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Abstract

The liver is the largest organ in the body and is generally regarded by non-immunologists as not

having lymphoid function. However, such is far from accurate. This review highlights the

importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the

role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity,

which protects the host from antigenic overload of dietary components and drugs derived from the

gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to

autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may

lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act

as critical antigen-presenting cells. The study of the immunological properties of liver and

delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers

provides a platform to understand the hierarchy of a series of detrimental events which lead to

immune-mediated destruction of the liver and the rejection of liver allografts. The majority of

emphasis within this review will be on the normal mononuclear cell composition of the liver.

However, within this context, we will discus select, but not all, immune mediated liver disease and

attempt to place these data in the context of human autoimmunity.
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Introduction

The liver is the largest solid organ of the human body, accounting for almost 2% of adult

body weight and weighing approximately 1.5 kg; it performs an amazing number of tasks

that support the function of other organs and impacts all physiologic systems. An essential

function of the liver is protein synthesis and metabolism, including the metabolism of amino
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acids, carbohydrates, lipids and vitamins. However, the liver is also responsible for the

removal of pathogens and exogenous antigens from the systemic circulation. The key

position of the liver (Figure 1) and its unique vasculature allow it to carry out the

degradation of toxins and waste products.

The role of the liver as the main metabolic organ increases the rate of exposure to newly

produced neo-antigens and enhances the inherited risk of overactivation of components of

the immune system with potentially harmful consequences for cell homeostasis. Thus, the

immune system developed dedicated mechanisms to be able to “switch” from a tolerant to a

responsive state at any given time1. Early in the history of experimental transplantation,

transplant surgeons were intrigued to note that while kidney, skin, pancreas and other

allografts were rapidly rejected, allogeneic liver grafts were more tolerant. This prompted

investigators to consider that the liver is predominantly an organ biased towards tolerance

rather than a reactive state which would otherwise lead to rejections. The scientific basis for

this tolerant state remained elusive for many years.

Historical Perspectives

The first human liver transplant was performed in 1963 by Starzl,2 with significant short-

term success in 1967 when a recipient survived for more than a year. Subsequently, the

systematic administration of cyclosporin by Calne and colleagues dramatically improved the

outcome of the patients receiving a liver allograft3, 4. Further, it was noted in 1969 that liver

allografts between unrelated pigs were not rejected in spite of MHC mismatch; the

transplanted livers did not require high doses of immunosuppression to be sustained5. A

seminal study, conducted two years before Calne’s report, from Cantor and Dumont

demonstrated that administration of antigens to animals via the portal vein was tolerated

better compared to systemic administration6. Subsequent studies confirmed the potential

acceptance of MHC mismatched liver grafts in other species. Further, liver transplantation

confers tolerance to heart and skin grafts from the same donors, while heart and skin grafts

from other donors were immediately rejected. Interestingly, the rejection of other

transplanted organs can be modulated by subsequent transplantation. Similarly, co-

transplantation of human liver with another organ limits the likelihood of immediate

rejection of the second organ and improves the survival of the allograft. The natural

regenerative capacity of the liver parenchymal cells is significant; 25% of residual liver is

sufficient for regeneration within a few weeks in rodents and a few months in humans.

Because of its anatomical location, the liver is continuously exposed to an overload of

antigenic stimuli which includes exogenous pathogens, dietary components and xenobiotics,

including drugs and toxins.

Microanatomy of the Liver as an Immunological Organ

To achieve its multifaceted tasks, the liver is composed of a myriad of cell types, largely

sub-divided in parenchymal and non-parenchymal cells (Table 1)7. Most of the liver volume

is occupied by parenchymal cells (hepatocytes); these cells occupy approximately 78–80%

of the total liver tissue, compared to just 5–6% of non-parenchymal cells7–11 (Table 1). The

remaining 14–17% of the total liver tissue corresponds to cellular components of the
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extracellular space (Figure 2)7. The non-parenchymal cells consist of a diverse set of cells,

including 45% liver sinusoidal endothelial cells (LSECs), 33% Kupffer cells (KCs), and

22% hepatic stellate cells (HSCs)12 (Table 1 and Figure 3). The liver can be considered to

have two separate anatomic areas, the parenchyma and the portal tracts. Structurally, the

liver can be further subdivided into five systems comprising the vascular system, the hepatic

lobule, the hepatic sinusoidal system, the biliary system and the stroma. Each of these

systems - directly or indirectly - plays an important role in the homeostasis of the innate and

adaptive immune system.

Hepatic lobule

The simplest way to describe the cellular anatomy of the liver is by light microscopy. Thus,

the hepatic lobule is not only the structural but also the functional unit of the liver13. These

lobules are centered on central veins like spokes in wheel, and their periphery is demarcated

by arbitrary lines joining each of the surrounding regions of portal tracts (Figure 4). Each

portal tract consists of an intrahepatic bile duct and a collection of blood vessels including a

branch of both the hepatic artery and portal vein. Such lining formulates a roughly

hexagonal assembly of hepatocyte plates13, the extension of which forms the basis of the

one-cell thick liver cell layers consisting of 15–25 cells each.

The hepatic vasculature

The liver has a dual blood supply as it receives arterial blood from the right and left hepatic

arteries and venous blood from the hepatic portal vein. The antigen-rich blood delivered

through the portal vein accounts for more than 75–80% of the total blood. This blood

originates from the stomach, alimentary tract, rectum and spleen, and contains large

concentrations of antigens from dietary components and bacterial products from gut bacteria

such as lipopolysaccharide endotoxin (LPS). This can be found at a concentration of up to 1

ng/ml14. Also, metastatic cells pass through the liver, which also has to deal with the load of

detoxified byproducts with oncogenic potential. The remaining 20–25% is oxygenated blood

delivered through the hepatic arteries which are branches of the celiac axis. The blood

leaving the liver is drained into the inferior vena cava via the hepatic veins. The liver

receives 1.5 L (30% of the total blood volume) each minute. Thus, the total volume of blood

in the human body circulates through the liver approximately 360 times each day. The blood

flows through the vascular sinusoids, and is drained into central veins or terminal hepatic

venules, which are the branches of the hepatic veins.

Hepatic sinusoidal system

The hepatocytes form one cell thick plates and are separated from the bloodstream by a non-

parenchymal, thin fenestrated (porous) barrier forming a labyrinth of specialized capillaries,

termed liver sinusoids (Figure 5). These capillaries are primarily formed by liver sinusoidal

endothelial cells (LSECs)15. The liver sinusoids are designed to allow easy transmission of

molecules and cellular mediators between the sinusoids and the hepatocytes. To achieve

such transfer, LSECs lack a basement membrane, making them permeable. Under normal

conditions, the space of Disse formed between hepatocytes, LSECs and HSCs, allows

exchange of cellular mediators without the need of a direct contact. A direct contact between
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hepatocytes and sinusoidal cells can be achieved from clusters of endothelial cells which

contain small holes (or fenestrations)16 which perforate the cytoplasm and form ‘sieve

plates’17–19 (Figure 5). Fenestrae manage the exchange of solutes and particles between the

sinusoidal blood and the space of Disse18, 19. Blood also passes over a population of

macrophages called Kupffer cells (KC). KCs account for approximately 80% of all

macrophages in the body20. Their strategic position enables them to clear the blood from

endotoxins and antigens and to eliminate microorganisms by phagocytosis. HSCs (also

known as Ito cells) are located in close proximity to the vascular sinusoids and in particular

in the vicinity of the terminal hepatic venules. Because of the small diameter of sinusoids,

even minimal increases in systemic venous pressure can create stasis. Such stasis encourages

lymphocyte extravasation and extends direct contact of APCs and lymphocyte populations.

The liver as a lymphoid organ

Organs such as the thymus, lymph nodes, and spleen are "classical" lymphoid organs.

However, other organs such as the gut and liver consist of cells whose primary function may

not be immunological but nonetheless still perform essential immune tasks. Within these

respective organs there are resident cells of the innate and adaptive immune system. Within

a normal liver, the lymphocyte population is largely resident in the portal tract but can be

also scattered throughout the parenchyma. The composition and localization of these

lymphocyte populations changes dramatically when the liver architecture is altered as a

consequence of acute or chronic inflammatory conditions. It is therefore not surprising, that

hepatocytes and BECs are sites of immune-mediated destruction induced by a variety of

infectious xenobiotic and tumor-originated sources1. The anatomic position of the liver and

its distinctive vasculature accounts for its unique ability to continuously exchange

immunological information. The antigen-rich blood passing through the liver sinusoids is

"scanned" achieved by a complex network of conventional and non-conventional antigen

presenting cells (APCs)21, 22.

Composition of the Liver Immune System

The human liver has a lymphocyte population normally resident in the portal tract, but also

scattered throughout the parenchyma23–26. Approximately 500,000 to one million

lymphocytes can be retrieved from 100 mg of normal human liver tissue, bringing the total

number of these cells to approximately 0.75–1.5 1010 cells for a liver weighing 1.5 kg23.

