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ABSTRACT

Introduction.Treatment selection tools are needed to en-
hance the efficacy of targeted treatment in patients with
solid malignancies. Providing a readout of aberrant signaling
pathways and proteolytic events, mass spectrometry-based
(MS-based) peptidomics enables identification of predictive
biomarkers, whereas the serum or plasma peptidome may
provide easily accessible signatures associated with response
to treatment. In this systematic review, we evaluateMS-based
peptide profiling in blood for prompt clinical implementation.
Methods. PubMed and Embase were searched for studies
using a syntax based on the following hierarchy: (a) blood-
based matrix-assisted or surface-enhanced laser desorption/
ionization time-of-flight MS peptide profiling (b) in patients
with solid malignancies (c) prior to initiation of any treatment
modality, (d) with availability of outcome data.
Results. Thirty-eight studies were eligible for review; the
majority were performed in patients with non-small cell lung

cancer (NSCLC).Median classification prediction accuracywas
80% (range: 66%–93%) in 11models from14 studies reporting
an MS-based classification model. A pooled analysis of 9
NSCLC studies revealed clinically significantmedianprogression-
free survival in patients classified as “poor outcome” and “good
outcome”of 2.061.06months and 4.661.60months, respec-
tively; median overall survival was also clinically significant at
4.016 1.60 months and 10.526 3.49 months, respectively.
Conclusion. Pretreatment MS-based serum and plasma pep-
tidomics have shown promising results for prediction of
treatment outcome in patients with solid tumors. Limited
sample sizes and absence of signature validation in many
studies have prohibited clinical implementation thus far. Our
pooled analysis and recent results from the PROSE study
indicate that this profiling approach enables treatment
selection, but additional prospective studies are warranted.
The Oncologist 2014;19:1028–1039

Implications forPractice:Treatment selection tools areneeded toenhance theefficacyof treatment inpatientswith solid tumors.
Mass spectrometry-based peptidomics enables identification of predictive biomarkers, whereas the serum or plasma peptidome
may provide easily accessible signatures associated with response to treatment.This review discusses 38 studies on blood-based
peptidomics performedbefore initiationof systemic and/or local treatment and includes apooled analysis basedonpretreatment
outcome classification in patients with non-small cell lung cancer. This analysis and recent results from the PROSE study indicate
that this profiling technique enables treatment selection in patientswith cancer, but additional prospective studies arewarranted.

INTRODUCTION

Since 2003, more than 20 targeted therapies have reached
clinical approval for treatment of patients with advanced solid
tumors [1, 2], but their often temporary effectiveness in
a limited selection of patients as well as their significant
toxicities emphasize the need for a clinically applicable strat-
egy to predict efficacy of these agents. Currently, mutation
status guides treatment in some tumor types, but actual
response to molecular-guided treatment is not guaranteed
[3–5]. Because responses to targeted therapies depend on
their effect on downstreamsignaling activities in tumor tissue,
mass spectrometry-based (MS-based) proteomics provides

a potential tool for prediction of response to these drugs by
recognizing changes in protein abundance and activating post-
translationalmodifications andprotein-protein interactions [6,
7]. Blood has been suggested to provide the ideal biological
sample for profiling of these effects due to the accessibility of
the serum and plasma peptidome, consisting of proteins and
peptides released by tissue (including tumor tissue) as a result
of proteolytic cascades [8–10].

Morethan20,000 researcharticlesonmatrix-assisted laser
desorption/ionization time-of-flight MS (MALDI-TOF MS) and
surface-enhanced laser desorption/ionization time-of-flight
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MS (SELDI-TOF MS) for profiling of the blood peptidome have
been published since their development in the late 1980s and
1990s. Mass spectral peaks correspond to ions formed from
peptides and proteins with a molecular weight of less than
20 kDa, and the peak amplitude indicates their abundance
(Fig. 1) [11–13]. Several studies have reportedon the potential
for early detection by discriminating patients from healthy
controls (HCs) based on differential serum proteome as a
consequence of tumor biology [14–17], but clinical imple-
mentation has been hampered by the difficulties of other
groups in reproducing the results [18, 19]. In the mean-
time, strict sample-handling procedures and unbiased study
design have been shown to result in high intra- and inter-
laboratory reproducibility of mass spectra and algorithm-
based classification concordance [20–22]. In this paper, we
have systematically reviewed studies onMS-based serum and
plasmapeptidomicsperformed inpatientswith solid tumors in
relation to outcome following systemic and local treatment
and evaluated its appropriateness for prompt implementation
in the clinic.

MATERIALS AND METHODS

Literature Search
Search engines PubMed and Embase were used to identify
studiespublisheduntil September2013using serumorplasma
MALDI- or SELDI-TOFMS peptidome profiling in patients with
solid malignancies prior to initiation of any treatment mo-
dality, with availability of outcome data including response
and progression-free survival (PFS) or overall survival (OS). For
PubMed, the following syntax was applied: (“Spectrometry,
Mass, Matrix-Assisted Laser Desorption-Ionization”[MeSH]
OR maldi[tiab] OR seldi[tiab] OR “surface enhanced laser
desorption”[tiab] OR “matrix assisted laser desorption”[tiab]
ORserumproteomictest)ANDcancer[sb]AND(“Serum”[MeSH]
OR serum[tiab] OR blood[subheading]). For Embase, the
following syntaxwasused: “surfaceenhanced laserdesorption
ionization time of flight mass spectrometry”/exp OR “surface
enhanced laser desorption ionization time of flight mass
spectrometry”OR “matrix assisted laser desorption ionization
time of flight mass spectrometry”/exp OR “matrix assisted
laser desorption ionization time of flight mass spectrometry”
OR “serum proteomic test”:ab,ti OR seldi:ab,ti OR maldi:ab,ti
OR “surface enhanced laser desorption”:ab,ti OR “matrix
assisted laser desorption”:ab,ti AND (“’serum”/exp OR “se-
rum” OR serum:ab,ti OR “blood”/exp OR “blood”) AND

(“neoplasm”/exp OR “neoplasm”). Subsequent limits were ap-
plied for studies in humans and studies published in English
since 1995, with an available abstract. Based on results of the
syntax-based search, we performed an additional PubMed
searchusingthesearchterm“VeriStrat,”aserumproteomictest.

