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Abstract

Polymer-nanoparticle composites play a vital role in ongoing materials development. The

behavior of the glass transition of these materials is important for their processing and

applications, and also represents a problem of fundamental physical interest. Changes of the

polymer glass transition temperature Tg due to nanoparticles have been fairly well catalogued, but

the breadth of the transition and how rapidly transport properties vary with temperature T – termed

the fragility m of glass-formation – is comparatively poorly understood. In the present work, we

calculate both Tg and m of a model polymer nanocomposite by molecular dynamics simulations.

We systematically consider how Tg and m vary both for the material as a whole, as well as locally,

for a range of nanoparticle (NP) concentrations and two polymer-NP interactions. We find large

positive and negative changes in Tg and m that can be interpreted in terms of the Adam-Gibbs

model of glass-formation, where the scale of the cooperative motion is identified with the scale of

string-like cooperative motion. This provides a molecular perpective of fragility changes due to

the addition of NPs and for glass formation more generally. We also contrast the behavior along

isobaric and isochoric approaches to Tg, since these differing paths can be important to compare

experiments (isobaric) and simulations (very often isochoric). Our findings have practical

implications for understanding the properties of nanocomposites and fundamental significance for

understanding the properties glass-forming materials more broadly.

I. INTRODUCTION

The addition of nanoparticles (NPs) to polymer melts can substantially improve mechanical,

electrical, and optical properties of polymer materials, both under melt processing conditions

and in the solid state [1–4]. The vast range of applications to both commodity polymer

materials, as well advanced materials such as those found in the aerospace, medical, and

electronics industries, motivates a systematic understanding of polymer-NP composites.

Changes in the polymer melt properties with NP additives have been intensely studied, and

it is known that NP surface interactions, concentration, polymer composition, among other
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properties, play an important role in determining changes. However, the molecular

mechanisms underlying these property changes with nanoparticle additives remains debated.

One of the most important characteristic temperatures for amorphous polymer processing,

the glass transition temperature Tg, has been widely studied due to its established

relationship with transport phenomena and structural relaxation processes in these materials.

Both experiments and theoretical studies have shown that Tg and the viscosity increase for

sufficiently attractive NP surfaces and decrease for non-attractive NP surfaces [5–20],

provided the strength of these interactions are not very strong, so that effects associated with

non-equilibrium interfacial layers and particle aggregation do not predominate.

While Tg certainly plays an important role in describing the dynamical changes on adding

NPs to a polymer melt, it does not necessarily capture changes to the breadth of the glass

transition or to changes in the temperature T dependence of dynamical properties – more

commonly referred to as the fragility of glass formation. Additionally, Tg changes of the

material as a whole are not informative about the spatial variations of dynamics induced by

NP; while an increased Tg can typically be associated with slower relaxation near the NP

surface (and vice-versa for Tg suppression), Tg is not informative about the magnitude and

length scale of spatial dynamical changes. Consequently, Tg alone provides a limited metric

for how the NPs modify the dynamics of polymer melts. Moreover, there is some discussion

in the literature as to whether changes in fragility upon adding NPs are significant. For

example, some experiments report a negligible change of fragility [21], while other

experiments [13, 22–24] report appreciable fragility changes, leaving the question of

fragility changes ripe for further examination.

Molecular simulations offer a useful tool to address both the magnitude and origins of

fragility changes with the addition of nanoparticles, and there have been previous

computational investigations of the influence of nanoparticles on the fragility of polymer

glass formation [25–27]. Papakonstantopoulos et. al [25, 26] used molecular dynamics

simulations to indirectly infer changes of fragility from changes of the Boson peak intensity

in glass regime. However, the relation between fragility and Boson peak intensity is an

empirical correlation and the fundamental molecular significance of this correlation remains

somewhat uncertain. Subsequently, ref. [27] demonstrated – via direct computation of

fragility from the nanocomposite relaxation in the melt regime above Tg – that nanoparticles

can indeed change the fragility of polymer materials; specifically, attractive NP-polymer

interactions increase Tg and increase fragility, and vice-verse of non-attractive polymer-NP

interactions. The relative Tg and fragility changes were similar to those found for small

molecule antiplasticizing additives to polymer melts [28]; Ref. [27] further argued that the

fragility can be understood from the scale of cooperative motion, as implied by the Adam-

Gibbs description [29]. The comparison of modeling results with experimental studies is

complicated by the fact that simulations commonly follow a path of fixed density

(isochoric), while experiments naturally are performed at fixed pressure (isobaric). The

impact of these different thermodynamics paths on fragility have not been adequately

investigated, and we turn to these problems in the present paper.
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Given the conflicting experimental findings and complications in comparing with previous

simulations, further systematic computational studies of fragility with the addition of NP to

glass-forming polymer melts are merited. Moreover, we wish to better understand molecular

origins of the bulk dynamical changes. Such knowledge is key for predicting property

changes in polymer nanocomposites. Here we focus on the inter-relations between changes

of Tg, fragility, the scale of cooperative motion, and the dependence on the thermodynamic

path to Tg – as well as how these changes are manifested in the local neighborhood of NP –

using equilibrium molecular dynamics simulations of an ideal NP dispersion in a polymer

melt. We follow glass formation along both isobaric and isochoric paths for both attractive

and repulsive polymer-NP surface interactions. To characterize and understand these

property changes, we quantify changes in the overall density, relaxation time τ, and

cooperative motion, as characterized by the string-like motion of particles [30]. We show

that the changes Tg and fragility occur proportionally, as is found experimentally for many

polymers [31]. These changes can also be seen in the overall scale of cohesive interactions,

characterized by the high-T activation energy. The changes to overall relaxation of the

polymer melt induced by the NPs are consistent with Adam-Gibbs (AG) [29] description of

glass formation, taking the size of cooperatively rearranging regions (CRR) to be

proportional to the average polymerization index L of the string-like collective motion that

we observe in our simulations. Consequently, fragility changes can be traced to the T-

dependence of the string mass. A brief report of some of these results recently appeared in

ref. [27], and here we offer a more detailed study that significantly extends the earlier

findings. Finally, by comparing dynamical changes with those of density, we see that free-

volume based approaches are not adequate to describe dynamical changes seen in our

simulations. Alternatively, local free volume, as measured by the Debye-Waller factor 〈u2〉

may prove useful.