The lymphoid repertoire includes significant numbers of T-cells, B cells, natural killer (NK)

and natural killer T (NKT) cells (Figure 6). The relative contribution1, 27 of these cells in the

liver is illustrated in Figure 7. Using CD3 as a pan-T cell marker, these lymphoid

populations can be subdivided into CD3+ and CD3−. CD3+ T lymphocytes outnumber CD3−

lymphoid cells. The most widely used marker for NK cells is CD56; all three sub-

populations CD3+CD56− T cells, CD3-CD56+ NK cells and CD3+CD56+ NKT cells have

cytotoxic activity. B lymphocytes comprise only 5% of the total lymphocytes23–26. Many of

the liver-resident lymphocytes differ phenotypically and functionally from circulating

lymphocytes24, 25, 28–31, for reasons poorly understood27. The hepatic lymphocyte repertoire

includes conventional and unconventional lymphocyte sub-populations of both the innate

and the adaptive immune system.
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αβ- and γδ-T cells in liver immunity

The conventional T-cell population consists of CD8+ and CD4+ T cells exhibiting a diverse

repertoire with αβ-chain T cell receptors (TCR). These receptors recognize short peptidyl

sequences from antigens in the context of MHC class I and class II molecules for CD8 and

CD4, respectively. More than 80% of the CD3+ T cells are αβ T-cells, with the remainder

expressing the γδT-cell receptor in the liver1. The mean prevalence rate of 15% for γδTCR+

cells is 5 times higher in the liver compared to the periphery (range 1–5%)32, 33.

Lymphocyte repertoires rich in γδTCR+ cells are also found in skin, the gut and the

genitourinary tract. The role of γδTCR+ cells in the immune homeostasis of the liver

remains elusive. Although a protective role of these cells in the concavalin A-induced

animal model of acute liver failure has been reported34, the protective role is initiated by

Vγ4 and not Vγ1, γδT cells. IL-17A deficient γδT cells are unable to protect from liver

destruction, suggesting that IL-17A is an important mediator of such protection. Vγ4 and not

Vγ1, γδT T cells are the major subsets of peripheral lymphoid γδT T cells. A different set of

experiments have shown that the γδT cells protect from liver failure by targeting NKT

cells34. An earlier report has suggested that IL-17A induced by γδT cells is expressed in the

liver of mice infected with Listeria monocytogenes at an early stage of infection and plays

an important role in the initiation of innate immune responses35.

The role of γδT cells is not limited to control of infection but appears to also play distinct

immunoregulatory roles in tumor immunity36, 37. They have also been involved in the

induction and maintenance of liver-specific autoimmunity, as they appear increased in

patients with active autoimmune hepatitis and primary sclerosing cholangitis38–41. Some T-

cells do not express CD4 or CD8 and are known as ‘double negative’ T cells. They have

been studied mainly in mice, and appear to develop extrathymically and expresses specific

V TCR β genes42, 43. They can be found in liver, expressing either the αβ or γδ TCR and are

considered to be cells with primarily regulatory properties23, 44–46, they may be critical to

induction of autoimmunity47.

The participation of conventional T-cells bearing αβ TCRs in the immune homeostasis of a

normal liver is by far the best studied and is reviewed elsewhere1, 48, 49; the role played by

these cells in the induction of immune-mediated liver injury has been extensively

studied1, 48, 49.

NK and NKT cells in the liver

NK cells are bone-marrow derived large granular cells; their main task is to kill target cells.

NK cells represent approximately 20–30% of the total number of liver-resident

lymphocytes, a percentage unusually high compared to less than 5% seen in peripheral

blood25. Their over-representation in human liver probably relates to their primary role,

which is surveillance for infection, killing of infected hepatocytes (Figure 8) and possibly

malignant transformation. They are conventional constituents of the innate immune system,

but emerging evidence, both in mice and humans, indicates that NK cells are ‘educated’

throughout the development in a way similar to that seen in lymphoid cells of the adaptive

immune system50. NK cells acquire antigen-specific receptors, go through clonal expansion

during exposure to infectious agents and produce long-lived memory cells.
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Liver lymphocytes are also enriched in NKT cells, accounting for 20–35% of mouse liver

lymphocytes and 10–15% of rat and human liver lymphocytes (Gao et al., J Leukocyte

Biology 2009, 86:513–528). NKT cells are a heterogeneous group of T lymphocytes that

express both NK and T cell markers, and recognize the lipid antigens presented by the

nonclassical MHC class I-like molecule CD1. The functions of NKT cells are mainly

mediated via the production of a variety of cytokines (e.g. IFN-γ and IL-4), which play

important roles in regulating innate and adaptive immunity. Accumulating evidence suggests

that NKT cells play a diverse role in liver injury, inflammation, fibrosis, and regeneration

(Gao et al., J Leukocyte Biology 2009, 86:513–528; Park et al., Hepatology 2009,

49:1683-94).

The hypothesis that lymphocyte sub-populations participate in routine immuno-surveillant

functions in normal liver has largely been based on evidence demonstrating that they express

mature/activated phenotypes24, 51. Early evidence suggested that these populations may

have arisen locally, a finding that has implications not only in the maintenance of immune

homeostasis but also in the induction of immune-mediated liver injury. Phenotypic and

functional characterization of these liver-related lymphocytes has led to the appreciation of a

role in the immunopathogenesis of liver diseases, including autoimmune liver diseases,

chronic viral hepatitides, liver-related tumor immunology, alcoholic hepatitis, drug-induced

immune-mediated liver disease and allograft rejection1, 49.

Liver-Related Antigen Presenting Cells in Immunity and Tolerance

The liver is unique in its ability to recruit distinct cell types to become APCs; LSECs, KCs

and hepatic DCs may all be considered conventional or classical liver APCs. However,

under pathophysiological circumstances and during persistent liver inflammation,

hepatocytes and BECs can express MHC II antigens and act as non-conventional APCs.

Hepatocytes and BECs as APCs play an important role in the initiation and maintenance of

processes important for loss of immunological tolerance. All these cells come in continuous

contact with naïve T cells recirculating through the blood, and under normal of pathological

conditions may participate in their activation (Figure 8)52.

One working hypothesis to explain the ability of the liver to induce systemic tolerance21 is

based on the assumption that liver-resident DCs have distinct properties which promote

tolerance rather than an immune response. Another plausible explanation is the intrinsic

tolerogenic capacity of liver-related APCs such as the LSECs or the KCs. Donor cell

chimerism has also been postulated to account for the observed tolerance53. According to

this scenario, donor-derived leukocytes including liver-resident APCs migrate to central

lymphoid organs within 120 minutes post- transplantation, and persist for a long period,

accounting for the hepatic tolerogenicity seen. Also, the systemic tolerance of the liver has

been attributed to the induction of allospecific regulatory cells such as those with a CD4+,

CD25+, FoxP3+ phenotype54. These mechanisms may act in isolation or in combination.

Liver sinusoidal endothelial cells

Wisse was the first to demonstrate that LSEC is a distinct cell type with a characteristic open

fenestration without basement membrane or diaphragm16. Aging, liver disease and various
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stimuli co-cultured with LSECs (such as vascular endothelial growth factor) alter the

number, size and localization of the fenestrations55–58. Wisse was also the first to suggest

that because of the unusually high amounts of endocytic vehicles that LSECs contain, these

cells are probably involved in the uptake of proteins circulating in sinusoidal blood16. This

notion has been proven correct 15 years later when hyaluronic acid was identified as the first

physiological macromolecule cleared from the blood by rat LSECs59.

The role of LSECs in hepatic tolerance and the generation of immunity has been

investigated and several surface markers have been found to be expressed by resting and

activated LSECs (Table 2). The LSEC is an efficient APC with multiple functions21, 22. The

capacity of LSECs to possess several of the properties seen in DCs, such as the expression

of MHC class II, various co-stimulatory molecules, and CD11c and their ability to activate

naive T cells has been reported60–68. LSECs can take up antigen using a multitude of

receptors69. The question as to whether a) LSECs are efficient APCs and b) can induce T-

cell tolerance has also been addressed systematically. Lohse et al60 were among the first to

study the ability of LSECs to act as APC and demonstrated that LSECs are efficient APC,

carrying functional B7-2 molecules60. The ability of LSECs to present soluble antigens to

CD4+ T cells is down-regulated by IL-1060. Subsequent work63 reflects that murine LSECs

are efficient APCs63. However, levels of MHC class II63 are relatively low and stimulation

of toll like receptors is unable to induce IL-12 expression63. Also, treatment with endotoxin

down-regulates the surface expression of constitutively expressed MHC class II, and CD80/

CD86 co-stimulatory molecules63. These data suggest that although endotoxin does not alter

the ability of LSEC to remove gut-derived peptides from circulation, it affects antigen

processing and expression of accessory molecules63.