Selection of Papers
Potentially relevant studies retrieved by the PubMed and
Embase searches were independently reviewed for eligibility
by three investigators (L.M.S., M.L., H.M.W.V.) and two inves-
tigators (M.L. and H.M.W.V.), respectively, according to afore-
mentioned criteria. Unpublished studies were not considered
eligible. Levels of evidencewerenot used to assess the value of
each publication selected for inclusion.

RESULTS

Number of Studies Meeting Selection Criteria
Using the PubMed and Embase syntaxes and aforementioned
limits, 1,226 and 1,192 potentially relevant studies, respec-
tively, were identified. Figure 2 depicts the subsequent
stepwise selection of 37 eligible articles. With Embase, 74%
of the PubMed-selected articleswere found, but no additional
eligible articles were found. One study that had not been
identified byeither syntaxwas foundby an additional PubMed
search for “VeriStrat,” resulting in a total of 38 includedarticles
for discussion in this review. The keywords of the non-syntax-
identified article did not include SELDI, MALDI, serum, blood,
or cancer.

Investigated Tumor Types and TreatmentModalities in
Eligible Studies
Thirty of 38 eligible studies investigated blood-based pepti-
domics before systemic treatment, mainly in non-small cell
lung cancer (NSCLC) and in breast cancer. In four of eight
studies investigating local treatment, profiling was applied
prior to chemoradiation (Fig. 3). Study details are summarized
in Table 1.

Studies Reporting Profiling Prior to Systemic Therapy

Targeted Therapy in NSCLC
Twelve of 16 included studies investigating profiling prior
to targeted therapy are related to the study by Taguchi et al.
in patients with advanced NSCLC treated with tyrosine
kinase inhibitors (TKIs) directed against epidermal growth
factor receptor (EGFR) [21]. In this study, a training set of

Figure1. Matrix-assisted laserdesorption/ionization time-of-flightmass spectrometry serumpattern. Representativeexampleof amass
spectrum obtained from serum, showing several peptide peaks in the high- and low-intensity ranges.

Abbreviation: m/z, mass-to-charge ratio.
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pretreatment sera (n5139, gefitinib)was supplementedwith
two validation cohorts (n 5 67, gefitinib; n 5 96, erlotinib;
from ECOG-E3503) [23]. A control set of 158 patients who did
not receive EGFR-targeting TKIs was included from three
additional cohorts (2 advanced, 1 early stage). Eight differen-
tially expressedmass-to-charge ratio (m/z) values or “peptide
peaks” (5,843, 11,446, 11,530, 11,685, 11,759, 11,903, 12,452,
and 12,580 Da) in the training set were used to construct
an algorithm based on spectra from clinically most distinct
patients in terms of time to progression (TTP) andOS. Patients
withprogressivedisease (PD)within1monthwereclassifiedas
“pooroutcome,”andpatientswithstabledisease (SD) formore
than 6 months were classified as “good outcome.” In the
validation sets, TTP and OS were significantly longer in good-
outcome patients compared with poor-outcome patients,
with a median OS of 207 versus 92 days (hazard ratio [HR] of
death: 0.50; p 5 .054) in the first validation cohort and 306
versus 107 days (HR: 0.41; p, .001) in the second validation
cohort. No survival difference could be observed between
both classifications in the control set. Interestingly, parallel
application of the 8-peptide algorithm to plasma of 73
erlotinib-treated patients did not alter their serum-based
outcome classification [21]. This algorithm has been com-
mercialized as “VeriStrat” but will be further referred to in
this article as the “Taguchi algorithm” (TA). Meanwhile, 12
additional studies have either applied or reported on the TA; 8
investigated nonoverlapping cohorts (Table 1).

Multivariate analysis by Amann et al. in 41 patients from
the aforementioned erlotinib validation cohort [23] indicated
that thealgorithmpredictedsurvival inpatientswithwild-type
EGFR and independent of KRASmutation status. However, the
sample size ofmutant tumors was small (n5 12) [24]. In 2012,
Carbone et al. applied the TA to plasma profiles available for
441 of 731 patients from the randomized placebo-controlled
BR.21 study [25], which established the role of erlotinib in
patientswith advancedNSCLC. Prognostic properties of the TA
were confirmed in the placebo arm, showing superior median
PFSandOSforgood-outcomepatients comparedwithpatients
classified as poor outcome (OS: 6.6 vs. 3.1 months; HR: 0.44;
p , .0001). No significant correlation was found with EGFR
or KRASmutation status. Patients classified as good outcome
seemed to benefitmore fromerlotinib than fromplacebo (OS:
10.5 vs. 6.6 months; HR: 0.63; p5 .002), whereas OS for poor-
outcome patients was not significantly different between
arms (4.0 vs. 3.1months;HR: 0.77;p5 .11); the survival curves
separated at times longer than 4 months. Multivariate
adjusted analyses showed similar relative benefit from
erlotinib for both classifications by a nonsignificant interacting
p value, indicating a prognostic value of the algorithm.
Nevertheless, erlotinib-treated patients classified as good
outcome had a significantly higher response rate (RR) than
poor-outcome patients (11.5% vs. 1.1%; p5 .002) [26].

