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Abstract

Multi-task learning (MTL) learns multiple related tasks simultaneously to improve generalization

performance. Alternating structure optimization (ASO) is a popular MTL method that learns a

shared low-dimensional predictive structure on hypothesis spaces from multiple related tasks. It

has been applied successfully in many real world applications. As an alternative MTL approach,

clustered multi-task learning (CMTL) assumes that multiple tasks follow a clustered structure, i.e.,

tasks are partitioned into a set of groups where tasks in the same group are similar to each other,

and that such a clustered structure is unknown a priori. The objectives in ASO and CMTL differ in

how multiple tasks are related. Interestingly, we show in this paper the equivalence relationship

between ASO and CMTL, providing significant new insights into ASO and CMTL as well as their

inherent relationship. The CMTL formulation is non-convex, and we adopt a convex relaxation to

the CMTL formulation. We further establish the equivalence relationship between the proposed

convex relaxation of CMTL and an existing convex relaxation of ASO, and show that the

proposed convex CMTL formulation is significantly more efficient especially for high-

dimensional data. In addition, we present three algorithms for solving the convex CMTL

formulation. We report experimental results on benchmark datasets to demonstrate the efficiency

of the proposed algorithms.

1 Introduction

Many real-world problems involve multiple related classificatrion/regression tasks. A naive

approach is to apply single task learning (STL) where each task is solved independently and

thus the task relatedness is not exploited. Recently, there is a growing interest in multi-task

learning (MTL), where we learn multiple related tasks simultaneously by extracting

appropriate shared information across tasks. In MTL, multiple tasks are expected to benefit

from each other, resulting in improved generalization performance. The effectiveness of

MTL has been demonstrated empirically [1, 2, 3] and theoretically [4, 5, 6]. MTL has been

applied in many applications including biomedical informatics [7], marketing [1], natural

language processing [2], and computer vision [3].

Many different MTL approaches have been proposed in the past; they differ in how the

relatedness among different tasks is modeled. Evgeniou et al. [8] proposed the regularized

MTL which constrained the models of all tasks to be close to each other. The task
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relatedness can also be modeled by constraining multiple tasks to share a common

underlying structure [4, 6, 9, 10]. Ando and Zhang [5] proposed a structural learning

formulation, which assumed multiple predictors for different tasks shared a common

structure on the underlying predictor space. For linear predictors, they proposed the

alternating structure optimization (ASO) that simultaneously performed inference on

multiple tasks and discovered the shared low-dimensional predictive structure. ASO has

been shown to be effective in many practical applications [2, 11, 12]. One limitation of the

original ASO formulation is that it involves a non-convex optimization problem and a

globally optimal solution is not guaranteed. A convex relaxation of ASO called CASO was

proposed and analyzed in [13].

Many existing MTL formulations are based on the assumption that all tasks are related. In

practical applications, the tasks may exhibit a more sophisticated group structure where the

models of tasks from the same group are closer to each other than those from a different

group. There have been many prior work along this line of research, known as clustered

multi-task learning (CMTL). In [14], the mutual relatedness of tasks was estimated and

knowledge of one task could be transferred to other tasks in the same cluster. Bakker and

Heskes [15] used clustered multi-task learning in a Bayesian setting by considering a

mixture of Gaussians instead of single Gaussian priors. Evgeniou et al. [8] proposed the task

clustering regularization and showed how cluster information could be encoded in MTL, and

however the group structure was required to be known a priori. Xue et al. [16] introduced

the Dirichlet process prior which automatically identified subgroups of related tasks. In [17],

a clustered MTL framework was proposed that simultaneously identified clusters and

performed multi-task inference. Because the formulation is non-convex, they also proposed

a convex relaxation to obtain a global optimum [17]. Wang et al. [18] used a similar idea to

consider clustered tasks by introducing an inter-task regularization.

The objective in CMTL differs from many MTL formulations (e.g., ASO which aims to

identify a shared low-dimensional predictive structure for all tasks) which are based on the

standard assumption that each task can learn equally well from any other task. In this paper,

we study the inherent relationship between these two seemingly different MTL

formulations. Specifically, we establish the equivalence relationship between ASO and a

specific formulation of CMTL, which performs simultaneous multi-task learning and task

clustering: First, we show that CMTL performs clustering on the tasks, while ASO performs

projection on the features to find a shared low-rank structure. Next, we show that the

spectral relaxation of the clustering (on tasks) in CMTL and the projection (on the features)

in ASO lead to an identical regularization, related to the negative Ky Fan k-norm of the

weight matrix involving all task models, thus establishing their equivalence relationship.