Before continuing, we recognize that there are many other physical effects beyond how

well-dispersed NP influence polymer glass formation to consider. These include the

influence on polymer crystallization, chain entanglement for high molecular polymers,

bridging interactions between NP, and even the assembly of the NPs into networks

interpenetrating the polymer matrix. Given the complex array of possible interactions, we

choose to isolate the effects that arise purely from dispersed NPs in an unentangled glassy

polymer melt, so that subsequent studies can better separate the competing origins of

property changes.

II. MODEL AND SIMULATION DETAILS

The dynamics of polymer nanocomposites encompasses effects from many origins,

including NP-polymer interactions and confinement effects at larger NP concentrations.

Simulation offers a means of disentangling these effects by controlling of NP concentration

and dispersion. Here, we focus only on effects of surface interactions and possible NP

confinement effects by studying an ideal dispersion of NPs. We consider a single NP

surrounded by a dense polymer melt and utilize periodic boundary conditions to mimic a

perfect cubic lattice of NP with variable NP separation. This model does not account for

property changes arising from NP cluster formation or phase separation that may occur at

large particle concentrations.

Betancourt et al. Page 3

Soft Matter. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We use a widely studied bead-spring model [32], where polymers are represented by chains

of Lennard-Jones (LJ) particles with interactions strength ε and diameter σ. Neighboring

monomers are bonded using a FENE anharmonic spring potential [32],

(1)

where r is the distance between neighboring monomers of the chain, k = 30ε is the strength

of bond interaction, and R0 = 1.5σ. These parameters introduce incompatibility in the length

scale of bonded and non-bonded interactions which frustrates crystallization, thereby allow

us to study the approach to the glass transition. The Lennard-Jones potential VLJ is truncated

at rc = 2.5σ and shifted to avoid a discontinuity in the potential and force at the cutoff;

specifically, the “force-shifted” [33] potential is

(2)

We study chains of length 20, below the entanglement length, but long enough that chains

have nearly Gaussian statistics. We use reduced units m = σ = ε = 1, where m is the

monomer mass, length is in units of σ, time is in units of  and temperature is in units

 where kb is Boltzmann’s constant. For a polymer (like polystyrene) with Tg ≈ 100 °C, the

reduced units can be mapped to physical units relevant to real polymer materials, where the

size of a chain segments σ is typically about 1 nm to 2 nm, time is measured in ps, and ε ≈ 1

kJ/mol.

For the NP, we use the model studied in refs. [5, 6], in which the NP is built from a

collection of 356 LJ particles bonded to form a large icosahedron. The outer shell of the

icosahedron has 6 LJ particles along the edges, each separated by  (the location of the LJ

potential minimum), as illustrated in Fig. 1. This arrangement yields an icosahedron with

edge length a = 5.61σ; for reference, a corresponding circumscribing sphere has radius

. Based on the unit mapping described above, this gives a scale of

approximately 15 nm diameter for the NP. The NP size can be compared to the chain size by

considering that the NP edge length is slightly larger than the average polymer end-to-end

distance Re, which, at P = 1.0, ranges from 4.10 at low T = 0.45, to 4.25 at high T = 4.0.

Such a polyhedral NP has a regular faceted shape that is similar to many metallic NPs or

buckyballs, although we do not attempt to quantitatively match the energy scales of

interactions with such NPs. To create a relatively stiff NP, each particle has mass mNP = 2.0

and is bonded to its ideal location in the icosahedral lattice via a FENE spring potential with

a bond strength kNP = 45.0, and bond length R0 = 1.0. The strength of the LJ potential

among the NP force sites is εpp = 2; between the NP force sites and monomers of the chains,

we use the Lorentz-Berthelot mixing rules, so that . See reference [5] for

additional technical description of the NPs used in our study.
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We investigate both attractive and excluded-volume only (or non-attractive) polymer NP

interactions in order to distinguish the changes due to the steric constraints from those due to

NP attraction. Monomers of chains and NP force sites interact via Vsf for attractive

interaction; whereas for non-attractive interactions, the attractive r6 term of the VLJ is

excluded as described in reference [5].

We simulate a system of 100 chains of M = 20 monomers each for the pure melt, which we

use as a basis to compare to the composite system. For the polymer-NP composite, we study

systems with 800, 400, 200, or 100 chains (M = 20), which corresponds to NP

concentrations ϕ = 0.0218, 0.0426, 0.0817, and 0.151, respectively. We only study the

smallest ϕ = 0.0218 for attractive interactions. Equilibrium molecular simulations are

performed along a path of constant pressure P = 1, which yields a T density of the pure

polymer close to unity – the density studied previously [5]. To improve simulation speed,

we use the rRESPA multiple time step algorithm integration method [34] with time step δt =

0.006, where forces are split into bonded and non-bonded components. At each T and ϕ

studied, two equilibration runs were performed before the production runs: first the system

is equilibrated at constant pressure P = 1.0 to compute the average density; we then further

equilibrate at that average fixed density; finally, production runs occur at the same density.

We follow this procedure so that the density of any run is fixed (as this simplifies analysis),

but we also ensure that that 〈P〉 = 1.0. In other words, we follow an isobaric path.

Equilibration and production times are chosen to exceed the characteristic relaxation time

(see sec. III) by roughly a factor 10 to avoid non-equilibrium effects. We study a wide range

of temperatures, from highly non-Arrhenius (T = 0.45) to Arrhenius T ≳ 1.0. The

temperature is controlled by the Nose-Hoover method [33].

III. EFFECT OF NP ON MELT DYNAMICS

To evaluate changes to Tg and fragility, we examine the characteristic relaxation time with

variable ϕ and T along an isobaric path, and compare those changes with previous results

along an isochoric path [5, 27]. As a baseline for comparison, we first consider the pure melt

(ϕ = 0) as a reference point. The structural relaxation of the melt can be characterized by the

coherent intermediate scattering function

(3)

where rk(t) is the position of particle k at time t, and S(q) is the static structure factor

(included in the normalization so that F(q, 0) = 1). Fig. 2a shows F(q0, t) for all T studied at

the location q0 = 7.0 of the slowest mode (roughly corresponding to the first neighbor

separation). F(q0, t) shows the typical two-step relaxation at low T, and we can define a

characteristic relaxation time τ for each T by the time F(q0, τ) = 0.2. The behavior of τ for q

on the scale of polymer chains may differ from that of the monomer scale [35], a point

which we consider in the discussion.