The TA has been applied to serum profiles of patients
treated with erlotinib plus bevacizumab (erl/bev) in three
studies. Analyzing 35 patient sera from a phase I/II study [27],
Carbone et al. found median OS to be significantly longer for
good-outcome patients (61 weeks) than for poor-outcome
patients (24 weeks) (HR: 0.14, p 5 .007); median and PFS
was also significantly longer at 24 weeks versus 8 weeks,
respectively (HR: 0.045, p 5 .003). The TA classified all 8
patientswithpartial response (PR)and6of7patientswithSDat
more than 16 weeks as having good outcome, whereas 2 of 6
patients with initial PD were classified as poor outcome [28].
Gautschi et al. confirmed the superior median OS for good-
outcome patients versus poor-outcome patients (13.4 vs. 6.2
months; HR: 0.48; p5 .003) in 117 patients receiving first-line
treatment with erl/bev. In contrast to the previous study,
median PFS was not significantly different between good
versus poor outcome classification (4.0 vs. 3.2 months; HR:
0.77, p5 .263), suggesting, according to the investigators, that
TA performance may be dependent on prior treatment [29].
This is supported by a phase II study by Akerley et al. with erl/
bev in 42 previously untreated patients. Median PFS and OS
were superior patients classified as good outcome compared
with those classified as poor outcome (PFS: 18.9 vs. 6.3 weeks;
p5 .0035; OS: 71.4 vs. 19.9 weeks; HR: 0.27; p5 .0015). PFS
for study treatment plus subsequent chemotherapy was also
significantly longer in good-outcome patients, underscoring
the prognostic properties of the algorithm. Nonetheless, 9 of
10observedresponses,asassessedbytheResponseEvaluation
Criteria in Solid Tumors (RECIST), occurred in patients with
good-outcome classification [30]. Salmon et al. [31] developed
an alternative 11-peak signature based on 37 erl/bev-treated
patients [27]. Five peaks overlapped with the TA. In a valida-
tion set of 82 erlotinib-treated patients [23], compound scores
from the MS features and their peak intensities could distin-
guish between patients with long and short PFS and OS,

Figure 2. Database search and article selection. Search syntaxes
were constructed in consultation with an information specialist.
Screening of titles and abstractswas performed independently by
three investigators. Full-text articles were independently ap-
praised forpredefined selection criteria for inclusion in the review.
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discriminating between patients with compound scores lower
than the median and equal to or greater than the median,
whereas no significant difference was found in a control set of
61 chemotherapy-treated patients [31].

TA-based sorting of patient groups has been shown in the
context of several other TKI-based treatment regimens. Anal-
ysis of TA performance by Kuiper et al. [32] in serum from 50
chemotherapy-näıve patients treated with erlotinib plus
sorafenib [33] again confirmed superior outcomes for patients
classified as good outcome versus poor outcome (OS: 13.7
vs. 5.6 months; HR: 0.30; p 5 .009; PFS: 5.5 vs. 2.7 months;
HR: 0.40; p5 .035), whereas the objective RRwas not signifi-
cantly different [32]. For sorafenibmonotherapy, as reported
by Dingemans et al. in 55 pretreated patients, PFS was
significantly longer in TA-discerned good-outcome patients
versus poor-outcome patients (2.6 vs. 1.5 months; HR: 1.4;
p5 .029), whereas OS was not significantly different (6.0 vs.
2.5 months; HR: 1.3; p 5 .166), probably due to a relatively
large variation inOSduration [34]. Stinchcombeet al. applied
the TA to sera of 98 elderly patients treated in a randomized
phase II trial of first-line therapy with gemcitabine, erlotinib,
or combination [64]. Superior median OS was observed for
good-outcome patients versus poor-outcome patients in the
erlotinibmonotherapy arm only (n5 32; 255 vs. 51 days; HR:
0.40;p5 .014), whereas PFSwas significantly longer in good-
outcome patients for both erlotinib-containing arms. The
absence of prognostic power in the gemcitabine arm (n5 28)
may have been due to crossing over to erlotinib after pro-
gression. Interestingly, a significant treatment interaction
was demonstrated for patients in the monotherapy arms,
indicating that good-outcome patients had more benefit from
erlotinib, whereas poor-outcome patients benefited more
from gemcitabine. In line with this observation, the authors
point to themedianPFS andOSof 22and51days, respectively,

in erlotinib-treated patients classified as poor outcome, sug-
gesting that this drug is not an acceptable first-line treat-
ment option for these patients [35].

Three additional studies have reported results of profiling
prior to gefitinib-based treatment. Lazzari et al. [36] confirmed
superior prognosis for TA-discerned good-outcome classifi-
cation in 111 previously described patients [21]. During
treatment, 88% of patients maintained their baseline classi-
fication, whereas at treatment withdrawal, largely due to PD,
only 26% of good-outcome patients shifted to poor outcome
classification [36]. Garrisi et al. identified 7 of 8 TA peaks from
spectra of 11 NSCLC patients prior to gefitinib and 10 HCs. Of
these, five could be attributed to isoforms of the acute-phase
protein serum amyloid A (SAA), but SAA serum concentrations
determined by enzyme-linked immunosorbent assay were not
related to TTP [37]. From profiles of 34 patients treated with
gefitinib plus rofecoxib, O’Byrne et al. found 55 differential
peaks between responders (n 5 3) and patients with SD/PD
(n5 31) and 90 between patientswith disease control (n5 14)
and nonresponders [38].

Targeted Therapy in Tumors Other Than NSCLC
Hypothesizing that the TA would reflect EGFR dependency
regardlessof theprimary tumorsiteor theEGFR-targetingagent
used, Chung et al. profiled patients with advanced head and
necksquamous cell carcinoma (HNSCC; 55 treatedwithgefitinib
[65], 32 treated with erl/bev [66], 21 treated with cetuximab,
and 34 treated with docetaxel-based chemotherapy) and 88
cetuximab-treated patients with colorectal cancer (CRC) [67].
For patients with HNSCC, median OS was superior for those
classified as good outcome versus poor outcome treated with
gefitinib (36.7 vs. 18.0 weeks; HR: 0.41; p5 .007) and erl/bev
(39.5 vs. 29.1 weeks; HR: 0.20; p5 .02), whereas no significant
difference was found in cetuximab-treated patients (38.3 vs.