Contrary to these results, LSECs isolated from primed mice can present antigen and induce

antigen-specific CD8+ T cell tolerance65. Also, adaptive transfer of LSECs isolated from

ovalbumin-fed animals can induce antigen-specific T-cell tolerance to unfed animals, clearly

indicating an involvement of LSECs in the induction of CD8 T cell tolerance against oral

antigens66. The ability of murine LSECs to tolerize T cells across MHC barriers has been

studied70; LSECs can regulate a polyclonal population of T cells with direct allospecificity.

Data have demonstrated the Fas/Fas ligand pathway as important in the tolerizing capacity

of LSECs towards alloreactive T cells70. Though the molecular mechanisms responsible for

LSEC-induced T cell anergy are poorly understood, reported data suggests that B7-H1

signaling on LSECs is a prerequisite for the induction of CD8+ T cell tolerance via

programmed death (PD)-1 ligation71. Also, the contact of LSECs with DCs suppress

neighboring antigen-presenting DCs to fully activate naive CD8 T cells72.

The capacity of LSECs as efficient APCs ex vivo and in vivo has been the focus of heated

debate, as the results obtained have not been always supportive of their APC role21. Thus, in

contrast to the findings presented above, Katz et al67 challenged the dogma that LSECs have

DC properties expressing MHC class II antigens, CD40, CD80, and CD86 co-stimulatory

molecules, and CD11c and are able to effectively stimulate naïve T-cells. Using isolated

LSECs with the phenotypic markers of endothelial cells (CD45−, CD31+, vWF+) (Table 2),

it was reported that such cells lacked the expression of CD11c, the most widely used marker

of murine DC. Additionally, they had minimal expression of MHC class II and undetectable
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levels of CD40, CD80, and CD86. Such LSECs were able to capture antigen but could not

induce IFN-γ production or significant CD4+ or CD8+ T-cell proliferation. The possibility

that the tolerogenic effect of the liver may be due to the continuous exposure of LSECs to

gut bacterial products has been tested experimentally. Physiological concentrations of

entotoxin contained within the blood drained from the portal veins to the liver can induce the

secretion of interleukin (IL)-10 from LSECs73; physiological concentrations of endotoxin

appear to be able to down-regulate LSEC-mediated CD4+ T-cell activation via the

modulatory effects they exert in the expression of MHC class II, CD80 and CD8662.

More recent studies have addressed the potential of diseased liver to provide a

microenvironment which reverses the function of LSECs from tolerogenic to pro-

inflammatory and highly immunogenic. LSECs from fibrotic livers induce T-cells to

produce pro-inflammatory cytokines such as IFN-γ, IL-6, and TNF-α74. Such data clearly

implicate LSECs in intrahepatic immune-mediated inflammation seen in hepatic fibrosis and

possibly to liver allograft tolerance70, 75, 76.

Kupffer cells

The tolerogenic capacity of KCs has been demonstrated in the induction of tolerance to

allergic and drug-induced reactions77, 78. KCs have also been implicated in the induction of

liver tolerance caused by preoperative donor-specific blood transfusion after liver

transplantation79. Their important role in tolerance has been suggested because gadolinium

chloride-induced blockade of KCs prevents the induction of tolerance by the portal venous

route in rat cardiac allograft transplantation80, 81. KCs can also produce prostaglandin E2,

which in turn can inhibit antigen (ovalbumin)-specific T-cell activation by DCs82.

The close interplay of KCs with LSECs or Tregs may be of relevance to the tolerogenic

capacity of the liver. Early studies on human KCs challenged with LPS have suggested that

these cells can also release IL-1073. In vitro experiments have also demonstrated that

exogenous IL-10 down-regulates the secretion of IL-6 and tumor necrosis factor (TNF)-α by

LPS-stimulated human KCs73. Kupffer cell-derived IL-10 may decrease the expression of

both MHC class II and co-stimulatory molecules expressed by LSECs64. Kupffer cell-

produced prostaglandin E2 abrogates the capacity of LSEC to activate cloned, antigen-

specific CD4+ T cells64. Interaction of KCs with Tregs provoke the secretion of IL-10 by

Tregs and facilitates the induction of systemic tolerance to hepatocyte-derived antigens,

such as human α-1 antitrypsin83. Earlier data have demonstrated in a concavalin A-induced

model of liver injury the ability of both Tregs and KCs to provoke liver tolerance to

concanavalin A through the induction of IL-1084. KCs can freely transcytose LSECs and can

secrete cytokines and chemokines to eliminate pathogens.

Hepatic dendritic cells

Hepatic DCs appear in high numbers throughout the portal triad, surrounding the central

vein85. A smaller number of DCs can also be found scattered throughout the parenchyma86.

These DCs are largely sub-divided into five sub-sets on the basis of their phenotypic

characteristics, including classical myeloid DCs (mDCs) and plasmacytoid DCs (pDCs).

They also consist of a unique mixture of mDCs and pDCs, a group of lymphoid DCs and a
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group of NK DCs (or DC-like NKs). A simplified phenotypic subdivision based on specific

surface markers for these sub-populations is as follows: lymphoid (CD8α+, B220−,

CD11b−); plasmacytoid (CD8α−, B220+); myeloid (CD8α−, B220−, CD11b+); myeloid &

plasmacytoid mixture (B220−, CD11b−); and NK DCs (B220−,CD11cint, CD69+, 2B4++,

DX5+)21, 87, 88. Several other markers have been used in the recent past to better identify

and investigate these subsets of dendritic cells in mouse and human liver. Myeloid and

lymphoid DCs are the main sub-populations22, 89, 90. Hepatic DCs are less immunogenic

compared to their counterparts in spleen or other tissues89. The low immunogenicity of

hepatic DCs has been attributed to differences in subtype composition between the liver and

spleen, which reflects the lack of expression of constitutive costimulatory molecules89.

However, hepatic DCs produce significantly higher amounts of cytokines and have a greater

phagocytic capacity than the lymphoid organ counterparts91, 92. The relative contribution of

liver dendritic cell subsets in mouse liver91 is illustrated in Figure 5. Comparative analysis

and morphometrics estimation of DCs in normal mice demonstrates that the normal liver

contains more interstitial DCs compared to any other parenchymal organ93.

It has been suggested - but not yet been proven - that the large number of DCs within the

liver may result from the large number of pathogen-associated molecular patterns (PAMPs)

contained in portal blood22. PAMPs are responsible for the activation of pattern recognition

patterns (PRPs) which activates hepatic scavenger cells and induces the production of IL-6

or other cytokines, subsequently inducing the over-expression of complement C and C-

reactive protein. This sequence of events is important for the induction of innate immunity,

as acute phase proteins bind to pathogens and accelerate phagocytosis but abrogate the

production of tumor necrosis factor (TNF)-α by Kupffer cells (KCs)94. The constitutive

expression of PPRs initiates the expression of chemokines and adhesion molecules and

promotes immune recruitment to liver. This recruitment drives a series of processes which

control the fine balance between recruited effector and regulatory cells and their cytokine

milieu, subsequently leading to either hepatic tolerance or immunity20. The cytokine milieu

can cause hepatic DCs to become tolerogenic; these cytokines include - but are not limited

to - IL-10, TGF-β and are induced by the complex interplay of KCs, LSECs, HSCs and other

cell composites22, 95–100.

Hepatic stellate cells

HSCs have a dual role. Under normal conditions they control blood flow through the

sinusoidal system, while in pathological conditions and upon exposure to various

inflammatory stimuli appear to differentiate into myofibroblasts. They then secrete

inhibitors of tissue matrix metalloproteinases, deposit collagen and generate fibrous tissue

leading to liver fibrosis. Experimental data in support of the capacity of HSCs to act as

APCs are limited101–103, in comparison to that of HSECs. Their tolerogenic capability has

been indicated by studies demonstrating that transplanted HSCs effectively protect islet

allografts from rejection in an islet transplantation mouse model104. HSC-exerted

immunomodulation is regulated by the inducible expression of B7-H1, an inhibitory

molecule of B7 family104; depletion of activated HSCs with gliotoxin decreases transplanted

hepatocyte engraftment in rats105.
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HSCs present lipids to CD4+, CD8+ T-cells and NKT cells. Cultured HSCs can perform

fluid-phase and receptor-mediated endocytosis and retain their ability for phagocytosis101.

They express MHC class I and II molecules and lipid-presenting CD1b and CD1c

molecules, as well as CD86, CD40 and other co-stimulatory molecules101, 102. CD86 is also

over-expressed when HSCs have been activated in vivo in a state of extended fibrosis and

cirrhosis101. Exposure of HSCs to proinflammatory cytokines such as IFNγ markedly up-

regulates CD80101 while CD40 activation leads to a 10-fold increase of the secretion of IL-8

by HSCs and a 2-fold increase of the monocyte chemoattractant protein-1 by the same

cells102. Their potential tolerogenic capacity has been supported by their ability to produce

vitamin A-derived retinoic acid and TGFβ. Activated HSCs express the negative co-

stimulator programmed death (PD)-L1 and can inhibit T-cell responses via B7-H1-mediated

apoptosis106.