Since we also consider the cooperativity of motion, it is valuable to examine the non-

Gaussian parameter α2,
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(4)

which vanishes for Gaussian processes expected the monomer motion is uncorrelated.

Figure 2b shows that the slowed relaxation of F(q0, t) is accompanied by a growing

amplitude α2(t), arising from the emergence of correlations in particle displacements on

cooling, a phenomenon commonly referred to as “dynamical heterogeneity” [36–38]. Note

that the time scale t* of the peak of α2 – associated with the time scale for diffusive motion –

is considerable smaller than τ from F(q0, t). There is generally a power-law decoupling of

the T dependence of τ and t* associated with the breakdown of the Stokes-Einstein relation

(see inset of fig. 2b). Strictly speaking, a non-vanishing non-Gaussian parameter can arise

from many different types of heterogeneities, such found for a Brownian particle near a

boundary. However, the significance of the non-Gaussian parameter in relation to

cooperativity can be appreciated by the fact that the distinct van Hove correlation function

near the origin which develops a peak on time scale between t* and τ [39], reflecting the

pronounced tendency of the displaced particles to hop in to the position formerly occupied

by another moving particle.

To characterize how NPs change the melt relaxation dynamics, we first consider how τ

varies with ϕ and T as compared to the pure melt. Figure 3 shows that τ increases with

increasing ϕ for attractive NP interactions, consistent with earlier simulations performed

isochorically [5, 6]. For non-attractive interactions, τ varies little from the pure system. In

contrast, along an isochoric path, τ decreases significantly with increasing ϕ. We can

reconcile this difference from the fact that the repulsive interaction have a “renormalizing”

effect on the density far from the NP surface along an isobaric path. Specifically, far from

the NP surface, ρ increases slightly relative to the pure system at the same T (discussed in

the appendix), which should cause τ to increase far from the NP surface; this increase

counterbalances the expected decrease of τ near the NP surface – yielding almost no overall

change. We analyze these competing effects in detail later in the spatial variation of

relaxation time and cooperativity section V. This represents an important practical

difference, since experiments are not normally conducted along fixed density paths.

We use our data for τ to estimate the glass transition temperature Tg and the fragility of the

glass formation by fitting τ(T) with the Vogel-Fulcher-Tamman [40] equation

(5)

where T0 is the temperature at which the extrapolated relaxation time diverges, and D

encodes the T dependance (fragility) of τ . Note that in some works, k ≡ D−1 is taken as

definition of fragility since this quantity increases with fragility as measured by other

properties. To determine τ0, D, and T0, we τ(T) using the same range in τ for all systems,

since we found that extrapolated values of fragility are particularly sensitive to the fit range.

To determine the lower bound of the range of τ (upper bound of T) in our fitting, we identify

the point at which all systems have a common τ. The upper bound on τ (lower bound on T)
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is fixed by the largest τ we obtain for the pure melt, so that all systems have a comparable

upper bound. To estimate Tg, we use the common laboratory definition of Tg, τ(Tg) = 100s,

and we map reduced units to units relevant to real polymer materials by approximating that

1 time unit ≈ 1 ps (units mapping discussed in sec. II).

Consistent with the changes in τ, we find that Tg increases as ϕ increases for attractive

polymer-NP interactions, as expected from earlier studies [5–7, 16]. For non-attractive

polymer-NP interactions, the ϕ dependence of Tg is very small, which is expected since τ is

nearly ϕ independent along our isobaric path; this contrasts the isochoric behavior, where Tg

decreases with ϕ.

To quantify fragility, we primarily consider a common definition based on the logarithmic

slope of relaxation near Tg,

(6)

We estimate m using the same VFT fit to τ used to evaluate Tg. Figure 4b shows that, like

Tg, m increases as ϕ increases for attractive polymer-NP interactions (like isochoric results

[27]); for non-attractive interactions, m shows no a substantial change with ϕ, except at the

largest ϕwhere there is a small decrease in m – while isochoric results [27] show a stronger

decrease of m with ϕ. The fact that fragility changes are much weaker along isobaric paths

means that, at small ϕ, changes in fragility are nearly undetectable. This is consistent with

experiments [21], where there is no discernable fragility changes at small NP concentration

(comparable to 1 % by mass); these studies also had the complication that the NPs had

polymer chains grafted onto their surface, an effect that may reduce the impact of NP on the

melt. At larger NP concentrations, changes of fragility have been reported. Bansal et al. [13]

found that repulsive interactions caused Tg to decrease, accompanied by an appreciable

broadening of the glass transition region, indicative of increased strength (decreased

fragility) of glass formation. Cabral and co-workers [22–24] reported behavior expected for

attractive polymer-NP interactions, namely an increase in Tg, accompanied by an increased

fragility for fullerenes is a polystyrene matrix. Notably, these effects disappeared when the

particles exhibited appreciable aggregation, suggesting that the fragility change is a

specifically nanostructural effect on the polymer melt dynamics.

It is experimentally known that, for many polymers, m and Tg vary in an approximately

proportional way [31]; proportionality has also observed in our previous simulations of

polymer composites along an isochoric path [27]. Consequently, we check for such a

possibility, and fig. 5(a) confirms that the relative Tg and m for NP composites systems –

both along isochoric and isobaric paths – vary proportionally. Moreover, by scaling these

quantities relative to the pure melt, all data fall onto a single master line. However, recent

simulations of thin polymer films using the same polymer model show that this

proportionality can fail in very thin films [41]. This demonstrates the limitations of using Tg

as a predictor for fragility changes, and this finding also suggests that “mapping” between
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nanocomposites and thin films must be done with caution for ultra-thin films or large NP

concentrations.

