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N-methyl-D-aspartate (NMDA) receptors are known to fulfill crucial functions in many forms of learning and plasticity. More recently,

biophysical models, however, have suggested an additional role of NMDA receptors in evidence integration for decision-making, going

beyond their role in learning. We designed a task to study the role of NMDA receptors in human reward-guided learning and decision-

making. Human participants were assigned to receive either 250 mg of the partial NMDA agonist d-cycloserine (n¼ 20) or matching

placebo capsules (n¼ 27). Reward-guided learning and decision-making were assessed using a task in which participants had to integrate

learnt and explicitly shown value information to maximize their monetary wins and minimize their losses. To tease apart the effects of

NMDA on learning and decision-making we used simple learning models. D-cycloserine shifted decision-making towards a more optimal

integration of the learnt and the explicitly shown information, in the absence of a direct learning effect. In conclusion, our results reveal a

distinct role for NMDA receptors in reward-guided decision-making. We discuss these findings in the context of NMDA’s roles in

neuronal super-additivity and as crucial for evidence integration for decisions.

Neuropsychopharmacology (2014) 39, 2900–2909; doi:10.1038/npp.2014.144; published online 9 July 2014
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INTRODUCTION

Animals and humans live in ever changing and complex
environments. They need to continuously track and learn
about the changing properties of their environment and use
them to behave adaptively. The neural mechanisms engaged
in learning about the environment depend on the type of
information being tracked. Nevertheless, the plasticity
underpinning several of these various forms of learning has
been argued to depend on the same molecular mechanism,
ie, N-methyl-D-aspartate (NMDA) subtypes of glutamate
receptors. Accordingly a number of studies have investigated
whether NMDA receptor manipulations affect learning and
memory (Bannerman et al, 2012; Kuriyama et al, 2011; Bohn
et al, 2003).

Most of the studies looking at the role of NMDA receptors
in reward learning have focused on simple tasks, such as a
single association between a stimulus and an outcome or
its reversal. However, in more ecological, and thus complex,
scenarios, learning and decision-making often involve

consideration of positive and negative aspects of potential
outcomes as well as the integration of learnt information
with information that is explicitly cued. Importantly, it has
recently been shown that integration of information
conveyed by different dimensions during decision-making
is an active process recruiting particular neural mechanisms
(Burke et al, 2013; Stein and Stanford, 2008). Thus, to
understand the full role of NMDA receptors in reward
learning and decision-making, it might not be sufficient to
only study a single simple component in isolation.

Interestingly, there is some, albeit indirect, evidence that
NMDA receptors are not only important for learning,
but also for integration of information: NMDA receptor
blockade has been reported to affect the integration of
multisensory information in cat superior colliculus (Binns
and Salt, 1996) or the integration of reward and delay in rats
(Floresco et al, 2008). However, to our knowledge, it has not
been investigated whether NMDA receptors play a role in
human value-based decision-making and learning.

To examine the influence of changes in NMDA receptor
activity on complex learning and decision-making beha-
viors in humans, we used the partial NMDA agonist
d-cycloserine. D-cycloserine binds to the glycine site of
the NMDA receptor. Glycine is a co-agonist of the NMDA
receptor, meaning that NMDA receptors only open when
both glycine and glutamate bind. D-cycloserine can thus
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increase the probability of glutamate release opening
NMDA receptors, which in turn enhances NMDA recep-
tor-mediated activation. We designed a multi-attribute
decision-making task in which participants learnt changing
accepted article preview 13 June 2014 of gains and losses of
two options. They made choices between options by
integrating those learnt probabilities with explicitly cued
information about gain and loss magnitudes. To assess
potential effects of d-cycloserine on learning and decision-
making, we used reinforcement-learning models.

Surprisingly, we did not find any evidence for a change in
the rate at which participants learned about reward or
punishment outcomes. However, we found that d-cycloser-
ine improved decision-making. D-cycloserine led to a more
optimal integration of the learnt probability information
with the explicitly cued magnitude information.

METHODS

Participants

The study was approved by the local ethics committee.
In total, 52 healthy volunteers (age 18–30) took part in the
study (inclusion details in Supplementary Methods). The
groups were well-matched on sociodemographic and
personality parameters (Table 1). Five participants were
excluded (Supplementary Methods). There remained 20
participants in the d-cycloserine and 27 participants in the
placebo group.

