Organellar Proteomics Reveals Golgi Arginine Dimethylation D

Christine C. Wu,* Michael J. MacCoss,*[†] Gonzalo Mardones,[‡] Claire Finnigan,[‡] Soren Mogelsvang,[‡] John R. Yates, III,^{*§} and Kathryn E. Howell^{‡§||}

*Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037; and [‡]Department of Cell and Developmental Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262

Submitted February 4, 2004; Revised March 11, 2004; Accepted March 12, 2004 Monitoring Editor: Benjamin Glick

The Golgi complex functions to posttranslationally modify newly synthesized proteins and lipids and to sort them to their sites of function. In this study, a stacked Golgi fraction was isolated by classical cell fractionation, and the protein complement (the Golgi proteome) was characterized using multidimensional protein identification technology. Many of the proteins identified are known residents of the Golgi, and 64% of these are predicted transmembrane proteins. Proteins localized to other organelles also were identified, strengthening reports of functional interfacing between the Golgi and the endoplasmic reticulum and cytoskeleton. Importantly, 41 proteins of unknown function were identified. Two were selected for further analysis, and Golgi localization was confirmed. One of these, a putative methyltransferase, was shown to be arginine dimethylated, and upon further proteomic analysis, arginine dimethylation was identified on 18 total proteins in the Golgi proteome. This survey illustrates the utility of proteomics in the discovery of novel organellar functions and resulted in 1) a protein profile of an enriched Golgi fraction; 2) identification of 41 previously uncharacterized proteins, two with confirmed Golgi localization; 3) the identification of arginine dimethylated residues in Golgi proteins; and 4) a confirmation of methyltransferase activity within the Golgi fraction.

INTRODUCTION

Organelles are membrane-bound compartments that function by interacting with cytoplasmic and luminal soluble proteins making the protein composition of each organelle dynamic. The Golgi complex is the central organelle of the secretory pathway and functions to posttranslationally modify newly synthesized proteins and lipids and sort them for transport to their sites of function (Palade, 1975). However, other Golgi functions require interactions that are less clearly understood. The Golgi interacts with the cytoskeleton to maintain its perinuclear localization within the cytoplasm and to facilitate its dispersal during cell division (Lowe et al., 1998; Allan et al., 2002; Colanzi et al., 2003). Interactions with the endoplasmic reticulum (ER) are reported at both the entry and exit faces of the organelle (Ladinsky et al., 1999; Marsh et al., 2001; Ward et al., 2001). Furthermore, many signaling pathways intersect at the Golgi, and signaling molecules may transiently associate with Golgi membranes (Donaldson and Lippincott-Schwartz, 2000; Van Lint et al., 2002). These unresolved questions regarding nonclassical functions of the Golgi have

Article published online ahead of print. Mol. Biol. Cell 10.1091/ mbc.E04–02–0101. Article and publication date are available at www.molbiolcell.org/cgi/doi/10.1091/mbc.E04–02–0101.

- Online version of this article contains supporting material. Online version is available at www.molbiolcell.org.
- ⁺ Present address: Department of Genome Sciences, University of Washington, Seattle, WA 91895.

stimulated several organellar proteomic analyses with the goal of comprehensively identifying its protein components (Taylor *et al.*, 2000; Wu *et al.*, 2000; Bell *et al.*, 2001).

The number of genes that are expressed within a given cell type is estimated to be ~10,000 (Huber et al., 2003). However, proteins are further covalently modified to mediate the complex functional interactions, thus increasing the complexity of proteomic analyses. To simplify the analysis of cellular compartments, enrichment strategies should precede proteomic analysis. Organellar proteomics combines subcellular fractionation with mass spectrometry and provide a powerful approach to identify the protein complement of each subcellular compartment. Classically, organellar proteomics has used gel electrophoresis technology (both one-dimensional and two-dimensional) followed by the identification of resolved proteins by mass spectrometry. However, technical limitations resulting in reduced identifications of transmembrane proteins and posttranslational modifications have led to the development of alternative "nongel" strategies (Wu and Yates, 2003). Previously reported Golgi proteomes reflect these limitations resulting in 73 (Taylor et al., 2000), 45 (Wu et al., 2000), and 81 (Bell et al., 2001) protein identifications and no information on posttranslational modifications. Recent progress in proteomic technology has enabled more comprehensive high-throughput profiling strategies of enriched organellar fractions, resulting in hundreds of proteins identifications, some of which were previously uncharacterized (Andersen et al., 2003; Mootha et al., 2003). These studies, although impressive, also lack the identification posttranslational modification sites. Clearly, proteomic strategies capable of identifying both soluble and membrane proteins as well as some

[§] These authors contributed equally to this work.