Figure 3. Tumor types and treatments in eligible studies. Overview of tumor types and treatment modalities in 38 eligible articles
reporting matrix-assisted or surface-enhanced laser desorption/ionization time-of-flight mass spectrometry peptide profiling in
pretreatment serum or plasma.

Abbreviations: CRC, colorectal cancer; NSCLC, non-small cell lung cancer.
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Table 1. Eligible studies reporting MS-based peptidomics

First author, year Tumor type n Treatment (study of sample origin) MS platform Summary results

Targeted therapy

Taguchi, 2007
[21]

NSCLC 460a Gefitinib, erlotinib [23], none M 8-peak signature (TA) shows superior
TTP and OS for TA-classified
good-outcome vs. poor-outcome
patients in training and validation sets
but not in control set

Salmon, 2009
[31]

NSCLC 180 Erlotinib-bevacuzimab [27],
erlotinib [23], chemotherapy

M 11-peak signature (5 overlapping with
TA) separates TKI-treated patients
with long vs. short PFS and OS

Amann, 2010
[24]

NSCLC 88 Erlotinib [23] M Confirmed Taguchi results,
independent of KRAS status

Carbone, 2010
[28]

NSCLC 35 Erlotinib-bevacuzimab [27] M Superior PFS and OS for TA-classified
good-outcome vs. poor-outcome
patients

Lazzari, 2012
[36]

NSCLC 111b Gefitinib (overlap with Taguchi
training and validation set)

M Superior PFS and OS for TA-classified
good-outcome vs. poor-outcome
patients

Kuiper 2012
[32]

NSCLC 50 Erlotinib-sorafenib [33] M Superior PFS and OS for TA-classified
good-outcome vs. poor-outcome; 9 of
10 responses in TA-classified
good-outcome patients

Carbone, 2012
[26]

NSCLC 436b Erlotinib vs. placebo [25] M Superior PFS and OS for TA-classified
good-outcome vs. poor-outcome
placebo patients; superior OS and
response rate for TA-classified
good-outcome erlotinib vs. placebo
patients

Gautschi, 2013
[29]

NSCLC 117 Erlotinib-bevacuzimab [29] M Superior OS for TA-classified
good-outcome vs. poor-outcome
patients

Dingemans,
2013 [34]

NSCLC 57 Sorafenib M Superior PFS for TA-classified
good-outcome vs. poor-outcome
patients

Akerley, 2013
[30]

NSCLC 42 Erlotinib-bevacuzimab M Superior PFS and OS for TA-classified
good-outcome vs. poor-outcome
patients

Stinchcombe,
2013 [35]

NSCLC 98 Gemcitabine, erlotinib,
gemcitabine-erlotinib [64]

M Superior PFS for TA-classified
good-outcome vs. poor-outcome
patients in erlotinib arms; significant
treatment interaction in monotherapy
arms

Garrisi, 2011
[37]

NSCLC 11 Gefitinib S Identified 7 of TA peaks; 5 attributed
to SAA

O’Byrne, 2007
[38]

NSCLC 34 Gefitinib/rofecoxib M 55 peaks differential for response

Chung, 2010
[39]

HNSCC, CRC 230a HNSCC: gefitinib [65], cetuximab,
erlotinib/bevacizumab [66],
docetaxel-based chemotherapy.
CRC: cetuximab [67]

M Superior OS for TA-classified
good-outcome vs. poor-outcome
EGFR-TKI-treated HNSCC patients;
superior PFS for TA-classified
good-outcome vs. poor-outcome CRC
patients

Matsumoto,
2009 [40]

Breast 24 Trastuzumab M 1 peak associated with clinical
response and PFS; low expression
discriminated between PD and
non-PD with sensitivity of 75% and
specificity of 82%

Dalenc, 2010
[41]

Breast 19 Tipifarnib-tamoxifen S No relation between pretreatment
peaks and outcome

Chemo- and immunotherapy

Gonçalves,
2006 [42]

Breast 81 Anthracyclin-based (adjuvant) and
locoregional radiotherapy

S 5-year MFS 83% vs. 22% in patients
with good vs. poor prognosis based on
multiprotein index

(continued)
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Table 1. (continued)

First author, year Tumor type n Treatment (study of sample origin) MS platform Summary results

Gast, 2008
[44]

Breast 63 FEC plus high-dose chemotherapy
(adjuvant) [68]

S 1 peak associated with RFS

Gast, 2011
[43]

Breast 82c Similar to Gast 2008 [44] S, M 3 peak clusters significantly
associated with RFS

Høgdall, 2010
[45]

Ovarian 131 Platinum-paclitaxel based
(adjuvant) [69]

S 2-protein index significantly
correlated with PFS

Mazouni,
2010 [46]

Breast 39 Paclitaxel-FEC with or without
trastuzumab (neoadjuvant) [70]

M 2 peaks differential for pathological
response

Li, 2011 [47] Osteosarcoma 27b Cisplatin-doxorubicin; high-dose
methotrexate (neoadjuvant)

S 56-peak model predictive of
pathological response

Voortman,
2009 [48]

NSCLC 27 Cisplatin-gemcitabine/bortezomib
[71]

M 5-peak signature predictive of
response; 6-peak signature predictive
of PFS

Han, 2010 [49] NSCLC 93 Cisplatin-docetaxel S 5-peak model predictive of response

Han, 2012 [50] SCLC 56 Cisplatin-etoposide S 2-peak model predictive of response

Helgason,
2010 [52]

CRC 42 Capecitabine-oxaliplatin S 1 peak differential for response

Yuan, 2012
[51]

CRC 70 FOLFOX or FOLFIRI S 7-peak model predictive of response
to FOLFIRI; 6-peak pattern for FOLFOX

Helgason,
2010 [53]

Gastric 68 Epirubicin-cisplatin-capecitabine S No differential peaks for response; 1
peak associated with survival

Walter, 2010
[54]

RCC 41 IL-2-interferon-5-FU S 7-peak model predictive of clinical
benefit

Vermaat,
2010 [55]