Procedure

In a double-blind, placebo-controlled design, participants
were randomly allocated to a single dose of d-cycloserine
(250 mg) or matching placebo capsule. They fasted 2 h
before the testing visit. Approximately, 250 mg was chosen
in agreement with recent studies (Klumpers et al, 2012;
Onur et al, 2010). Participants were tested 3 h after drug
administration. According to product information (King’s
Pharmaceutical), plasma peak levels are reached within
3–4 h; other studies (van Berckel et al, 1997, 1998; Patel
et al, 2011) found that peak levels are reached within B1 h.
However, given d-cycloserine’s half-life of 8–12 h (product
information) or 15 h (Patel et al, 2011), plasma levels would
have been close to peak levels during testing, given either
time-to-peak information. To assess potential subjective
changes following d-cycloserine, participants completed
questionnaires (Table 1) before capsule intake and before
testing.

Probabilistic Instrumental Learning Task

Participants performed a probabilistic learning task with
monetary wins and losses (Figure 1a). Participants made
repeated choices between two options with the aim to
maximize their monetary pay-off.

On each trial, participants had a choice between two
options. Each option had four independent attributes: a
reward and a loss magnitude, a reward and a loss
probability. The magnitude determined how many points
could be won (and lost) on this trial, while the probabilities
determined how probable winning and losing was respec-

tively. After participants selected one of the options, they
were shown the outcomes for both options. However, only
the option they had chosen contributed to the participants’
earnings. In trials where the chosen option incurred both,
wins and losses, the participants’ earnings in that trial were
the sum of both. Therefore, to maximize the overall gains,
participants should be choosing the option on each
trial with the highest reward utility (reward magnitude�
reward probability) and with the lowest loss utility (loss
magnitude� loss probability).

Reward and loss magnitudes were explicitly cued at the
time of choice and were randomly drawn from a flat
distribution between 1 and 100 points. In contrast, the
probabilities were not explicitly shown and had to be learnt
across trials by observing the outcomes. The outcomes for
one option could either be a win and a loss, only a win, only
a loss, or neither win nor loss. The independent reward and
loss probabilities determined the probability of these
outcomes. The probabilities varied over the course of the
experiment between 20 and 80%, with only one of the four
probabilities varying at any given time (Figure 1c).

Before the experiment, participants were instructed about
the task (see Supplementary Methods). Participants first
performed 30 training trials, followed by 381 test trials,
which were included in the analysis. Each participant was
tested using the same task schedule to allow for better group
comparisons. At the start of the task participants were given
4d (400 points) to ensure that they had sufficient funds to
sustain losses incurred even at the beginning of the
experiment.

Analysis

The behavioral analysis compared the effects of d-cycloser-
ine vs placebo on (a) learning of reward and loss
probabilities, and (b) integration of learnt (probabilities)
and explicitly cued (magnitudes) information for guiding
complex decisions. All analyses were performed in Matlab
and SPSS.

Logistic regression analysis. To ensure that participants
learnt the probabilities, we first assessed the impact of past
outcomes (reward and loss) and the explicitly cued
magnitudes (reward and loss) on choice, using a logistic
regression analysis and normalized regressor estimates. We
included regressors for the last five trial differences in
reward and loss outcomes between the two options, as well
as the differences in the explicitly cued magnitudes.

To investigate whether the groups differed in their
learning speeds, the resulting regression weights for the
past outcomes were entered into an ANOVA with group (d-
cycloserine vs placebo) as a between-subject factor and time
(1, 2, 3, 4, or 5 trials in the past) and valence (reward or
loss) as within-subject factors.

Modeling

To look at the learning effects more specifically and assess
participants’ strategies for the integration of information to
make decisions, we used reinforcement-learning models to
fit each participant’s trial-by-trial behavior.
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Each model consisted of three main components. First,
the model had estimates about the probabilities underlying
the outcomes of both options. These were updated on every
trial using a reinforcement-learning algorithm. Second, the
probability estimates were integrated with the explicitly
cued magnitudes to calculate how valuable each of the two
options was (ie, their utility). Third, these two utilities were
compared to predict participants’ choices. To determine the
best parameter estimates for every participant, we used a
standard log-likelihood maximization procedure.