Corresponding author. E-mail address: kathryn.howell@uchsc.edu.

posttranslational modifications will provide improved insights into organellar function.

Multidimensional protein identification technology (Mud-PIT) facilitates the goal of establishing more comprehensive organellar proteomes (Washburn et al., 2001). MudPIT has been optimized for the analysis of covalent modifications (MacCoss et al., 2002a; Wu et al., 2003) as well as membrane proteins (Washburn et al., 2001; Wu et al., 2003). MudPIT minimizes the bias against particular classes of proteins by first digesting the proteins into an even more complex mixture of peptides. These peptides are separated by microcapillary multidimensional chromatography interfaced directly with a tandem mass spectrometer by using electrospray ionization (Link et al., 1999). The peptide sequences and posttranslational modifications are determined by comparing experimentally acquired fragmentation spectra against theoretical spectra predicted from protein or nucleotide sequence information by using SEQUEST (Eng et al., 1994). Using DTASelect (Tabb et al., 2002), the resulting peptide sequences are reassembled back into protein identifications. This approach of identifying proteins and modifications is robust and facilitates proteomic profiling studies (Florens et al., 2002; Schirmer et al., 2003; Westermann et al., 2003).

Here, we describe an organellar proteomic analysis in which a stacked Golgi fraction was profiled using MudPIT. More than 400 proteins (421) were identified with a minimum of five independent peptide identifications per protein (>99% empirical confidence). Use of stringent criteria allowed us to identify 1) abundant proteins within the enriched fraction, including those with known and unknown functions and 2) sites of arginine dimethylation on proteins with high sequence coverage. Golgi localization was confirmed for two of the unknown membrane proteins, and interestingly, one of these is a predicted methyltransferase and is dimethylated on R230. Methyltransferase activity was subsequently confirmed in the Golgi fraction, and multiple Golgi and ER proteins were found to be arginine methylated in vitro. This organellar profiling study resulted in the generation of a new hypothesis regarding the role of methylation in the Golgi and serves to facilitate a better understanding of Golgi functions.

MATERIALS AND METHODS

Materials

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise noted. Enzymes were purchased from Roche Applied Science (Indianapolis, IN). The arginine-dimethylated synthetic peptide LEWQPPPFR*WLPVGPH (* designates the site of arginine dimethylation) was purchased from Global Peptide Services (Fort Collins, CO). Male Sprague-Dawley rats (6 wk old, ~250 g) were purchased from Harlan (Indianapolis, IN). All methods involving animals were approved by the institutional Animal Research Committee, accredited by the American Association for Accreditation of Laboratory Animal Care.

Isolation of Stacked Golgi Fraction

Rats were treated with cycloheximide to reduce total proteins in transit through the Golgi. Cycloheximide (50 mg/kg) was administered intraperitoneally 4 h before being sacrificed by halothane inhalation. Livers were removed from groups of 20 rats, and enriched Golgi fractions were prepared as described previously (Taylor *et al.*, 1997). Briefly, livers were finely minced and resuspended at a ratio of 1 g of minced liver:1 ml of homogenization buffer (0.5 M phosphate-buffered sucrose containing 100 mM KH₂PO₄/ K₂HPO₄, pH 6.8, 5 mM MgCl₂, and 4 μ g each of proteolytic inhibitors chymostatin, leupeptin, antipain, and pepstatin). The sample was homogenized using a Polytron PT10/35 (Brinkmann, Westbury, NY) with one pass for 45 s moving from the top of the tube slowly to the bottom of the tube. The homogenate was centrifuged at low speed (1500 × g for 10 min at 4°C). The resulting postnuclear supernatant (PNS) was loaded in the middle of a sucrose step gradient (steps of 1.3 and 0.86 M sucrose were overlaid with the PNS, followed by a 0.25 M layer). The gradient was centrifuged at high speed $(100,000 \times g~{\rm for}~1$ h at 4°C). The SII fraction (collected at the 0.5/0.86 M interface) was adjusted to 1.15 M sucrose, placed at the bottom of a second step gradient, and overlaid with steps 1.0, 0.86, and 0.25 M. The enriched Golgi fraction was collected at the 0.86/0.25 M interface. Protein concentrations of fractions were determined using DC protein assay (Bio-Rad, Hercules, CA).