The presented analysis provides significant new insights into ASO and CMTL as well as

their inherent relationship. To our best knowledge, the clustering view of ASO has not been

explored before.

One major limitation of the ASO/CMTL formulation is that it involves a non-convex

optimization, as the negative Ky Fan k-norm is concave. We propose a convex relaxation of

CMTL, and establish the equivalence relationship between the proposed convex relaxation

of CMTL and the convex ASO formulation proposed in [13]. We show that the proposed
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convex CMTL formulation is significantly more efficient especially for high-dimensional

data. We further develop three algorithms for solving the convex CMTL formulation based

on the block coordinate descent, accelerated projected gradient, and gradient descent,

respectively. We have conducted experiments on benchmark datasets including School and

Sarcos; our results demonstrate the efficiency of the proposed algorithms.

Notation—Throughout this paper, ℝd denotes the d-dimensional Euclidean space. I

denotes the identity matrix of a proper size. ℕ denotes the set of natural numbers. 

denotes the set of symmetric positive semi-definite matrices of size m by m. A ≼ B means

that B - A is positie semi-definite. tr (X) is the trace of X.

2 Multi-Task Learning: ASO and CMTL

Assume we are given a multi-task learning problem with m tasks; each task i ∈ ℕm is

associated with a set of training data , and a linear

predictive function , where wi is the weight vector of the i-th task, d is the

data dimensionality, and ni is the number of samples of the i-th task. We denote W = [w1, …,

wm] ∈ ℝd×m as the weight matrix to be estimated. Given a loss function ℓ(·, ·), the empirical

risk is given by:

We study the following multi-task learning formulation: minW (W) + Ω(W), where Ω

encodes our prior knowledge about the m tasks. Next, we review ASO and CMTL and

explore their inherent relationship.

2.1 Alternating structure optimization

In ASO [5], all tasks are assumed to share a common feature space Θ ∈ ℝh×d, where h ≤

min(m, d) is the dimensionality of the shared feature space and Θ has orthonormal columns,

i.e., ΘΘT = Ih. The predictive function of ASO is: , where the

weight wi = ui + ΘTvi consists of two components including the weight ui for the high-

dimensional feature space and the weight vi for the low-dimensional space based on Θ. ASO

minimizes the following objective function: , subject to: ΘΘT = Ih,

where α is the regularization parameter for task relatedness. We can further improve the

formulation by including a penalty, , to improve the generalization

performance as in traditional supervised learning. Since ui = wi - ΘTvi, we obtain the

following ASO formulation:

(1)
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2.2 Clustered multi-task learning

In CMTL, we assume that the tasks are clustered into k < m clusters, and the index set of the

j-th cluster is defined as  = {v|v ∈ cluster j}. We denote the mean of the jth cluster to be

. For a given W = [w1, ···, wm], the sum-of-square error (SSE) function in

K-means clustering is given by [19, 20]:

(2)

where the matrix F ∈ ℝm×k is an orthogonal cluster indicator matrix with  if i ∈ 

and Fi,j = 0 otherwise. If we ignore the special structure of F and keep the orthogonality

requirement only, the relaxed SSE minimization problem is:

(3)

resulting in the following penalty function for CMTL:

(4)

where the first term is derived from the K-means clustering objective and the second term is

to improve the generalization performance. Combing Eq. (4) with the empirical error term 

(W), we obtain the following CMTL formulation:

(5)

2.3 Equivalence of ASO and CMTL

In the ASO formulation in Eq. (1), it is clear that the optimal vi is given by . Thus,

the penalty in ASO has the following equivalent form:

(6)

resulting in the following equivalent ASO formulation:

(7)

The penalty of the ASO formulation in Eq. (7) looks very similar to the penalty of the

CMTL formulation in Eq. (5), however the operations involved are fundamentally different.

In the CMTL formulation in Eq. (5), the matrix F is operated on the task dimension, as it is

derived from the K-means clustering on the tasks; while in the ASO formulation in Eq. (7),

the matrix Θ is operated on the feature dimension, as it aims to identify a shared low-

dimensional predictive structure for all tasks. Although different in the mathematical
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formulation, we show in the following theorem that the objectives of CMTL and ASO are

equivalent.

Theorem 2.1—The objectives of CMTL in Eq. (5) and ASO in Eq. (7) are equivalent if the

cluster number, k, in K-means equals to the size, h, of the shared low-dimensional feature

space.