When calculating how valuable each option is, partici-
pants might use different decision strategies for integrating
learnt probabilities with explicit magnitudes. They
could use a mathematically optimal strategy (utility as
probability�magnitude). However, as this optimal strategy
may be quite cognitively taxing, they could resort to a
heuristic strategy (utility as a weighted sum of probability
and magnitude). To test which decision strategy partici-

pants used, we fitted different models to the data. To test for
differences in strategy, we then compared how well each of
these models explained the groups’ behavior. In addition,
we fitted a third model, which directly estimated to what
degree they used either decision strategy.

Optimal model. This model assumed that participants
integrated the learnt probabilities optimally with the explicit
magnitudes (magnitude� probability). The learning of
probabilities was modeled using a standard reinforce-
ment-learning rule. On each trial, the estimated probability
of an attribute was updated based on the trial’s outcome, as
a function of the prediction error (PE):

Predictiont ¼ Predictiont� 1þ a�PEt� 1

with

PEt� 1 ¼ Outcomet� 1�Predictiont� 1

Table 1 Sociodemographic and Questionnaire Measurements

Demographics and questionnaire measurements

Pla (n¼27) DCS (n¼ 20) P

Age 22.2±0.6 22.3±0.7 0.93

Gender, F : M 15 : 12 11 : 9 0.97

BDI 2.0±0.5 0.9±0.4 0.14

Education years 16.9±0.3 15.9±0.5 0.10

Trait anxiety 30.9±1.6 30.5±1.3 0.86

BMI 22.0±0.4 22.0±0.5 0.99

Neuroticism 5.2±0.9 5.6±0.9 0.33

ACS focusing 26.7±0.6 26.2±0.9 0.64

ACS shifting 34.7±0.8 34.5±1.0 0.31

BIS 16.0±0.8 16.7±0.8 0.59

BAS 24.4±5.8 23.6±4.8 0.59

VAS items Pla, before Pla, after DCS, before DCS, after P, before P, after P, diff score