A similar proportionality can be expected between Tg and the high temperature activation

energy Ea for relaxation, since both should be proportional to the overall scale of cohesive

interactions. We obtain Ea by fitting the high-T data to the Arrhenius form,

(7)

We indeed find a proportionality between Tg and Ea is our isobaric simulations. We further

check whether isochoric and isobaric data follow the same proportionality by scaling the

quantities relative to the pure melt (fig. 5b). A single relation captures the data reasonably

well, but close inspection of it shows that the isobaric data may have a somewhat smaller

scaled proportionality constant. The proportionality between Tg and Ea has important

practical and conceptual consequences for quantifying fragility in relation to cooperative

atomic motion, as we will discuss in the next section.

IV. EFFECT OF NP ON COOPERATIVE MOLECULAR REARRANGEMENT

A. Cooperativity and the Adam-Gibbs Approach

A central challenge in describing glass formation is the origin of the rapidly increasing

relaxation time approaching Tg. This is the defining characteristic of fragile glass-forming

fluids. If one makes a natural assumption that relaxation is an activated processes, the

Arrhenius form (eq. 7) defines a generalized T-dependent activation energy

(8)

which we show for our data in fig. 6. This provides a simple parametric description of the

problem at hand: how can we understand an activation energy that grows on cooling to a

value that is several times larger than its high-T limit? Approaching Tg, this growth typically

reaches 4-8 times Ea, and the exponential nature of activation leads to extremely large

changes in relaxation. This modest change of E constrains any theoretical model that

attempts to explain the change in relaxation time of glass-forming liquids in terms of a

structural scale.

A key element to explain the increase of E(T) is to recognize that such values cannot be

readily reconciled on the basis of single particle motion. Indeed, on cooling, molecular

motion becomes increasingly cooperative on time scales between the collision time and the

relaxation time of the intermediate scattering function. A quantitative manifestation of such

dynamical heterogeneity is that particle displacements are not Gaussian on these time scales

[42–44], as already shown by the non-Gaussian parameter α2 (Fig. 2b). The concept of

dynamical heterogeneity is the foundation of the Adam and Gibbs theory (AG) in which

hypothetical cooperative rearranging regions (CRR) govern the energy barrier height for

liquid relaxation. Specifically, AG hypothesized that the activation free energy is extensive

in the size of z of CRR, resulting in a simple expression relating the structural relaxation

time τ to the extent of collective motion,
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(9)

where z(T) is the size of CRR and ΔG is an activation free energy. Traditionally ΔG is

assumed constant, so that z(T) contains all T dependence. To be consistent with the high T

limiting Arrhenius behavior, one expects z → 1, consistent with no cooperativity of the

motion at high T. Accordingly, one would identify ΔG with the limiting Ea, so that z =

E(T)=Ea – precisely what we have shown in fig. 6. Of course, it is possible that chain

connectivity imparts some degree of cooperativity in the molecular motion of polymers at

high T, which would imply that z approaches a constant value larger than 1 at high T. This

remains to be investigated carefully.

Unfortunately, AG offered no prescription for how to define the abstract CRRs from a

molecular or particle perspective. Fortunately, the intervening years have offered a more

quantitative view on the nature of cooperativity. In particular, simulations [30, 45–50] and

colloidal experiments [51–53] have both consistently shown that highly mobile particles

typically move in a cooperative, string-like fashion that peaks on a time scale similar to t*.

At larger time scales, cooperative motion takes a more compact, less elongated form [54].

Previously, it was shown that the characteristic peak string size L* can be used as a

proportional measure of z along an isochoric path for the same polymer-NP model [27].

Below, we check the generalization of the former observations for an isobaric path, and also

consider a generalization of the activation free energy proposed by AG.

To quantify the effects of NPs on cooperative dynamics, we evaluate the string-like motion

of the most mobile particles following the methods established in previous work [30, 45].

We provide an illustration of the resulting strings in shown in fig. 7l, which qualitatively

shows how the strings themselves tend the cluster. We show a representative example of the

time and T dependence of the average string size 〈L(t)〉 for ϕ = 0.02 in Fig. 8. At each

temperature, 〈L(t)〉 exhibits a characteristic peak string size L*, which increases as T

decreases. The characteristic time at which 〈L(t)〉 exhibits a maximum also grows on

cooling, and is similar to t* from α2(t). Additionally, the inset of fig. 8 shows that the

distribution P(L) taken at the time of the of the peak 〈L(t)〉 is exponential, as expected from

dynamical polymerization models [55]. Notably, this cooperative motion is largely

insensitive to chain connectivity, so this type of collective motion should not be confused

with reptation, where the chains are thought to move preferentially along their backbone

coordinates [56].

From the behavior of 〈L(t)〉, we extract the characteristic peak L* for all systems studied, and

also normalize L* relative to that of the pure reference system, as shown in fig. 9). L*

increases as the NP concentration ϕ increases for attractive interactions (like isochoric

conditions), but we find a rather small change for non-attractive interactions (unlike

isochoric conditions, where L* is significantly reduced). This difference is consistent with

our previous observation that τ is only weakly affected at fixed pressure for non-attractive

interactions. Thus, the effects of NP on cooperatively along an isobaric path are broadly

consistent with those isochorically.
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Consistent with the idea that L* may quantify the size z of CRR, the scale of the increase of

L* on cooling is similar to the scale of the increase in the activation barrier E(T) (compare

fig. 9(a) with fig. 6). Given the broad qualitative agreement, we quantitatively test eq. 9,

where we identify L with z. As stated above, it is normally assumed that ΔG is independent

of T, i.e. ΔG is purely enthalpic. The applicability of AG to hard sphere simulations [57–59],

where energy plays no role, calls this assumption into question. From thermodynamics and

transition state theory [60–62] we more generally expect a free energy of activation,

(10)

which has both enthalpic ΔH and entropic components ΔS. Thus, an assumption that ΔG is

T-independent corresponds to assuming that ΔS makes a negligible contribution to ΔG, so

that eq. 9 reduces then to

(11)

where we have assumed that ΔH is constant, and should equal Ea. This is the usual stated

form of the AG model.

Alternatively, one might consider that the barrier changes are primarily entropic in nature

rather than enthalpic, so that ΔS is the dominant contribution [63–68]. In such a case, eq. 9

reduces to a distinct relationship,

(12)

where ΔS is presumed constant. (Curiously, we are not aware of this simple fact being

pointed before). This entropic form of the AG model provides a good description of hard

sphere fluids [59] where ΔH exactly has the property, ΔH = 0. For fluids composed of

particles having a “soft” interaction, such as the LJ interaction, the correct form is almost

certainly somewhere between these extreme limits defined by Eqs. 11 and 12. Testing these

extreme models for ΔG against our data allows us to quickly assess the relative importance

of enthalpic and entropic contributions for the present system.