Sample Digestion

The enriched Golgi fraction was digested to peptides using two different protocols. One protocol was the CNBr/formic acid method: Golgi samples (1 mg) were pelleted at 16,000 \times g for 30 min at 4°C. The supernatant was discarded and the pellet was resuspended in 50 μ l of 500 mg/ml CNBr in 90% formic acid and incubated in the dark in the fume hood overnight (Washburn et al., 2001). The pH of the sample was adjusted to 8.5 and then adjusted to 8 M urea, reduced (solution was adjusted to 25 mM dithiothreitol and incubated at 55°C for 20 min), and alkylated (solution was cooled to room temperature and adjusted to 100 mM iodoacetamide and incubated in the dark for 20 min). Endoproteinase Lys-C was added at a 1:500 (mass:mass) enzyme:substrate ratio and incubated at 37°C overnight in a Thermomixer (Brinkmann). The sample was then adjusted to 4 M urea and 1 mM CaCl₂. Modified trypsin was added at a 1:100 (mass:mass) enzyme:substrate ratio and incubated at 37°C overnight in a Thermomixer. The second protocol was the high pH/Proteinase K method: Golgi samples (1 mg) were pelleted at $16,000 \times g$ for 30 min at 4°C. The supernatant was discarded, and the pellet was homogenized in 1 ml 0.2 M Na_2CO_3 , pH 11 with five passes through an insulin syringe and incubated on ice for 1 h. The membrane sample was then adjusted to 8 M urea, reduced (solution is adjusted to 25 mM dithiothreitol and incubated at 55°C for 20 min), and alkylated (solution was cooled to room temperature and adjusted to 100 mM iodoacetamide and incubated in the dark for 20 min). Proteinase K (5 µg) was added to the sample and incubated at 37° C for 3 h in a Thermomixer. An additional aliquot of Proteinase K (5 μ g) was added and incubated at 37° C for 1.5 h. The reaction was quenched with formic acid to 5% final concentration and microfuged at 16,000 \times g at 4°C for 15 min to remove any insoluble particulates.

MudPIT Analysis

Protein digests were pressure-loaded onto a fused silica capillary desalting column containing 5 cm of 5-µm Aqua C18 material (Phenomenex, Ventura, CA) and washed as described previously (Wu et al., 2003). The desalted peptides were then eluted onto the back-end of a triphasic chromatography column consisting of 7 cm of 5-µm Aqua C18 material (Phenomenex), 3 cm of 5-µm Partisphere strong cation exchanger (Whatman, Clifton, NJ), and 3 cm of 5-µm hydrophilic interaction chromatography material (PolyLC). The column was then placed in-line with a Surveyor quaternary high-performance liquid chromatography (HPLC) pump (ThermoElectron, San Jose, CA) and analyzed using a 12-step separation described previously (Wu et al., 2003). The HPLC pump was operated at a flow rate of 100 μ l/min and was split to obtain flow through the column of ~100-400 nl/min. As peptides eluted from the microcapillary column, they were electrosprayed directly into an LCQ-Deca mass spectrometer (ThermoElectron) with the application of a 2-kV spray voltage applied distally to the waste of the HPLC split as described by Martin et al. (2000). A cycle of one full-scan mass spectrum (400-1400 m/z) followed by three data-dependent tandem mass spectrometry (MS/MS) spectra at a 35% normalized collision energy was repeated continuously throughout each step of the multidimensional separation. Application of the mass spectrometer scan-functions and HPLC solvent gradients were controlled by the Xcaliber data system (ThermoElectron).