Hepatocytes and biliary epithelial cells as APCs

A wealth of experimental data reflect the ability of hepatocytes to serve as APCs. Murine

studies have shown that the fenestrations of LSECs allow direct hepatocyte-T lymphocytes

interaction107. Hepatocytes constitutively express intercellular adhesion molecule-1 and

addition of cytokines such as IFN-γ leads to moderate expression of HLA class I molecules.

This cytokine leads to significant enhancement of HLA class II only if used at high doses

within cultures108. Hepatocytes prime naïve CD8+ T cell, even when they express low levels

of MHC class I molecules109. These hepatocyte-primed naive T-cells can expand, but in the

absence of co-stimulatory signals they undergo apoptosis, leading to intrahepatic tolerance

by clonal deletion109–111. Also, when allogeneic hepatocytes are exposed to T-cells, T-cells

activate and apoptose112. In vivo experiments have also provided convincing evidence in

support of the APC capacity of hepatocytes52, 113, 114.

The study of the immunogenicity of human BECs or human BEC lines has been

studied115–120. BECs from normal human livers express HLA class I at a low frequency.

HLA class II molecules are not expressed121. Infection with hepatotropic or hepatotrophic

viruses enhances HLA class I expression115; cytomegalovirus infection leads to

overexpression of HLA class leaves unaltered HLA class II115. Also, the same virus appears

to reduce the rate of IFN-γ induced de novo expression of HLA class II, leaving unaffected

HLA class I115. Data have shown that cytokine-induced expression of adhesion molecules

such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1

(VCAM-1), and lymphocyte function-associated antigen-3 (LFA-3) of human BECs is

comparable to that seen in Epstein-Barr virus-transformed B-cell lines, a known antigen

presenting cell117. The expression of these adhesion molecules is a prerequisite for effector

cells to exert their cytolytic action118. In hepatocytes, the expression of HLA class II is

increased in cultures performed in the presence of IFN-γ or when other pro-inflammatory

cytokines are added117–120. The lack of costimulatory CD28 ligands renders cytokine-

stimulated human intraepithelial BECs unable to induce effective T-cell activation119. In

pathological conditions such as that of PBC, destructed BECs overexpress HLA class II, as

well as CD80 and CD86 co-stimulatory molecules116. While antigen presentation by CD80/

CD86-positive APCs induces T-cell activation, antigen presentation in the absence of

sufficient CD80/CD86 costimulation may induce tolerance. However, the capacity of BECs
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to efficiently present antigens and to activate effector cells also depends on whether there is

efficient control by regulatory cells.

Efficient antigen presentation and T-cell activation of cells not undergoing apoptosis is a

complex process, the fate of which depends on the action exercised by regulatory T-cells in

the microenvironment.

Immune Mediated Liver Injury

Viral or bacterial antigens that pass through the liver sinusoids generally induce an immune

response; in most cases, an efficient immune response will remove the microorganism.

However, this cannot always be achieved, and chronic infectivity may be the final outcome.

Interestingly, neither hepatitis B nor hepatitis C are considered cytopathic. In fact, the

destruction of the hepatocytes is the outcome of the host’s immune response to clear the

virus. This scenario implies that the liver becomes the victim of a friendly fire targeting the

virus rather than the hepatocyte. Similarly, autoimmune liver diseases are models for

investigation of mechanisms which lead to loss of immunological tolerance.

Autoimmune liver diseases

Autoimmune diseases of the liver affect the hepatocytes in the case of AIH and biliary

epithelial cells in the case of PBC. Although select individuals can have features of both

diseases, the clinical phenotypes and the immunological characteristics of these two diseases

differ significantly1, 122, 123.

AIH has a strong female preponderance, affects all ages, sexes and races and responds well

to immunosuppressive treatment. Immunosuppression has no benefit in patients with PBC, a

disease which is rarely seen in men and children and is currently treated with

ursodeoxycholic acid, a bile constituent122.

Genetic susceptibility associations with HLA and non-HLA genes have been noted in AIH

but large genome wide association studies are still lacking. Contrary to AIH, large genome

wide studies have been conducted for PBC; a large number of loci have been found to be

associated with disease, including HLA and non-HLA genes with immunological

significance (such as that of IL12A, IL12RB, STAT4 and CTLA4)124–128. STAT4 has been

identified in several previous studies, and is of interest given that it is closely involved with

IL12 signalling and participates in the immunopathogenesis of autoimmune diseases.

Despite enormous efforts, the pathogenesis of both diseases remains poorly understood.

Some progress has been made and major experimental findings in support of the

involvement of the innate and the adaptive arm of immunity are presented123, 129–131.

Translational research on the immunopathogenesis of AIH focused on the role played by

humoral responses against specific antigens, the involvement of conventional and

unconventional T-cells, and the immunomodulatory role of Tregs. Attempts have also been

made to identify environmental triggers of the disease and to develop animal models

resembling the human condition. In PBC, credible antigen-specific animals models of the

disease have been developed132–144.
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Primary biliary cirrhosis

PBC is a chronic cholestatic liver disease characterized by an inflammatory destruction of

the medium-size and small intrahepatic bile ducts (Figure 5), which eventually leads to

fibrosis, cirrhosis and liver failure122.

PBC was first recognized by Addison and Gull in 1851 but its nature became better

understood in 1958 when Mackay reported a case with high titers of complement-fixing

antibodies to tissue homogenates145; this autoantibody could be absorbed out using a

mitochondrial fraction of rat liver146, and was present in the majority of patients147. The

target antigens of these anti-mitochondrial antibodies (AMA) localized to the inner

membrane of the mitochondria148. A major step forward in the study of PBC was the

cloning of the major AMA target, the E2 subunit of the pyruvate dehydrogenase

complex149, 150. Subsequent studies identified as AMA antigens other E2 subunits of the 2-

oxo-acid dehydrogenase multienzyme family such as the branched-chain 2-oxo acid

dehydrogenase complex (BCOADC) and 2-oxoglutarate dehydrogenase complex

(OGDC)151–156. Each of these three multifunctional complexes is involved in set of chain

reactions and holds a key position in energy metabolism as PDC links glycolysis to the

Krebs cycle, OGDC is essential to the Krebs cycle itself, and BCOADC is involved in the

regulation of the oxidation of the branched-chain amino acids157, 158.

Anti-PDC-E2 antibodies belong primarily to the IgG3 subclass, but IgM and IgA

autoantibodies targeting this antigen can also be found. Autoantibodies to the 2-OADC

enzymes are also detected in bile, saliva, and urine of patients with PBC159–161. Notably,

high-titer AMAs in PBC sera can block in vitro the catalytic function of the 2-OAD

multienzyme complexes and the AMA bound to PDC-E2 with the greatest affinity are

effective in inhibiting PDC-E2 enzymatic activity162. The fine specificity of AMA within

their respective antigens has been delineated150, 163–169 and the core epitopic region on

PDC-E2 has been mapped within the lipoyl domain of PDC-E2, though, at a 100-fold higher

concentration, AMA also react with the outer domain170. AMA specific for BCOADC-E2

and OGDC-E2 are directed against conformational epitopes that include the inner lipoyl

domain171.

Adaptive Immunity in PBC—There is evidence of antigen-specific T-cell responses in

PBC172, 173. CD4 and CD8-T cell mapping studies have provided intriguing findings, as

there is a major CD4 and CD8 epitope, which overlaps with the core B-cell epitope174–180.

This overlap of the autoepitopic regions of B- and T-cells has promoted investigators to

suggest that this bears a pathogenetic significance for the induction of PBC. This was

especially the case after reports indicating that soluble PDC-E2 complexed with a PDC-E2-

specific human monoclonal antibody promotes the generation of PDC-E2-specific cytotoxic

cells, at a 100-fold lower concentration than otherwise required in the presence of the

soluble antigen alone177.

Apotopes and PBC—The basis for the selective autoimmune attack of BECs lining the

medium and small-size intrahepatic bile ducts remains elusive. However, it is interesting

that specific destruction of small intrahepatic bile ducts is a consequence of the unique
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characteristics of human intrahepatic BECs during apoptosis and can be explained by

exposure to the immune system of intact immunoreactive PDC-E2 within apoptotic

blebs181, 182. After apoptosis, human intrahepatic biliary epithelial cells (HiBECs), but not

other epithelial cells, translocate PDC-E2 immunologically intact into apoptotic bodies,

forming apotopes182. This observation suggests that PDC-E2 is accessible to the immune

system during apoptosis. Subsequent experiments demonstrated an intense inflammatory

cytokine production in the presence of the unique triad of BEC apotopes, mature monocyte-

derived macrophages macrophages from patients with PBC, and AMAs181; other PBC-

specific autoantigens also appear to be contained intact into apoptotic bodies appear to

contain183.

The role of innate immunity in PBC—The role of innate immunity in the

immunopathogenesis of PBC has been supported by a plethora of experimental data

demonstrating the intrinsic ability of cholangiocytes to express a variety TLRs, the cellular

activators of innate immunity, or other PPRs184–188. Peroxisome proliferator-activated

receptor γ (PPARγ) is constitutively expressed in BECs isolated from small intrahepatic bile

ducts. They appear to be downregulated in PBC bile ducts185. PBC is also characterized by

an upregulation of TLR4 and TLR9 in cholangiocytes and of TLR3 and type I interferon

gamma signaling pathways in portal tracts and parenchymal cells92, 185.