We test the traditional enthalpy dominated AG expression (Eq. 11) in fig. 10a, using the

previous results for Ea (fig. 6 inset), so that no fit parameter is needed. We find that this

form exhibits modest curvature for the present results; this curvature would not change if Ea

were taken as a free parameter, since Ea determines slope, not curvature. In contrast the

entropy dominated form (12), shown in fig. 10b, shows relatively less curvature, suggesting

that the entropy term is the dominant contribution for low T at constant pressure in this

system. Since ΔS is not known a priori, it is treated as a fit parameter. These observations

mean that previous examinations of AG theory may need to be reassessed, since it is normal

to simply assume that the ΔG is entirely enthalpic.

There are general theoretical reasons that we might expect entropy to be the more relevant

term. Dyre and coworkers argued that scaling consistency requires ΔG to be purely entropic
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for fluids interacting with purely repulsive power-law interactions, which they argue provide

the predominant interaction in many van der Waals liquids [69, 70]. Consequently, they

have criticized the general use of 11 for molecular fluids with van der Waals interactions.

Note that, by extension their reasoning also excludes the Arrhenius temperature at high

temperatures, which itself lacks a rigorous theoretical foundation. It is ironic to note that the

original observations [71] that stimulated Adam-Gibbs to develop their theory were

empirically fit by the equivalent of eq. 12.

B. Cooperativity and Fragility

Consistency of the string size with the AG expression has important implications for the

molecular scale interpretation of fragility. Specifically, combining eqs. 6, 9, and 10 yields

(13)

Considering the enthalpy dominated case where ΔG ≈ Ea, this reduces to

(14)

which indicates a direct relationship between fragility and the scale z of cooperative motion,

as noted in ref. [27]. In 14, the ratio Ea/Tg scales the overall value of fragility. If Ea is

proportional to Tg, as found for this model and often found to be the case for a restricted

classes of substances [14], then this prefactor is irrelevant to changes of m. Consequently, m

is primarily a measure of the extent of cooperative motion with T near Tg. In addition, ref.

[27] showed that z(Tg) < Tg |dz/dT |Tg, so that m ≈ Ea|dz/dT|Tg is primarily controlled by

the differential change in the size of cooperativity. On the other hand, if ΔG is entropy

dominated, eq. 13 reduces to

(15)

Again, the differential change of z is the dominant contribution, so that m ≈ Tg ΔS dz/dT|Tg.

Whether enthalpy or entropy dominated, the empirical proportionality of m, Tg, and Ea leads

to a great simplification in the description of dynamics in the AG formulation. This

proportionality applies to a significant class of materials (metallic glasses, polymer glasses

with simple van der Waals interactions) [31]. In particular, proportionality of m and Tg

requires that the product DT0 in the VFT equation is constant, thereby reducing the number

of free parameters. This means that τ (and presumably viscosity) only depend on the

difference of temperature between T and T0 (effectively Tg) [27]. The proportionality

between Tg and m in the VFT equation also leads to the Williams-Landel-Ferry equation

[72], and explains its ‘universal’ parameters for polymer materials.

It must be appreciated that there are materials for which the proportionality between m and

Tg does not hold, particularly materials for which the cohesive interaction strength is highly
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variable [73, 74]. In these enthalpically dominated systems, m more significantly affected by

the strength of the interactions than to the collective dynamics. Under these circumstances

we can define a measure of molecular cooperativity,

(16)

Comparing with eq. 14, it is apparent that c should capture the extent of cooperativity, which

we expect has significance to other features commonly associated with collective motion in

glass-forming liquids (such as the decoupling of diffusion and relaxation and the stretching

exponent describing the long time decay of F(q, t)). This measure of cooperative motion

also emphasizes the necessity of determining both m and Tg in characterizing the glass

transition.

V. SPATIAL VARIATION OF RELAXATION AND FRAGILITY

In this section, we take advantage of the fact that our simulations allow us to explicitly

examine the spatial variation of relaxation, so that we can understand to what degree

changes in the rate of relaxation in the nanocomposites can be attributed to interfacial

effects. Since the previously examined coherent scatting function is inherently non-local, we

use the self-part of F(q0, t) (Eq. 3) with j = k, which can be partitioned into the contribution

based on the position of a monomer at t = 0. Consequently, we can evaluate the relaxation

time τ(r) as a function of distance r from the NP surface.

Figure 11a shows that for attractive polymer-NP interaction, τ(r) grows approaching the NP-

polymer surface, while τ(r) decreases approaching the NP surface for non-attractive

polymer-NP interactions. In other words, the attractive surface slows the monomer mobility,

while non-attractive interactions enhance relaxation. This spatial dependence of τ(r) is

consistent with previous isochoric studies [5, 6] and thin film studies [7, 16]. For attractive

NP surface interactions, τ(r) is nearly ϕ independent at a low ϕ; at the largest ϕ, τ(r)

increases relative to its value at smaller ϕ. For non-attractive interactions, we see that τ(r)

increases as ϕ increases. Significantly, τ(r) far from the NP surface does not converge to the

value of the pure melt. Instead, the asymptotic value of τ is slightly larger than that of the

pure melt. The increase of τ far from the NP can be attributed to the fact that the asymptotic

density ρ̄
a far from the NP is larger than the pure polymer melt (see the appendix). This is

unlike the isochoric studies [5, 6], where the density far from the NP is engineered to match

the pure melt, eliminating this effect. In this sense, there are important non-local effects of

the NP on polymer packing that impact the overall relaxation behavior of the composite.

This is particularly noticeable for the case of non-attractive interactions, as the decrease in τ

near the NP surface and the increase far from the surface compensate to yield nearly no

change in the overall rate of relaxation. Hence, the fact that τ is nearly unchanged on

average for non-attractive interactions does not indicate that τ is unchanged near the

surfaces.

