). Accordingly,
these changes could represent the most critical events underly-
ing Ca2� remodeling and acquisition of cancer features. In sup-
port of this view, it has been reported that TRPC channels are
overexpressed and regulate cell proliferation in human non-
small cell lung, breast, liver, stomach, and glioma cancer (13,
51–54). The nonselective channel TRPC1 permeates Na� and
Ca2�, and consequently, it may have a role as a Ca2� influx
pathway or as a modulator of membrane potential. For
instance, TRPC1 may control the driving force for Ca2� influx
during SOCE (55). Moreover, TRPC1 could support cell prolif-
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FIGURE 13. Effects of ORAI2 and ORAI3 knockdown on SOCE in colon car-
cinoma (HT29) cells. A, HT29 cells were transfected with scramble siRNA or
siRNA for ORAI2 or ORAI3, and levels of corresponding mRNAs were estimated
by quantitative RT-PCR. B, SOCE was estimated in control and knockdown
cells for ORAI2 (left) and ORAI3 (right) HT29 cells treated with thapsigargin.
Data are mean � S.E. of four independent recordings for each case. C, 	 ratio
(mean � S.E.) of cells transfected with siRNA scramble or siRNAs for ORAI2
(left) or ORAI3 (right).
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eration of tumor cells because one of its physiological roles is
the modulation of the cell cycle progression through the regu-
lation of cell volume (56). In addition, it has been reported
recently that the interaction between STIM1 and TRPC1 is
essential for cell migration after wounding in rat intestinal, epi-
thelial cells (57). Moreover, it has been shown that the rise in
STIM2 relative to STIM1 favors STIM1/STIM2 heteromers
that suppress STIM1 translocation to the plasma membrane
and its interaction with TRPC1 (57). Therefore, our finding that
TRPC1/STIM2, STIM1/STIM2, and ORAI1/STIM2 ratios
increase by 35-, 25-, and 13-fold, respectively, in colon cancer
cells suggests that STIM2 depletion may enable STIM1 trans-
location to the plasma membrane and STIM1 interaction with
TRPC1, providing an explanation for both enhanced SOCE and

functional expression of an emergent, nonselective ISOC in
tumor cells. Further research is needed to ascertain more pre-
cisely the role of TRPC1 in colonic tumorigenesis.

What mechanisms are involved in the low level of Ca2� store
content in colon carcinoma cells? Ca2� store content at the ER
depends on the balance between Ca2� uptake mediated by sar-
coplasmic and ER Ca2�-ATPase pumps and Ca2� exit through
unknown leak channels (4). However, it has been reported that
the level of [Ca2�] inside the ER is dictated actually by ER Ca2�

sensors STIM1 and STIM2 (35) that open Ca2� channels at the
plasma membrane to refill Ca2� stores. However, STIM1 and
STIM2 are not alike and show different affinities for Ca2�.
STIM1 senses Ca2� with high affinity and activates SOCE only
after substantial depletion of Ca2� stores (EC50 
210 �M). In
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contrast, the STIM2 EF hand displays a low apparent affinity for
Ca2� (Kd 
500 �M) and senses rather small decreases in [Ca2�]
within the ER with an EC50 of 406 �M (35). Accordingly, in
normal mucosa cells expressing both STIM1 and STIM2, it is
likely that Ca2� levels inside the ER Ca2� store are set by STIM2
that activates first when the Ca2� store content falls below 500
�M. This view is consistent with the large Ca2� store content
found in normal cells where Stim2 is relatively more abundant.
However, in tumor cells, STIM2 depletion may render STIM1
as the only Ca2� sensor available. In this scenario, STIM1 could
set Ca2� levels within the ER close to 200 �M. Our finding that
the STIM1/STIM2 ratio increases by 25-fold in tumor cells
where Ca2� stores remain substantially depleted is entirely
consistent with this possibility. Our knockdown experiments
also support this view. STIM2 knockdown in normal cells

decreased Ca2� store content in a significant manner. More
importantly, STIM2 silencing induced apoptosis resistance to
normal cells, thus confirming the important role of STIM2 loss
in Ca2� store emptying and enhanced cell survival.

Interestingly, down-regulation of STIM2 and Ca2� store
depletion may contribute to increase TRPC1 in tumor cells in
another way. It has been reported that depletion of Ca2� stores
with thapsigargin increases TRPC1 protein levels without
affecting SOCE (49). Thus, TRPC1 functional expression
depends on the filling state of Ca2� stores. This view is sup-
ported by a report showing that in Darier disease, a disorder of
skin epithelia, a rare mutation that prevents operation of
SERCA2 depletes Ca2� stores, and this condition promotes a
compensatory up-regulation of TRPC1 (58). Therefore,
increased expression of TRPC1 and perhaps other SOCE com-
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ponents in colon cancer could be secondary to Ca2� store
depletion associated with the loss of STIM2.

Taken together, the above data suggest that the critical event
in Ca2� remodeling in colon cancer could be STIM2 protein
down-regulation. As a cautionary note, we must acknowledge
that our results are derived from comparison of a few normal
and colon carcinoma cell lines that may not reflect entirely
human colorectal carcinogenesis. Further research is required
to test whether our results apply to other tumor cell lines and
real tumor cells. However, in support of the potential relevance
of STIM2 loss in colon cancer, recent data suggest that STIM2
is a tumor suppressor but the action mechanism is unknown.
The STIM2 gene located at 4p15 has been recently identified as
a candidate gene for tumorigenesis in glioblastoma multiforme
(23) and colon cancer (22). Paradoxically, STIM2 transcript is
actually overexpressed in 64% of all human colon cancers tested
(22). However, these results are controversial because, as stated
by the own authors, it is intriguing that a gene with a suppressor
phenotype is so frequently overexpressed in colon cancer (22).
It is worth noting, however, that STIM2 was tested only at the
transcript level. Interestingly, STIM2 transcript, which is up-
regulated also in prostate cancer, has been recently shown to be
down-regulated during the transition from moderate to high
Gleason grade (59). Thus, up-regulation of the mRNA level of
STIM2 is not necessarily reflected as overexpression of the pro-
tein. In agreement, we show that STIM2 transcript is overex-
pressed in colon carcinoma (HT29) cells, although STIM2 pro-
tein is nearly lost in the same cells. Finally, it has also been
reported recently that increases in STIM1/STIM2 ratios are
associated with a poor prognosis in breast cancer (60).

In summary, we show here that human colon carcinoma
cells show increased store-operated Ca2� entry, enhanced
and modified store-operated currents, and partially depleted
Ca2� stores relative to their normal counterparts. These
changes correlate with increased cell proliferation, invasion,
and survival characteristic of tumor cells. Finally, most
changes can be explained by changes in molecular players
involved in SOCE, particularly a reciprocal shift in TRPC1
and STIM2 expression, thus suggesting TRPC1 and STIM2
as novel targets for colorectal cancer. Further research is
required to ascertain more precisely the role of these molec-
ular players in colon carcinogenesis.
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