A significant role for periductal Langerhans cells and biliary epithelial cell-derived

macrophage inflammatory protein-3alpha184. Langerin-positive cells are predominantly

within or scattered around biliary epithelial layers of bile ducts on liver biopsy specimens

from PBC patients and may act as APC184. The close interaction of innate immunity cells

with lymphoid cells with immunoregulatory importance has been strengthened by data

demonstrating the induction and perpetuation of Th17 cells in the periductal area in cases of

PBC and the differentiation into Th17 cells in periductal dendritic cells and macrophages189.

It appears that in PBC, there is a characteristic periductal accumulation of IL-17-positive

mononuclear cells189. This is of interest given the wealth of experimental data from murine

models of the disease based on the regulatory T-cell defects190, 191.

Autoimmune hepatitis

Early data in patients with AIH192–195 suggested that the disease is characterized by disease-

specific circulating lymphocytes ‘sensitized’ to liver constituents of the so called liver

soluble protein which were able to kill target cells in vitro. Subsequent experiments using

separated T- and non-T- cell subsets from the peripheral blood of AIH patients and

xenogenic target cells implies that cytotoxic cells were present in the non-T-cell

subpopulation. The participation of antibody dependent cell-mediated cytotoxicity has been

considered the most likely mechanism to explain the damage. Subsequent work has shown

that IgG bound to hepatocytes are prone to injury by lymphocytes from healthy

individuals196. However, clonal analysis studies clearly demonstrated that cytotoxicity

against specific antigens of the liver is due to T-cells197. Further, CD4 T-cells have the

capacity to initiate autoantibody production by autologous B lymphocytes197. Neutralization

with antibodies specific for HLA-DR, CD4 and IL-2R abolishes the ability to produce

autoantibodies197.
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Although there are serotypes of the disease characterized by autoimmune responses against

poorly defined nuclear and smooth muscle autoantigens198–200, there are others (albeit less

frequent) where the immune responses target liver-specific antigens194, 201–206. Such an

example is the immune response against cytochrome P450IID6 (CYP2D6), a member of the

cytochrome P450 family of enzymes207. This is a family of exquisitely hepatic detoxifying

enzymes, the most prevalent of those within the liver being the CYP3 and CYP2C families.

It remains unclear as to why members of the CYP3 family are not target autoantigens in

immune-mediated liver injuries. Also, peculiar to AIH is the fact that despite the high degree

of homology between CYP2D6, CYP1A2 and CYP2A6 (Figure 12), antibodies against

CYP2D6 do not cross-react with the two other cytochromes202, 208, 209. The overall

homology of the three antigens is not restricted to amino acid similarity but is also present at

the 3D level202 (Figure 12). The apparent lack of cross-recognition may be due to the fact

that the epitopic regions recognized by individual anti-CYP antibodies are significantly

dissimilar and can generate individual non cross-reactive humoral immune responses. This

plausible explanation has been addressed experimentally for a limited number of peptides

and proved to be valid210. The epitope specificity of antibodies against CYP2D6 has been

delineated and the major linear epitopic regions appear to be exposed on the surface of the

molecule (Figure 13).

Recent studies have identified the CD4 and CD8-T cell epitopes on CYP2D6 and have

demonstrated a partial overlap of major B-and T-cell epitopic regions, a finding that has

been described also before in studies for PBC211. T-cell clones generated from liver tissue

and peripheral blood recognising a major B- and T-cell epitope (aa 262–285) appear to

acquire a Th1 CD4 characterized by their ability to induce IFNγ production phenotype211.

Recent work has demonstrated the presence of HLA class I-restricted, IFN-γ-producing

CYP2D6-specific CD8 T-cells212.

This has followed earlier studies demonstrating the presence of CD8 T-cell responses

specifically recognizing the asialoglycoprotein receptor (ASGPR), a hepatic lectin the

antigen recognition of which appears to be associated more with AIH than any other

autoimmune or non-autoimmune liver disease.

Early publications provided hints in support of an impairment of suppressory lymphocyte

populations in AIH213, 214 These findings have been recapitulated by new evidence

supporting a numerical and functional impairment of Tregs which characterizes patients

with AIH215–217. This evidence warranties external validation. Nevertheless, functionally

enhanced Tregs can be expanded and generated de novo in patients with AIH217. This has

been achieved using a polyclonal T-cell stimulation approach which is based on the use of

exogenous IL-2 and the engages the T-cell receptor using CD3 and the co-stimulatory

molecule CD28217.

Alcoholic hepatitis (AH)

AH is a syndrome characterized by infiltration of the liver by inflammatory cells, including

neutrophils, and hepatocellular injury. In addition to the alcohol-induced hepatotoxicity and

oxidative stress, activation of innate immunity involving TLR4 and complement also plays

an important role in initiating AH, but the role of adaptive immunity in the pathogenesis of
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AH remains largely unknown (Gao and Bataller, Gastroenterology, 2011,141:1572-85; Gao

et al. Am J Physiol Gastrointest Liver Physiol. 2011;300:G516-25). The studies from last

decade suggest that activation of a TLR4-mediated MyD88-independent (TRIF/IRF-3-

dependent) signaling pathway and complement system in the liver play an important role in

the initiation and progression of AH (Gao et al. Am J Physiol Gastrointest Liver Physiol.

2011;300:G516-25). In contrast to activation of TLR4 and complement, chronic alcohol

consumption can attenuate NK cells, another important innate immunity component, and

subsequently abolish the anti-viral and anti-fibrotic effect of NK cells, contributing to

alcohol-mediated acceleration of viral infection and liver fibrosis in patients with chronic

viral hepatitis (Jeong et al., Gastroenterology. 2008;134:248-58).

Pathogen-induced Liver Immunity—To better understand the mechanisms responsible

for the initiation of an efficient immune response against bacteria, we need to be able to

separate anti-bacterial defense in the sinusoidal compartment versus that noted in the

parenchymal compartment. Under normal conditions, pathogens circulating in the sinusoidal

blood will be eliminated by resident immune cells and will prevent them from accessing or

entering hepatocytes.

Bacterial infection targeting the liver—Early sensing of pathogens is important for the

initiation of efficient innate immunity and the successful elimination of pathogens218–220.

The adaptive arm of immunity also appears to play an important role in the induction of

early anti-bacterial immunity207, 208. Thus, KCs, NKT, NK and T cells collaborate in the

eradication of pathogens in the sinusoidal blood219–222. Under normal conditions, KCs

phagocytose bacteria leading to the rapid clearance of these bacteria from liver. KCs also

present bacterial glycolipids on CD1 molecules to immune cells such as NKT218. Recent

findings have demonstrated that KCs ingest Borrelia burgdorferi and induce chemokine

receptor CXCR3-dependent clustering of invariant NKT cells218. KCs produce CXCL9 and

other CXCR3 ligands in response to B. burgdorferi. The antigen-presenting molecule C1d

allows for a stable contact of KCs and invariant NKTs in addition to activating NKTs. The

attraction of NKT by KCs is achieved in a CXC-chemokine receptor 3-dependent

manner218. Depletion of KCs prevents the formation of invariant NKT clusters. Also, the

lack of KCS promotes a further increase of B. burgdorferi in liver parenchyma218. No

internalization of spirochetes by LSECs has been noted, and the adherence spirochetes to

LSECs is augmented when these cells are exposed to the pathogen and KCs are depleted218.

All together, these findings suggest that B. burgdorferi uses LSECs as a tool to escape

resistance against pathogens provided by KCs in an attempt to gain access to the

extravascular space218. Those Borrelia burgdorferi escaping KCs enter hepatocytes and

survive despite initiation of immune responses by HSCs218. It seems that the cross-talk of

KCs and NKT cells initiates an anti-bacterial immune response which prevents the host from

persistent bacterial infection218. They also support the notion supported by data on

Plasmodium yoelii, that KCs do not act as a portal for the entry of spirochetes into liver

parenchyma223.

Granulomatous infections and liver immunity—Detection of granulomas in

histological liver specimens is a relatively frequent finding, found in up to 4% of undivided
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samples analyzed224. In one of the largest studies conducted so far, evidence for granulomas

was found in 442 (3.6%) of 12,161 liver biopsies analyzed. The presence of infectious

organisms was document in only 15 samples (3.4%), with M. tuberculosis being detected in

three of the 15 (20%). Other mycobacteria, Yersinia, Toxoplasma gondii, Bartonella

henselae and Listeria monocytogenes have also been considered responsible for the

formation hepatic granulomas224–226. The exact mechanisms by which these infectious

agents induce the development of giant cells and subsequent hepatic granulomas remain

unclear227. Granulomas mainly consist of focal accumulations of macrophages and the

prevailing theory is that infection of macrophages plays an important role in the their

formation227; the formation of granulomas is an attempt of the innate immune to control

invasion of pathogens, especially when the adaptive arm of immunity is impaired. Listeria

monocytogenes infection can induce the development of formatted by dendritic cells over-

expressing indoleamine 2,3-dioxygenase227, 228. The study of granulomas induced by

mycobacterial infection has also revealed an important role for matrix metalloproteinase 9

expression in their formation229. Expression of this matrix metalloproteinase is required for

the recruitment of macrophages and the formation of granulomas229.