Anxious 7.6±1.6 3.6±0.6 6.7±1.5 5.7±1.8 0.70 0.25 0.24

Sleepy 28.4±4.0 21.3±4.3 24.1±3.3 13.7±2.5 0.43 0.13 0.54

Flushed 9.1±2.0 3.2±0.8 7.1±1.9 3.7±0.7 0.50 0.62 0.31

Tearful 3.3±0.9 2.9±0.8 3.1±0.7 2.8±0.5 0.84 0.87 0.95

Nauseous 3.3±0.9 3.2±0.9 2.9±0.7 3.5±0.6 0.72 0.83 0.41

Hopeless 3.3±0.7 2.5±0.5 4.1±1.5 2.7±0.5 0.61 0.85 0.65

Tremor 3.3±0.9 3.2±1.0 3.7±1.0 3.1±0.6 0.77 0.91 0.58

Sad 4.9±0.9 2.8±0.5 4.5±1.3 2.8±0.5 0.83 0.98 0.80

Dizzy 2.7±0.7 3.5±1.2 3.0±0.7 5.4±2.0 0.78 0.41 0.38

Depressed 2.9±0.5 2.6±0.5 3.1±0.8 2.5±0.5 0.85 0.90 0.65

Tachycardia 4.5±1.4 3.5±1.2 5.7±1.5 3.5±0.7 0.57 0.98 0.37

Alert 51.3±5.0 48.4±5.1 57.8±5.0 52.3±5.4 0.37 0.61 0.51

The following measurements were obtained before drug administration: age, gender, Beck’s Depression Inventory (BDI, Beck et al, 1996), years of education at time of
study, trait anxiety (Spielberger et al, 1983), body mass index (BMI, weight(kg)/height(cm)2), neuroticism (Eysenck and Eysenck, 1994), attention control scale (ACS,
Derryberry and Reed, 2002), behavioral inhibition, behavioral activation (BIS/BAS Scale, Carver and White, 1994). The values reported are mean values with standard
errors and the P-scores from between-subject t-tests (apart from the value for gender ratio, where a chi-squared test was used). Visual analog scales were given to
participants before and after drug administration. For each of the listed items, they were asked to indicate how they were feeling by placing a tick mark on a 100 mm
line, which was labeled ‘not at all’ on the left-hand side and ‘extremely’ on the right hand side. The values reported are the mean and standard error for the tick mark
positions (in mm). P-values were calculated for the group differences in the first (at baseline, ‘before’) and second measurement (after drug administration, ‘after’) and
on the difference scores (baseline–second measurement, ‘diff score’).
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where a is the learning rate. Thus, the learning rate
is a measure of how much participants updated their
probability estimate when the outcome associated with an
attribute differed from their expectation (eg, the probability
that the left option yields a reward). Separate learning rates
were used for learning about wins and losses.

These predictions were combined optimally with the
shown magnitudes:

UtilityReward ¼ ProbabilityReward � MagnitudeReward

The loss utility was computed in the same way and
combined with the reward utility:

Utilitytotal ¼ UtilityReward� l � UtilityLoss

where l determines how much participants weighted the
prospect of rewards vs losses.
A standard soft-max decision rule was used to predict the
probability of choosing an option.

PðOptionAÞ ¼
eUtilityA�b

eUtilityA�bþ eUtilityB�b

where b reflects a participant’s ability to pick the option
with higher utility.

To assess the effect of d-cycloserine on learning about
wins and losses, we compared their respective learning rates
between groups.

Heuristic model. This model differed from the optimal
model only in the decision strategy for integrating learnt
probabilities with explicit magnitudes. Instead of being a
product of probability and magnitude, utility was computed
as a weighted sum.

UtilityReward ¼ m � ProbabilityRewardþMagnitudeReward

where m is the probability weighting factor, describing the
relative importance of the learnt probability compared to
the explicit. The loss utility was computed in the same way,
sharing the same m.

Again, we compared the groups’ learning rates. Addi-
tionally, a change in learning could also manifest as a
changed reliance on learnt compared to explicit informa-
tion, we therefore also compared the probability weighting
factors between the groups.

Figure 1 (a) At the beginning of a trial two options appeared on the left (pink square) and right side (yellow square) of the screen. Throughout the
experiment, the pink square was always on the left side and the yellow square was always on the right side. Reward (bars at the top) and loss magnitudes
(circles at the bottom) were presented overlaid on the option symbols. After 500 ms, a question mark appeared after which the participants chose an
option. After participants made their selection (there was no time-out), the outcomes of the gambles were shown (b), first for the chosen option (duration:
2.5 s—left option in the example), then also for the unchosen option (duration: 2.5 s). If the gamble outcomes of the chosen option led to a reward, the
reward bar was shown; otherwise the reward bar was not shown. Similarly, if the gamble outcome of the chosen option led to a loss, the loss circle was
shown; otherwise, it was not shown. The sum of the reward and the loss incurred for the chosen option in a trial was added to a status bar at the bottom of
the screen, allowing participants to keep track of their overall gains. Subsequently, the participants were shown the outcomes for the unchosen option in the
same way, except that no points were added to the status bar. Importantly, presenting the outcomes of the chosen and the unchosen option ensured that
participants had an equal chance to learn the probabilities of the chosen and the unchosen option. After an inter-trial interval of 1.5 s, the next trial started.
(c) Example reward probabilities for the two options over the course of the experiment. The probabilities were either stable at 20% or 80%, or they drifted
between 20 and 80%, taking between five and eight trials per drift. (d) Example reward probability for one of the options (solid line), together with the
probability estimates from the Bayesian learner used (dotted line).
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Hybrid model. We used the hybrid model to examine
whether d-cycloserine affected how participants integrated
information, shifting them towards a more optimal, less
heuristic decision strategy. The hybrid model computed
utility as a weighted sum of the utilities from the optimal
and the heuristic model:

Utility ¼ o � UtilityHeuristicþð1�oÞ � UtilityOptimal

where o is the heuristic weight factor, determining how
much the overall utility is like the heuristic or the optimal
utility. The higher o (between 0 and 1), the more a
participant relied on a heuristic decision rule.