Data Analysis

MS/MS spectra were analyzed using the following software analysis protocol. 2to3 determined the charge state (+2 or +3) of multiply charged peptide spectra and deleted poor quality spectra. Each MS/MS spectrum after 2to3 was searched against the RefSeq protein database containing the RefSeq rat, mouse, and human sequences concatenated into a single fasta file using SEQUEST (Eng et al., 1994). The MS/MS spectra were then researched to consider modifications of 1) +14 on R (methylation) and 2) +28 on R (dimethylation). All searches were parallelized and run on either the Yates Lab Beowulf computer cluster consisting of 34 1.2-GHz Athlon computer nodes or The Scripps Research Institute SGI cluster. All searches were performed without any enzyme specificity. The program DTASelect was used to filter peptide sequences from +1, +2, and +3 charged peptide precursors with normalized SEQUEST XCorr scores >0.3 (MacCoss *et al.*, 2002b) and ΔC_n > 0.1, to assemble the peptide sequences into proteins and to remove redundant protein sequences (Tabb *et al.*, 2002). To minimize false positives and to identify abundant proteins within the Golgi fraction, only proteins with five or more peptides exceeding the peptide filters were considered. The MS/MS spectra from the modified peptides were filtered with DTASelect and manually evaluated using criteria reported previously (Link et al., 1999; Wu et al., 2003)

Figure 1. Functional classification of the Golgi proteome. (A) Overall profile of organelle and functional categories of protein identified from a stacked Golgi fraction. (B) Golgi-specific proteins fall in eight different functional classes and include 64% predicted membrane proteins.

Plasmids

cDNAs (corresponding to #1/gi 27229118 and #2/gi 21703704 in Table 2) were acquired from Open Biosystems (Huntsville, AL) and sequenced using the in-house facility at the University of Colorado Health Sciences Center. Both full-length open reading frames were cloned into pEGFP-N2 (BD Biosciences Clontech, Palo Alto, CA). The #2/gi 21703704 open reading frame also was cloned into pGEX-6P-1, and the fusion protein was expressed and isolated using Bulk glutathione S-transferase purification module (Pharmacia, Peapack, NJ). The expressed unknown protein was cleaved from glutathione S-transferase by using PreScission Protease and collected for in-house immunization of rabbits.

Cell Culture, Transfection, and Microscopy

Normal rat kidney (NRK) cells were plated on coverslips and grown in 10% fetal calf serum in DMEM media plus Pen/Strep. Cells were transfected using LipofectAMINE 2000 (following manufacturer's instructions), fixed with 4% paraformaldehyde in phosphate-buffered saline, permeabilized in 0.2% Triton X-100, and blocked in 0.2% gelatin in phosphatebuffered saline. For immunofluorescence, both primary and secondary antibodies (Alexa Fluor 488 [green] and 594 [red]; Molecular Probes, Eugene, OR) were incubated each for 30 min at 37°C, and coverslips were mounted in Moviol onto slides. Cells were visualized with an Axiovert 200 (Carl Zeiss, Jena, Germany) at 63×.

Methyltransferase Assay

The in vitro methylation assay was carried out according to Lin *et al.*, 2000. Briefly, 45 μ g of stacked Golgi fraction in the presence and absence of 0.2% TX-100, was incubated with 4 μ Ci of [³H]S-adenosylmethionine (SAM) in 25 mM Tris, pH 7.5, 1 mM EDTA, 1 mM EGTA at a final volume of 60 μ l for 60 min at 37°C in the presence of a cocktail of protease inhibitors. The reaction was stopped by addition of SDS-PAGE sample buffer. Proteins were resolved on a 12% polyacrylamide gel. The gels were infiltrated with Amplify (Amersham Biosciences, Piscataway, NJ), dried, and exposed to Kodak X-OMAT for 30 d.

In-Gel Trypsin Digestion

In-gel digests were performed as described previously (Taylor *et al.*, 2000). Briefly, gel slices were excised and washed with 100 mM ammonium bicarbonate for 20 min. Proteins were reduced with 3 mM dithiothreitol/100 mM ammonium bicarbonate for 20 min at 55°C. After cooling to room temperature, iodoacetamide was added to 6 mM final concentration and incubated in the dark for 15 min at room temperature. The aqueous solution was discarded, and the gel slice was washed in 50% acetonitrile/100 mM ammonium bicarbonate for 20 min. Each gel slice was cut into 1-mm³ pieces, dried, and reswelled with 0.2 μ g of modified trypsin/25 mM ammonium bicarbonate overnight at 37°C. Peptides were extracted from the gel with 100 μ l of 60% acetonitrile/0.1% trifluoroacetic acid for 20 min. The supernatants were lyophilized and the peptides were reconstituted in 10 μ l of 5% formic acid immediately before analysis by mass spectrometry.