Proof: Denote (W) = (W) + (α+ β) tr WTW, with α, β > 0. Then, CMTL and ASO solve

the following optimization problems:

respectively. Note that in both CMTL and ASO, the first term  is independent of F or Θ,

for a given W. Thus, the optimal F and Θ for these two optimization problems are given by

solving:

Since WWT and WTW share the same set of nonzero eigenvalues, by the Ky-Fan Theorem

[21], both problems above achieve exactly the same maximum objective value:

, where λi(W TW) denotes the i-th largest eigenvalue of WTW

and ||WTW||(k) is known as the Ky Fan k-norm of matrix WTW. Plugging the results back to

the original objective, the optimization problem for both CMTL and ASO becomes minW 

(W ) - α||W TW||(k). This completes the proof of this theorem.

3 Convex Relaxation of CMTL

The formulation in Eq. (5) is non-convex. A natural approach is to perform a convex

relaxation on CMTL. We first reformulate the penalty in Eq. (5) as follows:

(8)

where η is defined as η = β/α > 0. Since FTF = Ik, the following holds:

Thus, we can reformulate ΩCMTL0 in Eq. (8) as the following equivalent form:

(9)

resulting in the following equivalent CMTL formulation:
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(10)

Following [13, 17], we obtain the following convex relaxation of Eq. (10), called cCMTL:

(11)

where ΩcCMTL(W, M ) is defined as:

(12)

The optimization problem in Eq. (11) is jointly convex with respect to W and M [9].

3.1 Equivalence of cASO and cCMTL

A convex relaxation (cASO) of the ASO formulation in Eq. (7) has been proposed in [13]:

(13)

where ΩcASO is defined as:

(14)

The cASO formulation in Eq. (13) and the cCMTL formulation in Eq. (11) are different in

the regularization components: the respective Hessian of the regularization with respect to W

are different. Similar to Theorem 2.1, our analysis shows that cASO and cCMTL are

equivalent.

Theorem 3.1—The objectives of the cCMTL formulation in Eq. (11) and the cASO

formulation in Eq. (13) are equivalent if the cluster number, k, in K-means equals to the

size, h, of the shared low-dimensional feature space.

Proof: Define the following two convex functions of W:

(15)

and

(16)

The cCMTL and cASO formulations can be expressed as unconstrained optimization w.r.t.

W:
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where c = αη (1 + η). Let h = k ≤ min(d, m). Next, we show that for a given W, gCMTL(W ) =

gASO(W) holds.

Let W = Q1ΣQ2, , and , be the SVD of W, M, and S (M and S are

symmetric positive semi-definite), respectively, where Σ = diag{σ1, σ2, …, σm},

, and . Let q < k be the rank of Σ. It

follows from the basic properties of the trace that:

The problem in Eq. (15) is thus equivalent to:

(17)

It can be shown that the optimal  is given by  and the optimal  is given by

solving the following simple (convex) optimization problem [13]:

(18)

It follows that . Similarly, we can show that

, where

It is clear that when h = k, holds. Therefore, we have gcCMTL(W ) = gcASO(W). This

completes the proof.

Remark 3.2—In the functional of cASO in Eq. (16) the variable to be optimized is ,

while in the functional of cCMTL in Eq. (15) the optimization variable is . In many

practical MTL problems the data dimensionality d is much larger than the task number m,

and in such cases cCMTL is significantly more efficient in terms of both time and space.

Our equivalence relationship established in Theorem 3.1 provides an (equivalent) efficient

implementation of cASO especially for high-dimensional problems.
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4 Optimization Algorithms

In this section, we propose to employ three different methods, i.e., Alternating Optimization

Method (altCMTL), Accelerated Projected Gradient Method (apgCMTL), and Direct

Gradient Descent Method (graCMTL), respectively, for solving the convex relaxation in Eq.

(11). Note that we focus on smooth loss functions in this paper.

4.1 Alternating Optimization Method

The Alternating Optimization Method (altCMTL) is similar to the Block Coordinate Descent

(BCD) method [22], in which the variable is optimized alternatively with the other variables

fixed. The pseudo-code of altCMTL is provided in the supplemental material. Note that

using similar techniques as the ones from [23], we can show that altCMTL finds the globally

optimal solution to Eq. (11). The altCMTL algorithm involves the following two steps in

each iteration:

Optimization of W—For a fixed M, the optimal W can be obtained via solving:

(19)

The problem above is smooth and convex. It can be solved using gradient-type methods

[22]. In the special case of a least square loss function, the problem in Eq. (19) admits an

analytic solution.