Parasitic infections of the liver—Malarial transmission to humans is achieved by

sporozoite infection of hepatocytes230. Infection with malarial parasites is an ideal model to

study host–parasite interactions and the mechanisms that allow a pathogen to avoid

elimination from immune cells, resident in the sinusoids, and subsequent hepatocyte

infection230–234. Work on animal models has provided a better understanding of the

mechanisms responsible for parasite invasion. Sporozoites injected by mosquito bites enter

the blood circulation, flow through liver sinusoids and subsequently infect

hepatocytes,235–237 using poorly understood immune-mediated mechanisms.

Plasmodium spp. sporozoites appear to first target KCs238, 239. Pradel and Frevert239 were

the first to provide conclusive data suggesting that sporozoites selectively target and actively

invade KCs to avoid the sinusoidal barrier. However, experiments on KC-depleted rats have

demonstrated that such a depletion does not abrogate the ability of sporozoites to infect the

hepatocytes234. Contrary to the these findings, subsequent experiments conducted by Baer et

al223 have shown that KC-deficient mice are resistant to sporozoite infection, probably

because of the reduced number of portals to the liver parenchyma which prevents from

direct access to hepatocytes. Recent data suggests that circumsporozoite protein, the

sporozoite's major surface protein, has an adhesive confirmation in which the C-terminal

cell-adhesive domain is exposed and a non-adhesive conformation in which the N terminus

covers this domain, the former being important for hepatocyte invasion240. The state of

hepatocytes also appears to play an important role for sporozoite infectivity; hepatocytes

over-expressing the CD81, a tetraspanin which has been regarded as receptor for hepatitis C

virus entry to hepatocytes, are susceptible to infection by Plasmodium falciparum and

Plasmodium yoelli241, 242. Subsequent findings have indicated that CD81 may not interact

directly with the ligand of Plasmodium yoelli during Plasmodium infection, but through an

unidentified protein which is regulated by CD81241.

In endemic areas, repeated exposure to sporozoites during infection does not always lead to

the clearance of the parasite from the circulation. This is probably due to the lack of

Bogdanos et al. Page 16

Compr Physiol. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



protective immunity243, 244 manifested as antigen-specific antibody and CD8+ T cell

responses targeting the circumsporozoite protein, which is one of the most immunodominant

targets of malaria-specific immunity245. The number of Plasmodium-specific memory CD8

T cells required for immunity greatly exceeds the number required for resistance to other

pathogens244, 246. Also, IL-4 secreting CD4+ T cells appear important for the development

of CD8+ T-cell responses against malaria liver stages247. If CD4+ T cell are absent, CD8+ T

cells responses are reduced by 90% compared to that seen in the presence of CD4+ T cells

and the cell-cell interaction largely depends on the presence of IL-4247.

Viral Hepatitides—Hepatitis B and C viruses (HBV and HCV) are the most common

infectious causes of chronic liver disease worldwide. More than 500 million people are

infected with HBV and HCV worldwide, and a significant proportion of those develop

chronic liver disease, with mortality predominantly from the complication of cirrhosis and

from hepatocellular carcinoma248, 249. HBV and HCV are members of the hepadnaviridae

and flaviridae families, respectively. The half-life of HBV is 2–3 days, while that of HCV is

approximately 3 hours. An effective vaccine for the prevention of HBV has been available

for years, but such a vaccine does not currently exist for HCV. Hepatitis A and E are food-

borne RNA viruses, which infect the liver when they reach the blood through transversing

gut epithelial cells250, 251. They are transmitted from person-to-person by ingestion of

contaminated water or food or water or through direct contact with an infected individual.

Their incidence is high in developing countries, and both can cause acute hepatitis.

Virus-specific immunity has been considered responsible for the clearance of the virus and

protective immunity but also for the immune-mediated destruction of hepatocytes and the

development of cirrhosis252–254. The study of the immunobiology of these viruses has been

hampered by the lack of well-defined small animal models that accurately resemble the

human disease255–258. Virus-host interactions have been studied in the chimpanzee model

(the only animal that can be infected with both viruses) and in translational research projects

using biological material from infected individuals252, 253, 259–264. From these studies it has

become apparent that HBV and HCV share in common various immunopathologic features,

but are highly variable in their virologic properties and kinetics during acute and chronic

infection. They also differ in their viral- immune evasion and survival tactics219, 253.

While perinatal HBV infection normally leads to chronic hepatitis, 90% or more of the

acutely infected adults resolve from symptoms, develop virus-specific antibodies and

preserve lifelong protective immunity. T-cell mediated liver destruction manifested as an

increase of serum alanine aminotransferase is seen 10–15 weeks after infection. Humans and

chimpanzees infected with HCV develop adaptive cellular and humoral responses only after

at least 1 month and 2 months, respectively, after the infection265, 266. An increase of

transaminases levels is noted 8–12 weeks after infection with HCV.

Innate immune responses in viral hepatitides—A wealth of experimental data in

infected chimpanzees has provided a better understanding of the role of innate immunity in

the early phases of the infection252, 267–270. The study of the chimpanzee model has shown

that HBV DNA is cleared from the serum and the livers of the infected animals long before

the development of significant anti-viral adaptive immunity252. Work on transgenic mice
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has shown that IFN-γ produced by NKT cells can significantly suppress HBV

replication271, 272. Also, type I IFNs produced by KCs and other innate immune cells play a

major role in the control of viral replication and spreading to neighbouring

hepatocytes273–275; such IFNs also prevent the induction of severe immune-mediated

hepatocyte destruction273–275. These data have prompted investigators to consider an

important role for innate immunity in controlling virus replication271, 272. Genetic

microarray analyses in sequential liver samples from HBV infected chimpanzees have failed

to show remarkable changes in the expression of type I IFN268 leading to the assumption

that the inability to provoke strong innate immune responses in the first weeks of infection is

an evasion strategy used by the virus in order to persist. KCs appear to control, to some

extent, the magnitude of innate responses, both in HBV and HCV. Capsid proteins of these

viruses trigger the expression of TLR-1, TLR-2 and TLR-6 expression on KCs and the

subsequent release of pro-inflammatory and regulatory cytokines276–278, involving various

PPRs in cellular activation by viral proteins.

Despite the lack of strong innate responses, the recovery rate following HBV infection

remains paradoxically very high. On the other hand, HCV infection provokes early changes

in the expression of type I IFN and other genes269. The fact that HCV infected patients, who

are homozygous for certain killer cell immunoglobulin-like receptor haplotypes are more

likely to clear the virus and recover from HCV infection adds strength to the notion innate

immunity is required for an efficient control of the virus279.

These data demonstrate that HBV and HCV are highly sensitive to type I IFN280–282 and

this has been the basis for the treatment of chronically infected patients, which is based on

the administration of IFN-α, alone or in combination with anti-viral agents. Specific genetic

polymorphisms in the IL28B locus predict a favourable outcome and response to IFN-

α283–288. It also appears that the induction of strong immune responses at early stages of the

infection predicts a more favourable outcome and indicates subsequent clearance of

HCV289. Against this background, it has become apparent that initiation of strong innate

immune responses per se does not immediately preclude the clearance of HCV, as viral

chronicity is established in more 50% of cases.

Hepatocyte receptors of hepatotropic viruses and innate immunity—The

attachment of HBV and HCV to hepatocytes requires cross-linking with heparin sulphate

proteoglycans. Clear demonstration of a molecule which can serve as a receptor for HBV

has not been provided. None of the molecules reported so far as receptors of HCV are

hepatocyte-specific. The tetraspin CD81 was amongst the first molecules to be identified as

hepatocyte receptors of HCV290.

Other molecules which can bind to HCV and seem important for the internalization of HCV

into hepatocytes include the low density lipoprotein receptor291 and the scavenger receptor

B1292. Also, the envelope E2 protein of HCV can bind to the liver and lymph-node specific

ICAM3 grabbing non-integrin (L-SIGN) which is also expressed by LSECs and the DC-

specific ICAM3 grabbing non-integrin (D-SIGN) which is also expressed by KCs293–297.

Claudin-1298, occludin299, the epidermal growth factor receptor and ephrin type A receptor

2300 are also co-receptors of HCV and play a role in the late steps of viral entry. It appears,
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that when HCV reaches the liver attached to heparin sulphate proteoglycans in liver

sinusoids, it binds to low density lipoprotein, CD81 or scavenger receptor B1 and before

endocytosis attaches to claudin and occludin. The receptor tyrosine kinases epidermal

growth factor receptor and ephrin type A receptor mediate HCV entry by regulating CD81-

claudin-1 co-receptor interactions.