RESULTS

Proteomic Survey of an Enriched Stacked Golgi Fraction

Stacked Golgi fractions were enriched from rat livers and characterized as described previously (Taylor et al., 1997). Golgi samples were prepared for proteomic analysis by using two methods reported to optimize for membrane proteins (Washburn et al., 2001; Wu et al., 2003). The peptide mixtures resulting from the digestions were analyzed using MudPIT. Briefly, the complex peptide samples were resolved and mass analyzed by multidimensional chromatography coupled to MS/MS. The acquired tandem mass spectra were then searched against a RefSeq protein database containing rat, mouse, and human sequences by using SE-QUEST (Eng et al., 1994). Protein identifications required five or more peptides to minimize false positives and to identify abundant proteins within the Golgi fraction. Using these stringent criteria, 421 proteins were identified. Most of these proteins are currently annotated in databases and were sorted into categories based on reported localizations and functions. Figure 1A provides an overview of all identified proteins in the Golgi fraction by subcellular localization and/or functional classifications. Bona fide Golgi and ER proteins are listed in Table 1, whereas proteins belonging to other classifications are available in Supplementary Table 1. Although not included in Table 1, many of the proteins listed in Supplementary Table 1 are essential for Golgi function, for example, cytosolic and cytoskeletal proteins. Others are molecules in transit, either to be secreted or en route to other organelles. Because it is well documented that no cell