RCC 114 Interferon-based, TKIs, other S 10 proteins related to survival;
2-protein signature significantly
predicted survival and improved
current risk models

Surgery

Risum, 2009
[56]

Ovarian 75 Debulking surgery [23] S 7-peak signature predictive of
incomplete cytoreduction

Wood, 2010
[57]

Renal 119 Nephrectomy S 6 peaks independently associated
with CSS

Xue, 2012 [58] Pancreatic 61 Pancreaticoduodenectomy S 3-peak model predictive of survival
,1 year

Radiation and chemoradiation therapy

Su, 2014 [59] Nasopharyngeal 50 70–76 Gy S 11 differential peaks; 4-peak model
predictive of radiosensitivity

Hayashida,
2005 [61]

Esophageal 42 40 Gy with 5-FU-cisplatin
(neoadjuvant)

S 4-peak signature predictive of
pathological response

Maher, 2011
[62]

Esophageal 31 40–44 Gy with 5-FU-cisplatin
(neoadjuvant)

S 4 peaks differentially expressed; C3a
and C4a expression predictive of
pathological response

Kelly, 2012
[63]

Esophageal 24 Chemoradiation (neoadjuvant),
palliative chemotherapy, none

S 3 peaks independently associated
with 8-month DFS, 8- or 12-month
survival

Smith, 2007
[60]

Rectal 20 45 Gy with 5-FU S 14-peak signature after 24–48 hours
of treatment predictive of
pathological response

Profiles based on serum unless otherwise specified.
aSerum/plasma.
bPlasma.
cFractionated serum.
Abbreviations: 5-FU, 5-fluorouracil; CRC, colorectal cancer; CSS, cancer-specific survival; DFS, disease-free survival; FEC, 5-FU, epirubicin and
cyclophosphamide; FOLFIRI, 5-FU and irinotecan; FOLFOX, 5-FU and oxaliplatin; HNSCC, head and neck squamous cell carcinoma; IL-2, interleukin 2; M,
matrix-assisted laser desorption/ionization time-of-flight;MFS,metastasis-free survival; MS,mass spectrometry; NSCLC, non-small cell lung cancer; OS,
overall survival; PD,progressivedisease;PFS,progression-freesurvival;RCC, renal cell carcinoma;RFS, recurrence-freesurvival; S, surface-enhanced laser
desorption/ionization time-of-flight; SAA, serum amyloid A; SCLC, small cell lung cancer; TA, Taguchi algorithm; TKI, tyrosince kinase inhibitor.
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11.9 weeks; HR: 0.26; p 5 .06) and chemotherapy-treated
patients (39.4 vs. 15.5 weeks; HR: 0.88; p5 .76). OS data were
not available for the CRC patients, but PFS was significantly
longerforgood-outcomepatientsversuspoor-outcomepatients
(8.9 vs. 8.4 weeks; HR: 0.51; p 5 .007) due to the observed
separation beyond the 9-week response assessment point [39].

Two eligible studies were performed in patients with
advanced breast cancer. Aiming to identify glycosylation
biomarkers for trastuzumab, Matsumoto et al. analyzed
plasma N-glycan profiles of 24 patients. One peak was sig-
nificantly lower in patients with PD [40]. From profiles of
19 patients treated with tamoxifen plus tipifarnib, a farnesyl-
transferase inhibitor, Dalenc et al. identified 1 peptide that
was significantly associated with TTP in serum obtained after
8 weeks of treatment, whereas pretreatment sera did not
provide such association [41].

Studies Reporting Profiling Prior to Chemo- or
Immunotherapy
Foureligible studiesperformedpostoperativeprofilingprior to
adjuvant chemotherapy in three in patientswith breast cancer
and one patient with ovarian cancer [42–45]. Although the
candidate biomarkers identified in these studies most likely
have prognostic relevance, a relationship to chemosensitivity
cannot be excluded.

Mazouni et al. evaluated profiles from 39 patients with
HER2-positive breast cancer receiving neoadjuvant paclitaxel-
anthracyclin-based chemotherapy [70]. Two peptides were
differentially expressed inpatientswithpathological complete
response compared with patients with residual disease [46].
Plasma profiles of 27 osteosarcoma patients treated with
preoperative cisplatin-doxorubicin and high-dose methotrex-
atehavebeen investigatedbyLi etal.,whoconsideredpatients
with tumornecrosisof90%orhigher in the resection specimen
as responders. The resulting 56-peak model predicted re-
sponse with overall accuracy of 85% [47].

Two studies reported profiling prior to palliative chemo-
therapy in patientswithNSCLC. Frompatterns of 27previously
untreatedpatients treatedwith cisplatin-gemcitabine plus the
proteasome inhibitor bortezomib [71], Voortman et al. iden-
tified 6 differential peptides based on relatively short versus
long PFS in the most distinct 22 patients.When applied to all
samples, the signature showed a significantly shorter median
PFS in patients classified as having short versus predicted long
PFS (120 vs. 191 days; p5 .036). Median OS of these patients
wasalso significantlydifferentat144versus436days (p5 .036).
Five differential peaks were identified between patients
responding with PR (n 5 9) and non-PR, of which two over-
lapped with the previous signature. This signature revealed
a significantly shorter PFS and a nonsignificantly shorter OS
for patients with non-PR [48]. Han et al. investigated profiles
of93patients treatedwith first-linecisplatin-docetaxel chemo-
therapy. Considering only patients with PR as chemotherapy-
sensitive, 76% of patients showed initial resistance. From a
training set of 62 patients, a 5-peptidemodel was constructed
that accurately separated chemotherapy-resistant patients
from chemotherapy-sensitive patients in 84% of the blinded
test set (n 5 31) [49]. A similar approach by the same
investigators in 56 SCLC patients treated with cisplatin-

etoposide resulted in a 2-peak model performing with 80%
accuracy [50].