Model Comparison

If the groups differ in their decision strategy, this should
also be reflected in how well the models incorporating the
different strategies can explain behavior. To assess this, we
compared the model fits using the Akaike information
criterion (AIC). We calculated for each participant the AIC
differences between the optimal and the heuristic model
and also between the heuristic and the hybrid model. This
allowed us to compare whether the d-cycloserine differed
from the placebo group in how well their behavior was
explained by the heuristic relative to the optimal and by the
heuristic relative to the hybrid model.

To confirm the results from the modeling analysis using a
different method, we performed an additional regression
analysis with regressors analogous to the components of the
hybrid model. We included regressors for the explicit
magnitude differences, for the learnt probability estimate
differences, as well as for the difference in optimal utilities
(magnitude� probability). The probability estimates were
obtained using a Bayesian learner, like the one described in
Behrens et al, 2007; also see Supplementary Methods. These
Bayesian probability estimates are the most accurate
estimates a participant could have given the past outcomes
(Figure 1d). If participants’ decision strategy is more
heuristic, the main effects should have a larger impact on
behavior. Conversely, if the decision strategy is more
optimal, the interaction term (magnitude� probability)
should have a higher impact.

Learning About the Unchosen Option

There is some evidence (Boorman et al, 2011) that different
brain areas are used to learn about the chosen and the
unchosen option, thus there is a possibility they could be
affected differently by d-cycloserine. We found that
d-cycloserine did not affect the usage of the unchosen
option’s outcomes for decision-making or learning (see
Supplementary Methods and Results).

RESULTS

General Performance

In the task, participants had to constantly track the inde-
pendent win and loss probabilities of two options and
integrate these with explicitly cued reward and loss
magnitudes. The groups did not differ in the overall
earnings or in the mean points won/lost (Table 2a).

Logistic Regression

As a measure of learning, we assessed the impact of past
reward/loss outcomes on choice, using a logistic regression
analysis. We also included the currently displayed reward/
loss magnitudes. Participants were more likely to pick
options with higher reward (t(46)¼ 18.6, P¼ 5� 10� 23)

Table 2a Results of a General Behavioral Analysis

Overall behavior Pla DCS P

Total money won 12.9±1.1 13.0±0.9 0.66

Mean points won 35.4±1.1 35.4±1.1 0.89

Mean points lost 21.8±1.4 21.6±0.3 0.67

Mean reward magnitude chosen 60.7±0.4 60.7±0.6 0.92

Mean loss magnitude chosen 48.0±0.5 48.0±0.5 0.96

Mean reward gamble outcome 0.6±0.0 0.6±0.0 0.9

Mean loss gamble outcome 0.4±0.0 0.4±0.0 0.86

Table 2b Parameter Estimates (Mean and Standard Error) for
both Groups and the Results of Significance Tests for the Optimal
Decision Model

Optimal decision model Pla DCS P

LR reward 0.16±0.03 0.17±0.04 0.83

LR loss 0.27±0.05 0.22±0.04 0.52

Beta 0.06±0.006 0.07±0.007 0.40

Loss weight (l) 0.90±0.07 0.90±0.07 0.94

fval 165±5 154±6 0.15

Table 2c The Heuristic Decision Model

Heuristic decision model Pla DCS P

LR reward 0.44±0.05 0.35±0.04 0.20

LR loss 0.43±0.05 0.38±0.06 0.52

Beta 0.04±0.00 0.04±0.00 0.81

Loss weight (l) 0.88±0.05 0.87±0.05 0.86

Prob weight (m) 71.7±9.6 77.8±15.1 0.72

fval 146±5 142±6 0.62

Table 2d The Hybrid Decision Model

Hybrid decision model Pla DCS P

LR reward 0.46±0.05 0.32±0.04 0.07

LR loss 0.42±0.05 0.36±0.05 0.47

Beta 0.05±0.00 0.06±0.00 0.08

Loss weight (l) 0.89±0.05 0.90±0.04 0.93

Prob weight (m) 69.70±10.8 119.8±63.8 0.38

Heuristic weight (o) 0.84±0.03 0.59±0.23 4� 10� 5

fval 146±5 139±6 0.41
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and lower loss magnitudes (t(46)¼ � 14.9, P¼ 3� 10� 19).
They also chose options more frequently when they were
associated with more past wins and fewer losses (Figure 2a),
thus suggesting that they were able to learn from past
outcomes.