The role of the HCV receptors is not limited to the entry of the virus into hepatocytes. They

appear to alter host-virus innate immunity responses with mechanisms poorly understood.

Thus, binding of HCV envelope 2 protein with NKs expressing CD81 inhibits the

production of IFN-γ and other pro-inflammatory cytokines and suppresses their cytotoxic

effects innate immune cells expressing CD81 can alter host-virus innate immunity301302, 303

(Figure 14). Collectively, these data demonstrate that the cytotoxic potential of NK cells

from healthy individuals is impaired in the presence of high concentrations of HCV

envelope 2 protein, and that NKs from patients infected with HCV are unable to produce

pro-inflammatory cytokines and to activate DCs301302, 303. Such findings may not be limited

to CD81-mediated HCV/NK interactions but may include other innate immune cells.

A mucin-like class I integral membrane glycoprotein has been considered the attachment

receptor of HAV304, 305. Anti-HAV specific antibodies of the IgA class can carry the virus.

Asialoglycoprotein receptor is a C-type lectin which clears IgA from the circulation306, 307.

Anti-HAV specific IgA antibodies use asialoglycoprotein receptor to infect hepatocytes308.

Dotzauer et al308 used a mouse hepatocyte model which, because it does not permit

infection with HAV, can be used as a model to study carrier-mediated HAV entry into host

cells without any interference by the HAV receptors. These authors have shown that HAV is

taken up by hepatocytes in the form of HAV-specific IgA immunocomplexes and are

endocytosed by ASGPR. This has led Protzer et al to hypothesize that KCs expressing the

Fcα receptor309 may bind the IgA-HAV complexes219. They may then transfer these

complexes to hepatocytes, where the virus can be internalized via the asialoglycoprotein

receptor219.

Adaptive immune responses in viral hepatitis B and C—Neither HBV nor HCV

clearance can be sustained through the development of strong innate immunity. It appears

that the elimination of these viruses can only be achieved in the presence of strong antigen-

specific CD4+ and CD8+ T cell responses, a finding that clearly supports the thesis that the

adaptive arm of immunity is the most critical for the immune-mediated clearance of the

virus281, 310, 311.

Humoral Immunity—The isotype and antigen-specificity of antibody responses in acute

and chronic HBV indicates the stage of the disease. IgM antibodies against the hepatitis B

core antigen are early markers of infection. Acutely infected patients who recover develop

neutralizing antibodies against hepatitis surface antigen (and antigen-specific CD4+ and

CD8+ T-cell responses against the core and other antigens of the DNA virus) that confer

lifelong protection. The great majority of virus-free individuals who are vaccinated with the

surface antigen develop high-titer neutralizing antibodies and are protected from exposure to

HBV. Recent data has demonstrated reactivation of the disease following B-cell depletion,

indicating the importance of these cells in controlling the virus312.
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Chronic HBV infection is roughly subdivided in the immunotolerant, immunoreactive, low

replicative and high replicative phases. The duration of these stages varies amongst infected

individuals. Antibodies against hepatitis e and surface antigens appear late and are signs of a

favorable course while the presence of antibodies against the core and the surface antigens

are present forever after the resolution of clinical symptoms.

The influence of anti-HCV antibodies over the course of the disease is far from clear.

Infection with HCV does not initiate early humoral responses and the highest concentrations

of anti-HCV antibody responses are typically present in patients with well-established

chronic HCV infection. In contrast, patients who recovered from HCV do not have

detectable anti-HCV antibodies, a finding that has prompted investigators to consider the

emergence of HCV escape mutants. How HCV constantly evades neutralizing antibodies

during chronic infection remains unclear, though it is most likely due to its ability to ‘creep’

from one hepatocyte to another (cell-to-cell transmission) and to generate a selection of

escape mutants are the most likely scenarios.313, 314.

Cellular immunity against hepatitis B and C—The study of the immunobiology of

HBV and HCV has led to the appreciation that persistent infection is largely due to the

inability of the immune system to clear the virus. Depletion and exhaustion of cytotoxic T

lymphocytes specific for viral antigens is the main cause for the inability to control the

virus. Antigen-specific cytotoxic lymphocytes are prone to apoptosis315. Also, HCV-specific

CD8+ T cells undergo substantial apoptosis in the periphery during acute HCV infection and

in the liver during chronic infection316. BCL-2-Interacting Mediator, a key pro-apoptotic

mediator which is known as BIM, plays an important role in the apoptosis of virus-specific

CD8+ T cells315, 317. Consistent exposure to antigenic overload during infection leads to the

‘exhaustion’ of cytotoxic T lymphocytes318, 319. This phenomenon is largely mediated

through the programmed death PD-1/PD-L1 T cell co-inhibitory pathway. PD-1 is a co-

inhibitory molecule that controls T-cell reactivity. PD-L1 and PD-L2 binding to the PD-1

receptor negatively regulates T cells, leading to decreased proliferation and down-regulation

of IL-2 and IFN-γ. This ‘exhaustion’ operates at several levels and allows the virus to escape

immune recognition and to establish persistent infection320. Blocking PD-1 restores

intrahepatic HBV-specific T-cell responses321, 322. This may explain why HBV patients

have over-expressed PD-1 compared to healthy individuals322. Also, HCV-specific

cytotoxic T lymphocytes that are phenotypically exhausted are characterized by PD-1 over-

expression323, 324. Patients with chronic HBV and HCV infection over-express co-inhibitory

molecules such as PD-1, CTL4, T cell immunoglobulin domain protein 3 and 2B4325. An

imbalance on the operation of co-inhibitory pathways in viral hepatitides B and C appears

not to be limited at the lymphocyte level, as it includes KCs LSECs and HSCs. These cells

appear to express (at least) PD-L1, and their induction has been demonstrated during viral

infection71, 106, 326–331. The role of CD4+ T cells has been extensively studied in patients

and chimpanzees infected with HBV or HCV. These studies have shown that induction of

vigorous, antigen-specific CD4 T cell responses positively correlates with the recovery from

the infection332. Epitope mapping studies have delineated the disease-specific autopepitopic

regions recognized by acutely and chronically infected patients at various phases of the

diseases254. Despite the low frequency of CD4+ T cells in the periphery, flow cytometric
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analyses have shown that in the early phase of the infection with HCV CD4+ T cell become

detectable at the time CD8+ T cell recover266. The close interplay between CD4+ and CD8+

T cells has been shown in studies indicating that CD4 depletion from a chimpanzee

recovered from HCV infection leads to the loss of protective immunity upon re-exposure to

the virus311. These studies have provided data to suggest that CD4+ T cells confer protective

immunity but are also participating the induction of immune-mediated hepatocyte

destruction.

Extrahepatic immune-mediated manifestations are frequently seen in chronic HBV and

HCV. In the great majority of the cases are manifested as low to medium titer autoantibodies

against nuclear and smooth muscle antibodies333. Whether these autoantibodies are induced

as a result of polyclonal B-expansion during hepatocyte destruction or they are the outcome

of antigen-driven mechanisms such as molecular mimicry and immunological cross-

reactivity remains elusive202, 208, 333–338. Immune complex-mediated rheumatic

manifestations, mixed cryoglobulinemia, and non-Hodgkin lymphomas are more frequently

seen in chronic HCV infected patients than HBV339. Viral-induced autoimmune liver

diseases are rarely noted, and a link between the virus and the autoimmune condition is

difficult to make340–342.

The immunopathology of hepatocellular carcinoma—It has become apparent that

while a vigorous antigen-specific immune response against HBV and HCV leads to viral

clearance, the depletion and exhaustion of cytotoxic T lymphocytes specific for viral

antigens induces chronic hepatitis and subsequent cirrhosis. In an attempt to respond to the

process of necroinflammation, the liver regenerates, and in this process activates

macrophages which release free radical with carcinogenic potential. The concert action of

mitogenic and mutagenic stimuli causing cellular and DNA damage and the dysregulation of

cellular growth leads to the development of hepatocellular carcinoma343, 344. HBV

vaccination programs prevented the development of newly infected cases and indirectly

decreased the number of new hepatocellular carcinoma cases345. In this respect, the hepatitis

B vaccine can be considered one of the very first successful immunotherapy cancer

vaccines.

Tumor markers such as alpha fetoprotein are increased during the course of

hepatocarcinogenesis and T-cell responses specific for this antigen are present in the

peripheral blood of patients with cancer346–349. Several other antigens have been identified

as potential tumor markers and target autoantigens but none of them is highly disease-

specific. Nevertheless, strong tumor-specific CD8+ T cell responses control tumor

progression and prevent from the recurrence of hepatocellular carcinoma350, 351. Several

studies have shown that tumors have adopted numerous immune escape mechanisms, that

include the induction of immunosuppressory cells. These include regulatory T cells and

myeloid-derived suppressor cells. Such cells have the potential to mask tumor-specific

immune responses in patients with hepatocellular carcinoma.