Two eligible studies performed profiling prior to first-line
palliative chemotherapy in patients with advanced CRC. Yuan
et al. analyzed sera of 70 patients treated with 5-fluorouracil
(5-FU) andoxaliplatin (FOLFOX,n544) and5-FUand irinotecan
(FOLFIRI, n 5 26). Regarding patients with PR or SD as
responders, a signature of the six most discriminating peaks
for FOLFOX and the seven (nonoverlapping) peaks for FOLFIRI
was constructed.Their performance in a randomly chosen test
set is summarized in Table 2 [51]. Helgason et al. identified 1
differential peptide in profiles of “polar opposite” responders
(20 PR, 10 PD) out of 40 patients treated with capecitabine-
oxaliplatin [52]. A similar approach in 68patientswithadvanced
gastric cancer eligible for response evaluation upon treatment
with first-line epirubicin, cisplatin, and capecitabine did not re-
sult in differential peaks, but low intensity of 1 peptide (11,600
Da, SAA) was significantly correlated to longer OS [53].

Since the introduction of targeted agents, immunotherapy
has been decreasingly applied in metastatic renal cell car-
cinoma (mRCC),despite its ability to inducedurable responses.
Walter et al. investigated serum profiles of 41 patients
treated with interleukin-2, interferon, and 5-FU. Constructed
from a pattern of 25 proteins associated with response,
including SAA isoforms and transthyretin (TTR), a rule base
could classify patients as having predicted clinical benefit
versus PD with accuracy of 66% [54]. Vermaat et al. identi-
fied 10 proteins significantly associatedwith OS in serum from
114 patients with mRCC, with 73% obtained prior to first-line
interferon-based treatment. Serum concentrations of identi-
fied proteins apolipoprotein-A2 (Apo-A2), SAA, and TTR
were predictive of survival; SAA and TTR levels were able to
improve the commonly used prognostic mRCC model [55].

Studies Reporting Profiling Prior to Local and
Combination Treatment

Surgery
Ultimately, predicted nonresponders to surgery might receive
additional adjuvant or neoadjuvant systemic treatment to im-
prove their outcome or palliative treatment only. Risum et al.
analyzed preoperative serum profiles and CA-125 levels to
predict incomplete primary debulking surgery in 75 patients
with stage III–IV ovarian cancer. A panel of 7 of 10 prespecified
proteins were combined into a single-valued ovarian cancer risk
index (OvaRI). Overall accuracy was 72% for the OvaRI and 67%
forCA-125,butcombinedanalysisdidnot improvethepredictive
power of either analysis [56]. Wood et al. identified 6 peaks
independently associated with cancer-specific survival but not
with DFS after nephrectomy in serum of 119 patients with RCC;
onepeak(1,525Da)was identifiedasanSAAfragment[57].From
40 patients with pancreatic cancer who planned to undergo
pancreaticoduodenectomy, eventually followed by adjuvant
therapy in 87.5% of patients, Xue et al. developed a 3-peptide
panel that, when combinedwith CA 19-9, predicted survival of
less than 1 year with an area under the receiver operating
characteristic curveof0.96. In the verification setof21patients,
predictive accuracy was 76%. One peptide was identified as
ApoC-II, for which serum levels significantly correlated to short
survival in an independent validation set [58].
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Radiation and Chemoradiation Therapy
Su et al. analyzed serum profiles of 50 patients with na-
sopharyngeal cancer in relation to response to 7–8 weeks
of radiation therapy, as assessed by nasopharyngoscopy and
computed tomography scanning. Only patients exhibiting
rapid regression were considered radiation sensitive. A 4-
peptide pattern derived from 11 differential peaks predicted
radiosensitivity in 78% of patients [59].

Three eligible studies evaluated profiling in relation to
pathological response to neoadjuvant 5-FU-based chemo-
radiation [60–62]. Smith et al. analyzed sera taken before and
during courseof treatment from20patientswith rectal cancer
in relation to response according to the Mandard tumor
regression grade (TRG). Although the “optimal” pretreatment
modelperformedpoorly, a14-peptideclassifier in serumtaken
24–48-hours after treatment resulted in sensitivity of 88%and

specificityof80%[60].Applyinganalternative3-gradescale for
response, Hayashida et al. constructed a 4-peptide signature
from profiles of 27 patients with squamous cell esophageal
cancer. This performed with 93% accuracy in an independent
validation set (n5 15) at sensitivity of 100% and specificity of
80%[61]. In31patientswithmixedhistological-typeesophageal
cancer, Maher et al. identified 4 differential peptides between
TRG-based responders andnonresponders; 2were identified as
complementC3a andC4a.Their baseline serum levels predicted
response witrun -1th sensitivity of 79% and specificity of 83%
in 87% of patients [62]. From profiles of 24 patients with
esophageal cancer, for whom treatment included neoadjuvant
chemoradiation (n5 11) and palliative chemotherapy (n5 8),
Kelly et al. identified TTR (14,029 Da), Apo-A1 (27,665 Da) and
SAA (11,670Da) as independently associatedwith 8-monthDFS
and survival at 8 and 12months, respectively [63].

Table 2. MS-based classifier characteristics

First author,
year

MS-based
classification
model Peptide peaks (m/z)

Independent
validation / test set

Prediction
accuracy (%) Sensitivity (%) Specificity (%)

Gonçalves,
2006 [42]

40-peak
based

Including 8,936 (C3a),
9,192 (Hp I), 81,763
(transferrin), 28,284
(Apo-A1), 6,647 (Apo-C1)

— 72 73 70

Han, 2010 [49] 5-peak 3,955, 6,207, 7,992, 9,214,
15,086

1 84 83 86

Han, 2012 [50] 2-peak 8,830, 10,468 (S100-A9) 1 80 80 80

Hayashida,
2005 [61]

4-peak 7,420, 9,112, 12,867,
17,123

1 93 100 80

Li, 2011 [47] 56-peak Including 1,1467, 11,530
(SAA)

— 85 81 91

Risum, 2009
[56]

7-peak Including 3,272, 12,828,
28,043 (Apo-A1)