To test whether learning differed between the groups, and
maybe in dependence on reward and loss valence, we ran a
2 (group)� 5 (time point)� 2(valence) ANOVA on the
regression weights of the past outcomes (Figure 2a). That
participants learnt the reward/loss probabilities over time

Figure 2 (a) Decision weights (beta) for placebo (white) and d-cycloserine (gray), showing the decision impact of current magnitude differences
(left–right) and past gamble outcome differences (left–right), for one to five trials in the past, on choice. (b) Decision weights (beta) based on a regression
using shown magnitude differences, probability prediction differences (estimated using a Bayesian model), and their interaction for both groups. (c) AIC
difference scores comparing the relative fit of the hybrid to the heuristic and of the heuristic to the optimal model in both groups. Error bars indicate SE.
þP¼ 0.056, *Pr0.05, **Po0.001, ****Po10� 4.
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was evidenced by the fact that recent reward/loss outcomes
influenced choices more than longer ago ones (main effect
of time, F(4,180)¼ 80.6, Po10� 6). This effect of time was
stronger for losses than rewards (interaction effect, time�
valence, F(4,180)¼ 6.2, P¼ 3.8� 10� 4), suggesting that loss
probabilities were learnt more quickly.

Importantly, the groups neither differed in overall
learning speed (time� group: F(4,180)¼ 0.9, P¼ 0.42), nor
in their relative learning speeds for wins and losses (time�
valence� group, F(4,180)¼ 0.3, P¼ 0.89).

Modeling

The aims of the modeling analyses were to assess whether
the groups differed in their learning rate (all three models),
as well as whether they differed in their decision strategies
(model three). Each model used a standard prediction-error
learning rule for learning about reward/loss probabilities.
The models only differed in how learnt probabilities were
integrated with explicit reward/loss magnitudes.

Optimal model. This model integrated magnitudes and
probabilities optimally using a multiplicative rule. For
assessing differences in learning, we compared the learning
rate parameters between the groups. Surprisingly, the
groups did not differ in their learning rates (reward:
t(45)¼ � 0.2, P¼ 0.8, loss: t(45)¼ 0.7, P¼ 0.5), nor did they
differ in any other model parameter (Table 2b).

Heuristic model. Participants might use a more heuristic
and less optimal decision strategy to reduce task complex-
ity. This was accounted for in the heuristic model, in which
the decision utility was calculated as a weighted sum of
probability and magnitude. Here, we could detect a change
in learning either as a changed learning rate or as a change
in how much impact the learnt probabilities have on
decisions relative to the explicit magnitudes. Again, we did
not find any group differences for the two learning rates
(reward: t(45)¼ 1.3, P¼ 0.20, loss: t(45)¼ 0.7, P¼ 0.5) or
for the probability weighting factor (t(45)¼ � 0.36,
P¼ 0.72). The groups did not differ either in any other
model parameter (Table 2c).

Hybrid model. This model combined the optimal and
heuristic model’s decision strategy using an additional
weighting factor (o, heuristic weight); o indexed the degree
to which participants used the heuristic relative to the
optimal strategy. Again, the two groups did not differ in
their learning rates (Table 2d). However, there was a strong
difference in the heuristic weight between the groups, with
the d-cycloserine group relying more on an optimal rather
than heuristic decision strategy compared to the placebo
group (t(45)¼ 4.6, P¼ 3.6� 10� 5).

Model comparison. To investigate this shift in decision
strategy further we compared how well each model
explained the behavior of each group, using the AIC
(Figure 2c). We hypothesized that if participants in the
d-cycloserine group used a more optimal decision strategy,
models incorporating the optimal decision rule should

better explain their behavior compared to the placebo
group.

First, we compared the optimal model relative to the
heuristic model. In both groups, the heuristic model
provided a better fit to the data than the optimal model.
However, this effect was weaker in the d-cycloserine group
than in the placebo group, as shown by a significant group
difference (t(45)¼ 2.1, P¼ 0.046). This suggests that relative
to the placebo, the d-cycloserine group used a more optimal
strategy. We also compared the fits of the heuristic to the
hybrid model. Similarly, we found that the difference in
scores varied significantly between the groups (t(45)¼ 3.6,
P¼ 8.0� 10� 4). For the d-cycloserine group, the hybrid
model provided the best fit (t(19)¼ 3.9, P¼ 0.01). However,
for the placebo group, both models explained their behavior
equally well (t(26)¼ 1.6, P¼ 0.11). These findings are in line
with those from the modeling analysis above and suggest
that d-cycloserine shifted participants’ behavior to rely
more on an optimal decision strategy.