The frequency of circulating CD4(+)CD25(+)FoxP3(+) Treg is increased significantly in

patients with hepatocellular carcinoma compared to controls and correlated with disease

progression352, 353. Clustering of Tregs and reduction rates of infiltration CD8+ T cells are
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characteristically found in tumor regions compared with nontumor regions and these Tregs

suppress the anti-CD3/CD28 induced cytolytic activity of CD8+ T cells352. Current attempts

concentrate in targeting regulatory T cells as this will potentially enhance tumor-specific

CD8+ T cells354, 355.

Conclusions

Historically, the immune system was divided into mucosal versus systemic immunity. While

this division is still accurate, it is equally important to note specific immunological

contributions of specific organs; this is illustrated not only by the liver as discussed herein,

but also with respect to skin, lung and other tissues. We have not attempted to discuss loss of

tolerance in the detail deserved in a paper devoted to liver and the immune response and we

refer to a number of recent publications which deal specifically with genetics, environment

and immunity356–375. However, it is noteworthy that the liver is anatomically unique and its

function is essential for fetal tolerance and host protection from gut flora and the enormous

repertoire of materials that pass through the portal circulation. It is indeed ironic that the

liver, which is so critical for immune tolerance, can itself become a victim in diseases such

as autoimmune hepatitis and primary biliary cirrhosis. We have not discussed primary

sclerosing cholangitis herein because the scope is far beyond that of the thesis herein.

However, it also brings to mind great voids that exist with respect to our knowledge on

chemokines and their cognate receptors with respect to lymphoid homing and we refer to a

number of seminal publications by Adams and colleagues376–380. Finally, there is also the

hope that the liver as a facilitator of tolerance can be used as a tolerizing vehicle to restore

immune homeostasis in other examples of human autoimmune disease381.

Abbreviations

AIH Autoimmune hepatitis

AMA Antimitochondrial antibody

ANA Antinuclear antibody

APC Antigen presenting cell

DC Dendritic cell

HSC Hepatic stellate cell

IFN Interferon

IL Interleukin

MHC Major Histocompatibility Complex

KC Kupffer cell

LPS Lipopolysaccharide endotoxin

LSEC Liver sinusoidal endothelial cell

mDC myeloid DC
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NK Natural Killer

NKT Natural Killer T-cell

OADC oxo-acid dehydrogenase complex

OGDC 2-oxoglutarate dehydrogenase complex

PAMP pathogen-associated molecular pattern

PBC primary biliary cirrhosis

PD programmed death

pDC plasmacytoid DC

PD-L1 programmed death ligand 1

PPR Pattern recognition patterns

TLR Toll-like receptor
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Figure 1.
Anatomical location and external appearance of the liver. The falciform ligament, on the

surface of the diaphragm, splits the liver into right and left lobe. The anatomical relationship

of the liver with organs such as the gallbladder, stomach, duodenum, and pancreas is

illustrated.
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Figure 2.
Cellular and extracellular composition of the liver
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Figure 3.
The morphological appearance of cells within the liver.
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Figure 4.
The hepatic lobule is the structural unit of the liver. It consists of an hexagonal arrangement

of hepatocyte plates with the central vein located in the center of the structure and the portal

triads distributed at the vertices of the lobule. The portal triad consists of terminal branches

of the portal vein and the hepatic artery and a bile duct.
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Figure 5.
Illustration of the microanatomical localization of hepatocytes, liver sinusoidal endothelial

cells, Kupffer cells, and hepatic stellate cells. The space of Disse separates hepatocytes from

the liver sinusoids. The endothelium of liver sinusoids is discontinued (fenestrated) and is

formed by a layer of liver sinusoidal endothelial cells16. These cells act as scavenger cells

and form a physical filtering barrier between the sinusoidal blood and plasma69, 391. Kupffer

cells are resident macrophages, that are attached to the layer of liver sinusoidal endothelial

cells. The hepatic stellate cells are located in the sub-endothelial space of Disse and play

vital role in fibrogenesis.
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Figure 6.
Cells comprising the liver including hepatocytes (HEP), liver sinusoidal ensothelial cells

(LSEC), Kupffer cells (KC), hepatic stellate cells (HSC) and lymphoid cell sub-populations.

NK, natural killer; NKT, natural killer T-cells; DC, dendritic cell; Treg, T-regulatory cell
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Figure 7.
Distribution of cell sub-populations within intrahepatic lymphocytes
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Figure 8.
Schematic illustration of NK cell receptors and killing of viral hepatitis infected cells. Under

normal conditions, non-infected cells are not killed because inhibitory signals from HLA

class I molecules prevail over activating signals. Virus-infected cells are characterized by

altered expression of HLA class I molecules. This disrupts the inhibitory signals and allows

activation of NK cells and subsequent lysis of the infected hepatocytes. NK-mediated killing

of infected hepatocytes is not operated in viral hepatitides.
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Figure 9.
Cell-cell interaction which can lead to activation of naïve T lymphocytes within the liver

include contact with Kupffer cells (KC), liver sinusoidal endothelial cells (LSEC) or

hepatocytes (indicated by the respective arrows).
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Figure 10.
Flow cytometric analysis of peripheral blood reflects the relative proportion of bright and

low NK (CD36+) cells, NKT (CD3+CD56+) and T-cells (CD3+CD56−) in a representative

donor. Bright and low NK cells can be seen.
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Figure 11.
Hepatic dendritic subsets in mouse
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Figure 12.
Cell-Cell interaction of biliary epithelial cells (BECs) as antigen presenting cells, effector

and regulatory T-cells
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Figure 13.
CYP2D6, CYP1A2, and CYP2D6 amino acid homology.

The three cytochromes appear highly conserved but autoantibody responses against the one

does not invoke cross-reactive immunity targeting the other. Amino acid analysis has been

performed using the T-coffee software. Highlights of red, yellow and green correspond to

areas of good, average and bad degree of homology; cons, conservation of amino acids (*

indicate identical amino acids, : indicate conserved and . semi-conservative substitutions).
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Figure 14.
3D-prediction model of the three major linear epitopic regions of human cytochrome

P450IID6 (CYP2D6).

The B-cell epitopes of anti-CYP2D6 antibodies (also known as anti-liver kidney microsomal

type 1 antibodies- anti-LKM1)392 has been studied and the three main epitopic regions

recognized span CYP2D6254–271, CYP2D6193–212 and CYP2D6321–351 sequences, being

targeted by more than 55% of the patients with CYP2D6 autoantibodies393–396. The

antigenicity of this area may in part been explained by the exposure of these sequences to

the surface of the molecule as it is illustrated in Figure 7.

Aminoacids of the autoepitopic regions are presented in the form of space fill in different

colours and the remaining in a wire worm backbone (grey); in red and yellow are the
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dominant CYP2D6254–271 and CYP2D6193–212 epitopes. Prediction analysis anticipates that

the epitopes are exposed on the surface of the molecule. The structure was analyzed with the

Cn3D visualization tool.
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Figure 15.
The tetraspin CD81 is used by hepatitis C virus to entry the hepatocyte. Expression of CD81

by NK suppresses the induction of pro-inflammatory cytokines such as interferon-γ and

inhibits the cytotoxic capability of these cells allowing for the persistence of the virus. Other

HCV co-receptors (for further details, see main text), expressed by cells of the innate

immune system resident within the sinusoids, may participate in a similar fashion facilitating

the inability of the host to clear the virus.
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Table 1

Percentage of total volume of cellular and extracellular compartments in liver7.

Mean % ±SE

Cells (84.1%)

  Hepatocytes 77.8 1.15

  Liver Sinusoidal Endothelial Cells 2.8 0.2

  Kupffer Cells 2.1 0.3

  Hepatic Stellate Cells 1.4 0.2

Extracellular Spaces (15.9%)

  Sinusoidal lumen 10.6 0.45

  Disse space 4.9 0.35

  Biliary canaliculi 0.4 0.05

Total Sum (100%) 100%

Data are presented as mean% ± standard errors (SE) of the mean
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Table 2

Phenotypic markers of liver sinusoidal endothelial cells as reported by various studies. Liver sinusoidal

endothelial cells express CD54, vWF, CD31 in more than three studies

Molecule References

CD4 62, 382, 383

CD14 382

CD16 382

CD31 67, 384–386

CD32 67, 382

CD34 384, 386, 387

CD54 (ICAM-1) 62, 382, 383, 385–388

CD106 (VCAM-1) 387

AcLDL 388, 389

vWF 67, 382, 384, 386, 390

VIII 388, 390

MHC-I 388

MHC-II 70, 382

CD11b 388

CD11c 388

CD40 70

CD80 62, 70

CD86 62, 70

CD105 70, 388

L-SIGN 388

The relative expression of these markers varies amongst studies. Methodology used for the assessment of their expression included immuno-

histochemical analysis, PCR and flowcytometry using mouse, rat or human cultured LSECs (reviewed in 15); CD, cluster of differentiation;
ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; AcLDL, acetylated low-density lipoprotein; vWF, von
Willebrant factor; L-SIGN, liver/lymph node-specific ICAM-3-grabbing nonintegrin
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