— 72 73 70

Salmon, 2009
[31]

11-peak 4,121, 4,596, 4,720, 4,821,
5,720, 5,841, 11,441,
11,528, 11,684, 11,731,
11,902 (SAA)

1 NS NS NS

Smith, 2007
[60]

14-peak 2,079, 2,093, 2,131, 2,159,
2,338, 2,524, 3,049, 3,150,
4,159, 4,188, 5,856, 7,042,
9,056, 15,339

— NS 55 64

Su, 2014 [59] 4-peak 2,575, 3,942, 6,117, 6,778 — 78 85 71

Taguchi, 2007
[21]

8-peak 5,843, 11,446, 11,530, 11,685,
11,759, 11,903 (SAA), 12,452,
12,580

1 NS NS NS

Voortman, 2009
[48]

6-peak 1,545, 2,209, 2,215, 2,318,
2,376, 2,489

— 82 82 82

Voortman,
2009 [48]

5-peak 900, 2,009, 2,215, 2,318, 2,378 — 89 100 83

Walter, 2010
[54]

7-peak 4,145, 5,715, 11,479 (SAA),
40,412, 51,203, 133,146,
185,034

— 66 NS NS

Xue, 2012 [58] 3-peak1
Ca19.9

3,700, 8,222 (Apo-C2), 11,522
(SAA-I)

1 76 55 100

Yuan, 2012 [51] 6-peak 2,266, 4,606, 7,775, 9,198,
9,282, 9,298

— NS 93 81

Yuan, 2012 [51] 7-peak 2,648, 2,952, 3,980, 4,121,
4,292, 4,305, 4,321

— NS 92 92

Reported classification models with discriminatory peaks and accuracy parameters. Prediction accuracy equals the proportion correct among the total
number of predictions. Bold text indicates peaks that are present in multiple models.
Abbreviations:1/2, indicates the presence or absence of an independent data set, included for validation of the classification model; Apo,
apolipoprotein; MS, mass spectrometry; m/z5mass-to-charge ratio; NS5 not specified; SAA, serum amyloid A.
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MS-Based Classification Models
Fourteen studies developed an MS-based classification model.
Differential peptide peaks from these models and their per-
formance in terms of overall accuracy, sensitivity, and speci-
ficity are summarized in Table 2. Median accuracy was 81%
(range: 66%–93%) in 11 of 14 studies reporting performance of
the classifier. Additional mass peaks associated with outcome
that were not validated or applied into anMS-based prediction
model are listed in supplemental online Table 1.

Pooled Analysis of Survival Times in NSCLC Studies
As an example of the potential power of serum and plasma
peptidomics forpredictionof treatmentoutcome inNSCLC,we
pooled TTP/PFS andOS times available for the treated patients
(933 received targeted therapy, 87 received chemotherapy-
based treatment) from 9 discussed NSCLC studies (Table 3).
This analysis revealed median PFS and OS in poor-outcome
patients of 2.006 1.06 and 4.586 1.45 months, respectively,
whereas in good-outcome patients, median PFS was 4.01 6
1.60months andmedianOSwas 10.526 3.49months (Fig. 4).
Aware of the small number of chemotherapy-treatedpatients,
we also specified outcome for treatment type by algorithm
status. PFS for poor-outcome patients was significantly
shorter for those treated with targeted therapy than for
chemotherapy-treated patients (1.87 vs. 3.94 months,
p 5 .002), whereas OS was not different (4.28 vs. 4.73
months, p5 .459). For patients classified as good outcome
treated with targeted therapy and chemotherapy, median
PFS and OS did not differ (PFS: 3.85 vs. 4.37months; p5 .579;
OS: 9.92 vs. 11.98 months; p5 .651).

DISCUSSION

We have systematically reviewed available literature on pre-
treatment MS-based serum and plasma peptidomics in adult
patients with solid malignancies in relation to treatment

outcome to evaluate classification accuracy and readiness of
this approach for clinical implementation.

Together, these results support the proof-of-concept
for MS-based pretreatment profiling to influence
clinical decision making in NSCLC, for example, by
preferential chemotherapy for TA-classified poor-
outcome patients, as has been suggested previously.

Thirteen of 38 included studies investigated profiling
prior to targeted therapy in patients with advanced NSCLC.
These were mostly related to a study published in 2007
by Taguchi et al. [21] in which an eight-peptide signature
indicative of PFS and OS in patients treated with EGFR TKIs
was identified. Five of these peaks have been identified as
isoforms of the acute-phase protein SAA [32, 37, 72]. Several
studies confirmed the prognostic properties of this algorithm
in patients treated with targeted therapy-containing regi-
mens [26, 30, 32], and some also indicated predictive
potential [21, 35, 39]. We performed a pooled analysis of
TTP/PFS and OS times available from 9 NSCLC studies. This
revealed clinically significant median PFS and OS in poor-
outcome patients, indicative of the potential of blood-based
peptidomics, for consideration of withholding treatment
in these patients (Fig. 4). In addition, the longer PFS for
chemotherapy versus targeted therapy in patients classified
as poor outcome (3.94 vs. 1.87 months; p 5 .002) in this
exploratory analysis may point in the same predictive
direction as the results of the recently presented PROSE
study [73]. In this TA-stratified study, 285 patients with
advanced NSCLC were randomized between second-line
treatment with erlotinib or chemotherapy. In patients
classified as poor outcome, OS was significantly shorter for
those treated with erlotinib than for chemotherapy-treated