To investigate this further, we ran a logistic regression
analysis, analogous to the hybrid model (Figure 2b). It
included an interaction term for magnitude and probability
(analogous to the optimal model), as well as each factor
separately (analogous to the heuristic model). Similar to our
hybrid model findings, the groups did not differ in the
heuristic aspect: there was no difference between the
main effects for magnitude and probability (magnitude:
F(1,45)¼ 2.2, P¼ 0.14, probability: F(1,45)¼ 0.98, P¼ 0.33).
In contrast, the groups differed on the optimal aspect of the
model: a two-by-two ANOVA analysis on the interaction
regressors of magnitude and probability for reward and loss
revealed that those regressors had a stronger impact on the
decisions in the d-cycloserine group (F(1,45)¼ 10.8,
P¼ 0.002). Post-hoc tests revealed that this effect was signi-
ficant for loss (t(45)¼ � 2.7, P¼ 0.01) and was marginally
significant for reward (t(32.4)¼ � 2.0, P¼ 0.056).

DISCUSSION

Summary of the Results

We studied the effect of changes in NMDA activity on
human reward-guided learning and decision-making using
d-cycloserine, a partial NMDA agonist. Participants had
to learn changing probabilities of positive and negative
outcomes over time and integrate them with explicitly cued
reward and loss magnitudes in order to make decisions.
Although participants were able to track the changing
probabilities, this learning was not modulated by d-cyclo-
serine. If there had been an effect on learning, we would
have expected either a change in learning rates or
alternatively a changed reliance on the learnt compared to
the explicit information, neither was the case.

However, d-cycloserine had a significant effect on
decision-making. The drug shifted decision-making away
from a heuristic approach towards a more optimal one.
In the current context, more optimal behavior meant that
participants multiplied the learnt probability and the
displayed magnitude information rather than adding them
(heuristic behavior). Note, however, that such multiplica-
tion might be more demanding especially since participants
tracked several pieces of information at a time, making
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heuristic strategies an appealing way of reducing task
complexity.

Absence of a Learning Effect

To our knowledge, there are no studies in humans that have
looked at the effects of d-cycloserine on reward-guided
learning and decision-making. However, animal studies
suggest that d-cycloserine improves fear extinction (Walker
et al, 2002), drug use extinction (Flavell et al, 2011), and
appetitive conditioning (Golden and Houpt, 2007). How-
ever, our task is most similar to instrumental reward
reversal learning task paradigms and it is still unknown
whether this neurally distinct form of learning is also
improved by d-cycloserine, with Golden and Houpt, 2007
finding that at least simple reversal learning might not be.

Additionally, evidence for learning effects in human
studies analogous to the animal studies above has been
more inconsistent. Although there is evidence from clinical
trials that d-cycloserine may accelerate the therapy of
different anxiety disorders (reviewed in Hofmann et al,
2013), some experimental studies have not been able to
replicated the basic fear extinction effects in humans
(Guastella et al, 2007; Klumpers et al, 2012). Furthermore,
clinical trials for alcohol or for cocaine use extinction have
failed to find an enhancement by d-cycloserine (Kamboj
et al, 2011, Price et al, 2013). This discrepancy between
human and animal studies could be due to the strong dose
dependency of d-cycloserine’s effects (Walker et al, 2002):
in general animal studies have used a higher dose (by about
a factor of three) and injection rather than oral adminis-
tration of the drug.

Changes in Evidence Integration for Decision-Making

We found that d-cycloserine led to a very selective shift in
participants’ decision strategy, making them integrate
different sources of information in a more optimal manner,
compared to the placebo group. More specifically, partici-
pants integrated the learnt probability and the explicitly
cued magnitude more multiplicatively (ie, non-linearly) and
thus less additively (ie, linearly).