To complement the spatial variation of τ(r), Fig. 12 shows the T dependence of τ(T) for both

attractive and non-attractive polymer-NP interactions at various distances from the NP

surface. We see that the T-dependence of τ differs from near to far from the NP – but the
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fragility change is harder to discern, since fragility includes both T-dependence and the

relative Tg values, which also change. Accordingly, the spatial variation of τ is more

conveniently parameterized by evaluating the spatial dependence of Tg and m as function r.

To evaluate Tg(r) and m(r), we fit the behavior of τ(r, T) for various distances to the VFT

form (eq. 5), following the same approach used for the system average.

For attractive polymer-NP interactions, Fig. 13 shows that Tg(r) increases approaching the

NP surface, consistent with the behavior of τ(r) of the pure melt. Moreover, note that Tg(r)

is larger than that of the pure melt even at the largest distances, similar to τ(r). Based on the

observed proportionality between Tg and m for the nanoparticle system as a whole, one

would anticipate that m(r) should also increase approaching the NP surface. However, we

find that m(r) instead decreases approaching the NP surface. We can rationalize the decrease

of m(r) near the NP surface from packing considerations. Specifically, the attractive

polymer-NP interactions favor enhanced monomer packing approaching the NP, and

improved packing should lead to a decrease of fragility [75]. However, for the monomers

immediately at the NP surface, monomer packing is frustrated (even with attractive

interactions) due to the NP shape. Consequently, m(r) at the closest distance from the NP

surface approximately saturates.

Such an opposing trend in fragility and Tg has also been observed in measurements on thin

polymer films [76]). But this leaves the question: how can m as a whole increase while m

near the surface decreases? This paradox is resolved by recognizing that m far from the NP

increases relative to the pure melt. In fact, both m and Tg far from the NP surface are larger

than the pure melt values, and this asymptotic behavior dominates the system mean (since

large distances are dominant when spherically averaging). This increase at large r is

consistent with the change in density far from the surface relative to the pure melt. This

complication does not occur for the previous isochoric data [5].

We next examine the behavior of Tg(r) and m(r) for non-attractive NP interactions (Fig. 14).

The spatial dependence of Tg(r) mirrors that of τ(r), except very near to the NP surface. The

difference between τ(r) and Tg(r) near the surface is connected with the spatial variation of

the fragility. Specifically, the fragility m(r) increases significantly approaching the NP

surface. Consequently, for T lower than we can simulate, τ near the surface must then

exceed τ at larger distance, which will lead to a relative increase Tg near the surface. The

increase of m(r) near the surface can be understood by fact that the NP repulsion frustrates

the monomer packing near the NP, and such packing frustration has been shown to lead to

an increase in fragility [75].

Comparing the behavior of Tg(r) and m(r) for non-attractive NP interactions, these quantities

appear more closely coupled (like the pure melt) than for attractive interactions. However,

based on our findings, the simple proportionality between Tg and m is not robust when

attempting to apply this concept locally.

The ϕ dependence of Tg(r) and m(r) are also informative. In particular, if we adopt ideas

from the thin film literature [7, 77, 78], one might expect a “layer” picture of dynamics

where the addition of NP only perturb surface behavior. In this case, the effect of
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concentration (playing the role of thickness in films) serves only to weight the contribution

of surface versus bulk behavior, so that Tg(r) and m(r) are independent of τ. Indeed, for

small τ, Tg(r) and m(r) are nearly ϕ independent for both interaction types. However, Tg(r)

clearly differs at the largest ϕ. This suggests that there are important effects of the

confinement between NP that go beyond surface interactions when the concentration is large

enough. Similar behavior in films at very small thickness has also been seen using the same

polymer model [41].

VI. DISCUSSION AND CONCLUSIONS

We have examined the inter-relations between changes of Tg, fragility, and cooperative

motion caused by an ideal dispersion of NP in a simple model polymer melt, and contrasted

the behavior of isochoric and isobaric approaches to Tg. We found that the behavior along

either thermodynamic path is qualitatively similar. However, it is significant that along

isobaric paths the quantitative scale of changes is reduced, so that the effects at small NP

concentrations can sometimes be difficult to discern from the pure melt. In addition, at small

NP concentration, the effects of Tg and fragility are proportional – at least on average. From

a practical point of view, it means that under limited circumstances, only one quantity is

needed to predict both Tg and fragility changes. However, we see that this simple

proportionality fails when probed at the local scale of relaxation.

Our findings for Tg and fragility are based on the relaxation probed at the monomer (or

segmental) scale, and the effect of NP on relaxation can be scale dependent. In particular,

ref. [24] found that fragility on the segment scale differs from that of the chain scale in a C60

nanocomposite. Therefore, we evaluate τ for an alternate q-vector on the scale of polymer

chains q = 2π/Rg to check for such an effect. Fig. 15 shows the resulting behaviors of Tg and

fragility as a function of NP concentration at the chain scale. The trends of Tg for the

attractive and non-attractive NP systems at the chain scale are very similar to that of the

monomer scale. However, the behavior of the fragility at the chain scale is noticeable

different. Firstly, both attractive and non-attractive systems show a decrease in fragility with

increasing concentration at the chain scale. Additionally, for attractive NP interactions the

fragility is smaller than that of the non-attractive NP interactions, opposite to the trend at

monomer scales. Apparently, it is important to separately examine fragility at chain scales, a

topic for future studies.

Given the success is relating changes in relaxation to the scale of cooperative motion for the

system as a whole in the framework of the AG theory, it would seem natural to probe for

such a relation at a local scale. Specifically, can we relate the changes in τ(r) as a function of

distance from the NP surface with a changes in the local scale L of cooperative motion? The

problem with such a question is that the cooperative motion is an inherently non-local

phenomenon, so that attempts to define an appropriate local L(r) do not readily conform the

expected limiting behavior. Similarly, the configurational entropy (which should be

proportional to L−1 according to AG) is both practically and conceptually difficult to define

in a local manner.
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A possible alternative route to relate spatial variation of the relaxation time to structural

quantities is through the Debye-Waller factor (DWF) 〈u2〉, which measures the amplitude of

vibrational rattling related to the cage size. From a structural standpoint, it has been argued

that kT/〈u2〉 can be interpreted as a measure of local stiffness or modulus [28], which can

also be expected to impact τ. As a preliminary test, we have examined the spatial

dependence 〈u2〉. Formally, the DWF can be defined as 〈u2〉 = 〈r2(t0)〉, where t0 is the time

of the crossover from the ballistic motion to cage motion of the mean square displacement

〈r2(t)〉; following Ref. [79], we take t0 = 1.1, corresponding to a time on the order of 1 ps in

non-reduced time units. Figure 16 shows that T 〈u2〉 increases approaching the attractive NP

surface, consistent with the behavior of τ(r). Similarly, for monomers near the non-attractive

NP surface, T〈u2〉 decreases approaching the NP surface. Given this qualitative similarity,

further examination of the relation between τ and 〈u2〉 will be considered systematically in

future work.