Optimization of M—For a fixed W, the optimal M can be obtained via solving:

(20)

From Theorem 3.1, the optimal M to Eq. (20) is given by M = QΛ*QT, where Λ* is obtained

from Eq. (18). The problem in Eq. (18) can be efficiently solved using similar techniques in

[17].

4.2 Accelerated Projected Gradient Method

The accelerated projected gradient method (APG) has been applied to solve many machine

learning formulations [24]. We apply APG to solve the cCMTL formulation in Eq. (11). The

algorithm is called apgCMTL. The key component of apgCMTL is to compute a proximal

operator as follows:

(21)

where the details about the construction of ŴS and M̂
S can be found in [24]. The

optimization problem in Eq. (21) is involved in each iteration of apgCMTL, and hence its

computation is critical for the practical efficiency of apgCMTL. We show below that the

optimal WZ and MZ to Eq. (21) can be computed efficiently.
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Computation of Wz—The optimal WZ to Eq. (21) can be obtained by solving:

(22)

Clearly the optimal WZ to Eq. (22) is equal to ŴS.

Computation of Mz—The optimal MZ to Eq. (21) can be obtained by solving:

(23)

where M̂
S is not guaranteed to be positive semidefinite. Our analysis shows that the

optimization problem in Eq. (23) admits an analytical solution via solving a simple convex

projection problem. The main result and the pseudo-code of apgCMTL are provided in the

supplemental material.

4.3 Direct Gradient Descent Method

In Direct Gradient Descent Method (graCMTL) as used in [17], the cCMTL problem in Eq.

(11) is reformulated as an optimization problem with one single variable W, given by:

(24)

where gCMTL(W ) is a functional of W defined in Eq. (15).

Given the intermediate solution Wk−1 from the (k − 1)-th iteration of graCMTL, we compute

the gradient of gCMTL(W ) and then apply the general gradient descent scheme [25] to obtain

Wk. Note that at each iterative step in line search, we need to solve the optimization problem

in the form of Eq. (20). The gradient of gCMTL(·) at Wk−1 is given by [26, 27]:

, where M̂ is obtained by solving Eq. (20) at W = Wk−1.

The pseudo-code of graCMTL is provided in the supplemental material.

5 Experiments

In this section, we empirically evaluate the effectiveness and the efficiency of the proposed

algorithms on synthetic and real-world data sets. The normalized mean square error (nMSE)

and the averaged mean square error (aMSE) are used as the performance measure [23]. Note

that in this paper we have not developed new MTL formulations; instead our main focus is

on the theoretical understanding of the inherent relationship between ASO and CMTL.

Thus, an extensive comparative study of various MTL algorithms is out of the scope of this

paper. As an illustration, in the following experiments we only compare cCMTL with two

baseline techniques: ridge regression STL (RidgeSTL) and regularized MTL (RegMTL)

[28].
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Simulation Study

We apply the proposed cCMTL formulation in Eq. (11) on a synthetic data set (with a pre-

defined cluster structure). We use 5-fold cross-validation to determine the regularization

parameters for all methods. We construct the synthetic data set following a procedure

similar to the one in [17]: the constructed synthetic data set consists of 5 clusters, where

each cluster includes 20 (regression) tasks and each task is represented by a weight vector of

length d = 300. Details of the construction is provided in the supplemental material. We

apply RidgeSTL, RegMTL, and cCMTL on the constructed synthetic data. The correlation

coefficient matrices of the obtained weight vectors are presented in Figure 1. From the result

we can observe (1) cCMTL is able to capture the cluster structure among tasks and achieves

a small test error; (2) RegMTL is better than RidgeSTL in terms of test error. It however

introduces unnecessary correlation among tasks possibly due to the assumption that all tasks

are related; (3) In cCMTL we also notice some ‘noisy’ correlation, which may because of

the spectral relaxation.

Effectiveness Comparison

Next, we empirically evaluate the effectiveness of the cCMTL formulation in comparison

with RidgeSTL and RegMTL using real world benchmark datasets including the School

data1 and the Sarcos data2. The regularization parameters for all algorithms are determined

via 5-fold cross validation; the reported experimental results are averaged over 10 random

repetitions. The School data consists of the exam scores of 15362 students from 139

secondary schools, where each student is described by 27 attributes. We vary the training

ratio in the set 5 × {1, 2, ···, 6}% and record the respective performance. The experimental

results are presented in Table 1. We can observe that cCMTL performs the best among all

settings. Experimental results on the Sarcos dataset is available in the supplemental material.