Recent work has suggested functions for NMDA receptors
beyond traditional long-term consolidation in learning. To
our knowledge, nobody has yet tested whether changes in
NMDA-mediated neural processing would affect evidence
integration in a complex value-based decision-making task
in humans. However, there is some evidence that NMDA
receptors can modulate higher cognitive functions, like
working memory (Wang et al, 2013), attention (Herrero
et al, 2013; Meuwese et al, 2013; Self et al, 2012), or delay
discounting (Floresco et al, 2008). However, it is important
to note that it is unlikely that the decision-making effects in
our task are a working-memory effect in disguise. Collins
and Frank, 2012 have shown that in a standard human
learning paradigm (similar to the one used here), learning
rate captures a mixture of cortico-striatal learning systems
as well as prefrontal working memory. Therefore, if the
observed effect were driven by a working-memory mechan-
ism, we would have expected to see a change in at least one
of the different measures we used to probe for learning
effects. However, we did not see any such effects.

There are at least two theoretical frameworks that are,
however, in line with our results. First, NMDA receptors
have been proposed as crucial for the integration of
information over time during decision-making in a
biophysical model (Wang, 2002). Although this model was
originally based on animal recordings during perceptual
decision-making tasks (reviewed in Wang, 2008), recent
human brain imaging studies have shown that it is also
relevant for human reward-based decision-making (Chau
et al, 2014; Hunt et al, 2012; Jocham et al, 2012). Simulation
studies have suggested that modulation of the NMDA
receptor activity should enhance or impair decision-
making, depending on the baseline activation of NMDA
receptors (Standage and Paré, 2011). Following these
findings, the decision-making improvement in our study
could be explained as shifting the NMDA receptor
activation into a more favorable range for decision-making.

Second, there is evidence that NMDA receptors are
important for neural computations when more than one
input is integrated non-linearly. For example, Binns and
Salt, 1996 have shown that NMDA receptors are crucial for
multisensory integration. More specifically, they found that
the neuronal super-additivity between inputs of different
modalities in the cat superior colliculus was strongly
reduced by NMDA blockade. Furthermore, Self et al, 2012
have shown that NMDA receptors are crucial for the
integration of top-down and bottom-up information during
figure–ground separation. In the context of our task the
optimal way to integrate the probabilities and the magni-
tudes presented, is non-linearly (ie, multiplicatively), rather
than linearly (additively). Therefore d-cycloserine may have
led to more optimal integration by biasing processing
towards more non-linear neural interactions.

One possible explanation for the occurrence of an effect
on decision-making in the absence of a learning effect is
that while both are supported by NMDA receptors, there is
a different optimal range of NMDA activation supporting
both functions (Standage and Paré, 2011). In addition, the
strength of the effect of d-cycloserine might vary across
brain areas, due to different NMDA receptor subunit
compositions or different local levels of glycine (see Yang
and Svensson, 2008 for a review). Therefore, the behavioral
dissociation could be explained as due to different
d-cycloserine sensitivities in reward decision- compared
to reward learning-related brain areas.

Future Directions

Future experiments will have to establish whether our
results generalize to the integration of dimensions other
than probability and magnitude, and to situations where all
information to be integrated is explicitly shown rather than
learnt.

It would also be interesting to manipulate the predicted
choices for linear vs non-linear integration more widely to
produce more distinct changes in choices and outcome
between the groups, as well as testing whether other forms
of non-linear integration or conditional reasoning (model-
based) would also be affected.

Lastly, future decision-task designs could explicitly
contrast which theoretical NMDA integration mechanism
mentioned above drives the behavioral effect: while the
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biophysical model explanation would predict decision
enhancements in situations where attributes are integrated
linearly or non-linearly, the super-additivity mechanism
would predict enhancements only where attributes need to
be integrated non-linearly.

CONCLUSION

We have found that enhancing the activation of NMDA
receptors changed how humans integrated evidence in a
multi-attribute decision-making and learning task in the
absence of more direct effects on learning. This suggests a
role for NMDA receptors beyond their well-studied role in
long-term consolidation and plasticity. Although we cannot
clearly dissociate between different candidate mechanisms
for our observed effect, either biophysical attractor net-
works or basic super-additivity models could plausibly
explain our data.
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