The pursuit of this problem will first require an assessment of the relation between tau and

〈u2〉 to determine if the universal relation proposed by ref. [81] (or some other relation) can

adequately describe our data covering a large range of fragility. If such a relation could be

found, then we would be a in a good position to map a local short time property that can

reliably inform about variations in the local mobility in the nanocomposite. Additionally, the

DWF has the advantage that it is experimentally accessible via neutron scattering, while

experimental measurement of string size is typically limited to colloidal systems where

direct video microscopy is possible.

Finally, we mention some other topics that merit future study. First, fragility may also be

significantly affected by NP size. For example, ref. [28] saw that the direction of the effect

on Tg and m of the melt can be opposite to that of adding NP for a solvent with attractive

interaction that was smaller than the statistical segment unit of the polymer beads. Thus

understanding the reversal of effects from solvent to NP sizes needs resolution.

Additionally, NP clustering must have dramatic effects, but this is far more challenging to

effectively simulate. The effect of NP on the high frequency shear modulus is important to

explain how these particles alter the shear viscosity of the nanocomposite melts. It may also

be valuable to study the rigidity of the NP, since many NP have grafted polymer layers to

help disperse them in polymer matrices. We anticipate that the NP stiffness is relevant to

local packing and thus changes of fragility.

Acknowledgments

JFD acknowledges support from NIH grant 1 R01 EB006398-01A1. BAPB and FWS acknowledge support from
NSF grant number CNS-0959856 and ACS-PRF grant 51983-ND7.

VII. APPENDIX: EFFECT OF NP ON MELT DENSITY

At constant pressure, the addition of NP particles changes the local and overall density of

the melt and it is natural to consider these density changes relate to mobility changes in the

melt based on the attractive idea of free volume theory, which postulates higher mobility

goes hand in hand with lower density. As we shall see, these changes depend on both the

NP-polymer interaction and NP volume fraction ϕ. We show the dependence of the
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monomer density ρ(r) on the distance r from the NP surface in Fig. 17(a) for attractive

polymer-NP interactions. The monomers form “layers” near the NP surface due to packing

constraints. A similar layering occurs for non-attractive interactions, as illustrated in Fig.

17(b), although there is not a specifically preferred distance for the first layer (see Ref. [5]

for a detailed discussion). An important observation to take away from these data is that

density near the NP surface is increased near the surface for both attractive and non-

attractive interactions. In a simple free volume picture of the dynamics, the enhancement of

density near the NP surface would lead to slowed relaxation. Instead, we have seen that the

relaxation can be enhanced or reduced near the NP surface, depending on interactions.

Consequently, such a free volume approach is deficient to describe the dynamical changes.

Since ρ(r) varies with r, we define a overall density for each system by the integral of the

density profile

(17)

where rmin is the distance at which ρ(r) is first non-zero. The rmin value excludes the volume

occupied by the NP in the monomer density, clearly the upper bound is limited by the box

size. To determine how adding NP affects density relative to the pure melt at the same

pressure, we show density relative to the pure for all temperatures (T = 0.45 to T = 1.0)

shown in Fig. 18. All systems are overall less dense than the pure melt, excepting for the

non-attractive NP surface system at the lowest ϕ. (This is also inconsistent with a free

volume description of dynamics). The decrease of density can be understood by realizing

that the ordering that NP surface exerts on the first layers decrease density away from the

particle surface. For non-attractive and attractive polymer NP interactions, ρ̄ can differ

significantly from the asymptotic value of density ρ̄
a far from the NP (Fig. 17b). The

asymptotic value ρa is the value that can be more readily compared to ρ of the pure melt. We

compute ρa by taking the average of density in the outer most layers. Attractive and non-

attractive the NP surface interactions systems are asymptotically denser than the pure melt at

any ϕ. Figure 18b suggests that the NP presence induces an increase in the asymptotic

density for both attractive and non-attractive NP surfaces. Since ρa increases monotonically

for attractive interactions and decreases for non-attractive NP interactions as ϕ increases, the

increasing or decreasing behavior depends on the NP interaction.
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FIG. 1.
Snapshot of the model NP and a nearby polymer chain, which shows that the NP size is

commensurate with the chain size. The scale bar shows the mean end-to-end distance Re =

4.1σ at low T.
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FIG. 2.
(a) Coherent Scattering Function F(q0, t) and (b) non-Gaussian parameter α2 for the pure

melt. Temperature is indicated by the color gradient, which goes from blue at the lowest T –

where relaxation is highly non-exponential – to yellow at aa high T. The slowing relaxation

of F(q0, t) is accompanied by a significant increase in the cooperativity of motion, as

indicated by α2(t). The inset shows the “decoupling” of the characteristic times scales τ and

t* of F(q0, t) and α2(t), respectively.
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FIG. 3.
The relaxation time τ relative to the pure melt τpure for different NP concentrations. The

black symbols are for attractive polymer-NP interactions, and the red symbols and solid

lines are for a non-attractive polymer-surface interaction, where the effect on the melt

dynamics is evidently weak. The symbol size is proportional to ϕ; specific symbols are ϕ =

0.0218 (○), 0.0426 (□), 0.0817 (◊), and 0.151 (Δ). The inset magnifies τ/τpure at the lowest

T simulated for the non-attractive case, showing that there is a weak decrease of τ due to NP

interactions.
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FIG. 4.
(a) Glass transition temperature Tg and (b) fragility m relative to the pure melt for both

attractive and non-attractive NP interactions. The filled diamond symbols and dashed lines

are for an isochoric approach to Tg [5, 27], where the effect is more pronounced than along

an isobaric path (circle symbols with solid line). The black symbols are for attractive NP

interactions and the red symbols are for non-attractive NP interactions. The values presented

are average values obtained by VFT fits using seven different T ranges of data that include
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or exclude points at the margins of the non-Arrhenius regime of τ. From these fits, we also

obtain the uncertainties, which we show as error bars in the graph.
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FIG. 5.