Efficiency Comparison

We compare the efficiency of the three algorithms including altCMTL, apgCMTLand

graCMTL for solving the cCMTL formulation in Eq. (11). For the following experiments,

we set α = 1, β = 1, and k = 2 in cCMTL. We observe a similar trend in other settings.

Specifically, we study how the feature dimensionality, the sample size, and the task number

affect the required computation cost (in seconds) for convergence. The experimental setup is

as follows: we terminate apgCMTL when the change of objective values in two successive

steps is smaller than 10−5 and record the obtained objective value; we then use such a value

as the stopping criterion in graCMTL and altCMTL, that is, we stop graCMTL or altCMTL

when graCMTL or altCMTL attains an objective value equal to or smaller than the one

attained by apgCMTL. We use Yahoo Arts data for the first two experiments. Because in

Yahoo data the task number is very small, we construct a synthetic data for the third

experiment.

In the first experiment, we vary the feature dimensionality in the set [500: 500: 2500] with

the sample size fixed at 4000 and the task numbers fixed at 17. The experimental result is

1http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
2http://gaussianprocess.org/gpml/data/
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presented in the left plot of Figure 2. In the second experiment, we vary the sample size in

the set [3000: 1000: 9000] with the dimensionality fixed at 500 and the task number fixed at

17. The experimental result is presented in the middle plot of Figure 2. From the first two

experiments, we observe that larger feature dimensionality or larger sample size will lead to

higher computation cost. In the third experiment, we vary the task number in the set [10: 10:

190] with the feature dimensionality fixed at 600 and the sample size fixed at 2000. The

employed synthetic data set is constructed as follows: for each task, we generate the entries

of the data matrix Xi from (0, 1), and generate the entries of the weight vector from (0,

1), the response vector yi is computed as yi = Xiwi + ξ, where ξ ~ (0, 0.01) represents the

noise vector. The experimental result is presented in the right plot of Figure 2. We can

observe that altCMTL is more efficient than the other two algorithms.

6 Conclusion

In this paper we establish the equivalence relationship between two multi-task learning

techniques: alternating structure optimization (ASO) and clustered multi-task learning

(CMTL). We further establish the equivalence relationship between our proposed convex

relaxation of CMTL and an existing convex relaxation of ASO. In addition, we propose

three algorithms for solving the convex CMTL formulation and demonstrate their

effectiveness and efficiency on benchmark datasets. The proposed algorithms involve the

computation of SVD. In the case of a very large task number, the SVD computation will be

expensive. We seek to further improve the efficiency of the algorithms by employing

approximation methods. In addition, we plan to apply the proposed algorithms to other real

world applications involving multiple (clustered) tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The correlation matrices of the ground truth model, and the models learnt from RidgeSTL,

RegMTL, and cCMTL. Darker color indicates higher correlation. In the ground truth there

are 100 tasks clustered into 5 groups. Each task has 200 dimensions. 95 training samples and

5 testing samples are used in each task. The test errors (in terms of nMSE) for RidgeSTL,

RegMTL, and cCMTL are 0.8077, 0.6830, 0.0354, respectively.
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Figure 2.
Sensitivity study of altCMTL, apgCMTL, graCMTL in terms of the computation cost (in

seconds) with respect to feature dimensionality (left), sample size (middle), and task number

(right).
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Table 1

Performance comparison on the School data in terms of nMSE and aMSE. Smaller nMSE and aMSE indicate

better performance. All regularization parameters are tuned using 5-fold cross validation. The mean and

standard deviation are calculated based on 10 random repetitions.

Measure Ratio RidgeSTL RegMTL cCMTL

nMSE 10% 1.3954 ± 0.0596 1.0988 ± 0.0178 1.0850 ± 0.0206

15% 1.1370 ± 0.0146 1.0636 ± 0.0170 0.9708 ± 0.0145

20% 1.0290 ± 0.0309 1.0349 ± 0.0091 0.8864 ± 0.0094

25% 0.8649 ± 0.0123 1.0139 ± 0.0057 0.8243 ± 0.0031

30% 0.8367 ± 0.0102 1.0042 ± 0.0066 0.8006 ± 0.0081

aMSE 10% 0.3664 ± 0.0160 0.2865 ± 0.0054 0.2831 ± 0.0050

15% 0.2972 ± 0.0034 0.2771 ± 0.0045 0.2525 ± 0.0048

20% 0.2717 ± 0.0083 0.2709 ± 0.0027 0.2322 ± 0.0022

25% 0.2261 ± 0.0033 0.2650 ± 0.0027 0.2154 ± 0.0020

30% 0.2196 ± 0.0035 0.2632 ± 0.0028 0.2101 ± 0.0016
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