Table 3. Outcome of non-small cell lung cancer patients in pooled analysis

First author, data set Cohort or study arm, n

Outcome according to classification

Poor outcome Good outcome

Median
TTP/PFS

Median
OS

Median
TTP/PFS

Median
OS

Taguchi, 2007, training set [21] Gefitinib, 139 2.1 4.9 5.3 14.5

Taguchi, 2007, validation set1 [21] Gefitinib, 67 2.0 3.0 2.8 6.8

Taguchi, 2007, validation set2 [21] Erlotinib, 96 1.9 3.5 3.2 10.1

Carbone, 2010 [28] Erlotinib-bevacizumab, 35 1.8 5.5 8.3 14.0

Kuiper, 2012 [32] Erlotinib-sorafenib, 50 2.7 5.6 5.5 13.7

Carbone, 2012 [26] Erlotinib, 292 1.8 4.0 3.7 10.5

Gautschi, 2013 [29] Erlotinib-bevacizumab, 117 3.2 6.2 4.0 13.4

Dingemans, 2013 [34] Sorafenib, 57 1.5 2.5 2.6 6.0

Akerley, 2013 [30] Erlotinib-bevacizumab, 42 1.4 4.6 4.3 16.4

Stinchcombe, 2013 [35] Erlotinib, 38 0.7 1.7 2.9 8.4

Stinchcombe, 2013 [35] Erlotinib-gemcitabine, 32 2.9 3.5 4.0 9.9

Stinchcombe, 2013 [35] Gemcitabine, 28 4.5 6.5 4.4 6.6

Voortman, 2009 [48] Gemcitabine-cisplatin-bortezomib, 27 3.9 4.7 6.3 14.3

Outcome in months for 1,020 treated patients with advanced non-small cell lung cancer, available from 9 studies with nonoverlapping data sets.
Approximately 49%of patients did not receiveprior treatment. Reportedoutcomeduration in dayswas dividedby30.43 to calculate duration inmonths.
Abbreviations: TTP, time to progression; OS, overall survival; PFS, progression-free survival.
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patients (3.0 vs. 6.4 months; HR: 1.72; p5 .022), whereas no
difference was found in patients classified as good outcome
(11.0 vs. 10.9 months; HR: 1.06; p 5 .714). Together, these
results support the proof-of-concept for MS-based pre-
treatment profiling to influence clinical decision making in
NSCLC, for example, by preferential chemotherapy for TA-
classified poor-outcome patients, as has been suggested
previously [73, 74].

Promising results of pretreatment MS-based peptidomics
have also been obtained in other tumor types and treatment
modalities, including neoadjuvant treatment for osteosar-
comaand esophageal cancer,with prediction accuracies of the
reported classifiers of 85% and 93%, respectively [47, 61].

Limitations of the reviewed studies included small sample
sizes (median n 5 59), variable design and outcome param-
eters, and absence of independent validation sets in most
studies. In fact, validation of the signature was attempted
in an independent cohort in only 6 of 14 studies reporting
construction of an MS-based prediction model based on
differential peaks (Table 2). One of our concerns that we were
not able to address in detail in this review regards the quality
of the applied data analysis methods and algorithm construc-
tion. Variability in sample collection and preparation may be
responsible for the lack of peak reproducibility in studies
investigating similar tumor types (Table 2). In recent years it
has become clear that the use of a serum pool as a control and
strict handling rules are crucial because several preanalytical
factors, including clotting time and temperature, may in-
fluence reproducibility [75, 76].Themajority of studies did not
provide details on sample handling and analysis and did not
report theuseofaprespecifiedcollectionprotocol. Inaddition,
theydidnotprovide informationon theexact interval between
serum or plasma collection and treatment initiation.

In thediscussed studies, SAAandapolipoproteinwere
the most frequently identified proteins in patients
with a variety of tumors and treatments. It is known
that patients with more advanced disease or poorer
prognosis have increased blood levels of these
markers.

Ideally, the identity or “source protein” of peptides con-
stituting an MS-based blood signature would be known.
This may enhance understanding of the underlying tumor
biology and would facilitate validation and clinical implemen-
tationof thesebiomarkers. It is important to realize thata large
part of the serum peptides are degradation products from
circulating nontumor-derived proteins, resulting from differ-
ential protease activity in the tumor microenvironment [17],
which may even involve or reflect an acute-phase host
response [32]. Some of the peptides may also be generated
from ex vivo protease activity during the clotting process
required for serum preparation in the tube on venipuncture
[17]. In thediscussed studies, SAAandapolipoproteinwere the
most frequently identifiedproteins inpatientswith avarietyof
tumors and treatments. It is known that patients with more
advanced disease or poorer prognosis have increased blood
levels of these markers [55, 77, 78]. Consequently, corre-
sponding mass peaks of these proteins are most likely
prognostic markers. Alternative blood-based methods are in
development, including genomics-, transcriptomics- and
phosphoproteomics-basedprofiling [79–81], but investigation
is required to determine their advantages over serum and
plasma peptidomics in terms of predictive value and accuracy.

CONCLUSION
Pretreatment MS-based serum and plasma peptidomics have
shown promising results for prediction of treatment outcome
in patients with solid tumors. Limited sample size and lack of
signature validation in most studies have prohibited clinical
implementation thus far, despite although the technology
within the field has matured. Our pooled analysis and results
from the PROSE study indicate that this blood-based profiling
approach enables treatment selection in patients with cancer,
but additional prospective studies are warranted. Future
studies should be designed to facilitate clinical decision
making. They should have sufficient sample sizes and en-
compass uniform and strict sample collection and handling
protocols and include validation efforts for the identified
putative biomarkers using patient cohorts that are indepen-
dent, from multiple centers, and preferably from multiple
countries. Moreover, consensus on criteria to evaluate clinical
implementation of proposed treatment selection tools is
needed.

Figure4. Pooledanalysis ofnon-small cell lungcancer studies. PooledPFSandOSanalysis accordingtopretreatmentmass spectrometry-
based classification of patients reported in Table 3.

Abbreviations: OS, overall survival; PFS, progression-free survival; TTP, time to progression.
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Schütte contributed equally to this paper.

AUTHOR CONTRIBUTIONS
Conception/Design:Mariette Labots, Lisette M. Schütte, Johannes C. van der
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Johannes C. van der Mijn, Thang V. Pham, Henk M.W.Verheul

Manuscript writing:Mariette Labots, Lisette M. Schütte
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