(a) Parametric plot of relative fragility . The isochoric data are normalized

by the pure system at density ρ = 1; similarly, the isobaric data are normalized by the pure

system at pressure P = 1. The dotted line is the best fit linear relation, showing an

approximate proportionality for the range of NP concentrations and interactions

investigated. (b) A similar plot showing the proportionality between Tg and the high-T

activation energy Ea.
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FIG. 6.
Temperature dependence of the activation energy E(T) (eq. 8) normalized by the high-T

limit Ea for all ϕ studied. Symbols are the same as fig. 3, where black is for attractive NP-

polymer interactions and red is for non-attractive NP-polymer interactions. The inset shows

the values of the limiting high-T Arrhenius activation energy Ea as a function of ϕ, where

the black symbols indicate attractive NP surface interactions, the red symbols indicate non-

attractive NP surface interactions, and the blue symbols represent the pure polymer melt.
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FIG. 7.
Illustration of a typical configuration of string-like cooperative regions for the time interval

when 〈L(t)〉 is maximal. Each string is shown by large spheres in a different color. The

polymer melt is also shown transparent. For purposes of the clarity, we only render strings

of length larger than 4.
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FIG. 8.
A representative sample of the mean string size 〈L(t)〉 for all T simulated at NP

concentration ϕ = 0.02 with attractive polymer-NP interactions. The color gradient goes

from yellow at highest T to blue at lowest T. The inset shows that the probability distribution

P(L) taken at the time of the maximal 〈L(t)〉 for all the range of T simulated is exponential.
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FIG. 9.
(a) The characteristic string size L* from the peak of 〈L(t)〉, and (b) relative to the pure melt,

for all T, ϕ, and NP interactions simulated. L* for non-attractive NP interactions are nearly

the same as the pure melt for all ϕ and T, as is the case for τ. Symbols are the same as fig. 3.

Generally, the behavior of L* in (a) is comparable to that of E(T) (see fig. 6). Similarly, the

behavior of  in (b) is comparable to that of ln τ/τpure (see fig. 3).
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FIG. 10.
Check of the Adam-Gibbs relation, assuming L represents the size of CRR. We consider two

extreme cases where the activation free energy is dominated either by (a) the enthalpic

contribution ΔH = Ea (eq. 11) or (b) an entropic contribution δS (eq. 12). For the enthalpy

dominated case, Ea is obtained from the high T Arrhenius behavior (fig. 6). In both cases,

the data from low T (where τ vaies most strongly) dominates.
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FIG. 11.
The relaxation time τ from the self-intermediate scattering function as a function of distance

from NP surface for a representative ϕ = 0.04 at T = 0.50. The inset shows various ϕ for the

same T.
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FIG. 12.
Temperature dependence of the relaxation time τ for (a) attractive and (b) non-attractive

interactions at various distances r from NP surface for representative ϕ = 0.04. The color

gradient goes from blue for the furthest distance from NP surface to red for the closest

distance to the NP surface. From these data we can extract Tg(r) and m(r), shown in the

subsequent figure.
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FIG. 13.
The glass transition temperature Tg and fragility m for attractive NP surface interaction as a

function of distance from the NP surface. The color gradient goes from blue at the lowest

NP concentration to red at the highest NP concentration.
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FIG. 14.
The glass transition temperature Tg and fragility m for non-attractive NP surface interaction

as a function of distance from the NP surface. The color gradient goes from blue at the

lowest NP concentration to red at the highest NP concentration.
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FIG. 15.
(a) Glass transition temperature Tg and (b) fragility m relative to the pure melt for both

attractive and non-attractive NP interactions at the scale of polymer chains. This figure

should be compared with fig. 4, which examines the same behavior at the monomer scale.

The black symbols are for attractive NP interactions and the red symbols are for non-

attractive NP interactions. Uncertainties are determined using the same approach as those in

fig. 4.
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FIG. 16.
The inverse of the Debye-Waller factor 〈u2〉 as a function of distance from NP surface at

temperature for ϕ = 0.04 at T = 0.50. Black symbols and dashed lines represent attractive

interactions. Red symbols represent non-attractive interactions. This behavior is qualitatively

matches that of the distance dependence of the structural relaxation time τ shown in fig. 11,

which is for the same system. Establishing a quantitative relationship is a goal of future

work on our nanocomposites. Note that an inversion of this effect is possible for T < Tg [80
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FIG. 17.
(a) Density ρ(r) as a function of the distance r from the NP surface for attractive polymer-

NP interactions at ϕ = 0.02. The blue line shows ρ(r) at T = 0.45, and the red solid line

shows ρ(r) at T = 0.9. The horizontal dashed lines shows the average density for each T (not

the density of the pure melt), computed as explained in the text. (b) Density ρ(r) as a

function of the distance r from the NP surface for non-attractive polymer-NP interactions ϕ

= 0.02 at T = 0.45. The blue dashed line shows ρ for the pure melt, the green line shows ρ̄,

and the red line shows the asymptotic ρ̄
a, indicating that ρ̄

a > ρpure > ρ̄.
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FIG. 18.
(a) The average density difference 〈Δρ〉 relative to the pure system as a function of

concentration ϕ for attractive and non-attractive NP interactions. The inset shows the

temperature dependance of the density ρ(T), revealing that the density shift is nearly T-

independent. (b) The average difference in the asymptotic density 〈Δρa〉 relative to the pure

system for attractive and non-attractive NP interactions. The inset shows the temperature

dependance of the density ρ(T) where the shift is also nearly T-independent. For both

graphs: the blue dashed line is for the pure system, the black solid line correspond to
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attractive NP surface interaction, and the red solid line correspond to non-attractive NP

surface interaction at ϕ = 0.02. Due to the small number of layers for ϕ = 0.15, we only

compute ρa for ϕ < 0.15.
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