Table 1. Golgi and ER Protein Indentification

	Accession Number*	Swiss-Prot AC ^b	Gene Name	Protein Identification	Species	% Coverage	TMDs	Literature Reference	
	Structure and Maintenance								
2	gi 15826852	Q8N4D6	None	Golgi complex associated protein 1, 60kDa: Giantin-	rat human	26.7	1 IN	Sohda M, Misumi Y, Yamamoto A, Yano A, Nakamura N,	
٩	ail9507177i	P41542	VDP	associated protein p115 transculosis associated protein	rat	29	1 0017	Ikehara Y. (2001) J Biol Chem. 276, 45298-45306. Barraso M Nelson DS, Sztul F. (1995) Proc. Natl. Acad. Sci.	
4	gi[12018260]	Q62839	GOLGA2	Golgi autoantigen, golgin subfamily a, 2, <i>cis</i> -Golgi matrix protein GM130	rat	59.2	0 IN	USA 92, 527-531 Nakamura N, Raboulle C, Watson R, Nilsson T, Hui N, Susarewicz P, Krais TE, Warren G (1995) L Cell Rint 131	
5	ail31982330l	P55937	GOLGA3	Golgi autoantigen, golgin subfamily a. 3. Golgin-160	mouse	24	0 IN	1715-1726. Fritzer MJ Hamel JC, Ochs RL, Chan EK, (1993), J. Exp. Med.	
6	oil20127150	Q91\/W5	GOLGA4	Goloj autoantigen, golgin subfamily a, 4, Goloin-245	mouse	88	0 101	778, 49-62. Fritzler M.L.Lung CC, Hamel JC, Griffith KL, Chan EK, (1995)	
7*	ail73050951	Q9QYE6	GOLGA5	Golgi autoantigen, golgin subfamily a. 5. Golgin-84	mouse	28.7	1 IN	J. Biol. Chem. 270, 31262-31268. Bascom RA, Srinivasan S, Nussbaum RL (1999), J. Biol	
8	gil95067511	035254	GRASP65	GRASP65. golgi peripheral membrane protein p65	rat	52 5	0 IN	Chem. 274, 2953-2962. Erratum J. Biol. Chem. 274, 12950. Barr FA, Puyoe M. Vandekerckhove J. Warren G. (1997). Cell	
9*	ail20301956	Q9R064	None	GRASP55, gotai reassembly stacking protein 2	rat	36.1	0 IN	91, 253-262. Shorter J. Watson R. Giannakou ME, Clarke M, Warren G, Barr	
10	gij16758338j	O88618	FTCD	58 kDa microtubule-binding protein (p58);	rat	21.3	1 OUT	FA. (1999). EMBO J 18, 4949-4960. Bashour AM, Bloom GS. (1998). J Biol Chem. 273, 19612-	
11*	gi 20301976	P19814	None	formiminotransferase cyclodeaminase TGN38, trans-Golgi network protein 1	rat	19.9	1 IN	19617. Luzio JP, Brake B, Banting G, Howell KE, Braghetta P, Stanley	
12	gi[13027434]	Q9CRA5	GOLPH3	trans-Golgi protein GMx33 (alpha): Golgi phosphoprotein	rat	46.6	0 IN	KK. (1990). Biochem. J. 270, 97-102. Wu CC, Taylor RS, Lane DR. Ladinsky MS, Weisz JA, Howell	
13	gi 22122661	Q8R088	2010204115RiK	3 trans-Golgi protein GMx33 (beta), Similar to Golgi	mouse	24.2	0 IN	KE. (2000). Traffic 1, 963-975. Bell AW et al. (2001). J. Biol. Chem. 276, 5152-5165.	
14	gi[12963631]	Q8NHE5	None	phosphoprotein 3 Golgi membrane protein SB140; Rab GTPase interacting	mouse	20.6	5 OUT	Strausberg RL et al. (2002). Proc. Natt. Acad. Sci. USA 99,	
15	gi 8393450	Q62638	MG160	protein MG-160; Golgi apparatus protein 1	rat	51.3	2 IN	16899-16903. Gonatas JO, Mourelatos Z, Stieber A, Lane WS, Brosius J,	
16	gi 6679809	Q9Z1E1	FLOT1	Flotilin 1	mouse	30.8	1 OUT	Gonatas NK. (1995). J. Cell. Sci. 108, 457-467. Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti M, Lodish	
17	ail139291861	097259	FLOT2	Flotillin 2: requie1-1	rat	14 5	1 OUT	HF. (1997). J. Biol. Chem. 272, 13793-13802. Lang M. Lommel S. Jung M. Ankerhold R. Petrausch, Laessing	
	Transport	WILLOU	1 LOIL					U, Wiechers MF, Plattner H, Stuermer CA. (1998). J. Neurobiol. 37, 502-523.	
18	gi 7657138	C00461	GPP130	Golgi phosphoprotein 4; 130 kD Golgi-localized phosphoprotein	human	26.7	1 OUT	Linstedt A., Mehta A, Suhan J, Reggio H, Hauri HP. (1997). Mol. Biol. Cell 8, 1073-1087.	
19	gi 14916479	P24668	M6PR	Mannose-6-phosphate receptor, cation-dependent	mouse	23	1 OUT	Ma ZM, Grubb JH, Sly WS. (1991). J. Biol. Chem. 266, 10589- 10595.	
20	gi 6981078)	Q63002	M6P/IGF2R	Mannose-6-phosphate receptor, cation-independent; insulin-like growth factor 2 receptor	rat	18.7	2 IN	Ludwig T, Tenscher K, Remmler J, Hoflack B, Lobel P. (1994). Gene 142, 311-312.	
21	gi 33598920	O15126	SCAMP1	SCAMP 1; secretory carrier membrane protein 1	human	35.7	4 IN	Singleton DR, Wu TT, Castle JD. (1997). J. Cell Sci. 110, 2099- 2107.	
22	gi 6755404	O35609	SCAMP3	SCAMP 3; secretory carrier membrane protein 3	mouse	27.8	4 IN	Singleton DR, Wu TT, Castle JD. (1997). J. Cell Sci. 110, 2099- 2107.	
23*	gi 13384724	Q9DCK9	RNP24	p24B; cis-Golgi protein	mouse	57.7	2 IN	Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T. (1998). J. Cell Biol. 140, 751-765.	
24*	gi[16758214]	Q63584	TMP21	Tmp21: c/s-Golgi protein TM protein (p23)	rat	50.7	2 IN	Blum R, Feick P, Puype M, Vandekerckhove J, Klengel R, Nastainczyk W, Schulz I. (1996) J. Biol. Chem. 271, 17183- 17189.	
25	gi 16758758	Q62902	ERGIC53	ER-Golgi intermediate compartment 53 kDa protein	rat	58.8	2 IN	Lahtinen U, Hellman U, Wernstedt C, Saraste J, Pettersson RF. (1996). J. Biol. Chem. 271, 4031-4037.	
26 27	ai 9507019 gi 4758416	Q62991 Q92538	None GBF1	RSLY1P, Slv1 GBF1: Golgi-specific brefeldin A resistance factor 1: BFA- resistant GEF1	rat human	36.9 16.7	0 OUT 1 OUT	Peterson MR, Hsu SC, Scheller RH. (1996). Gene 169, 293- Claude A, Zhao BP, Kuziemsky CE, Dahan S, Berger SJ, Yan JP, Armold AO, Sullivan EM, Melancon P. (1999). J. Cell Biol. 146, 73-84	
28	gi 6978561) SNARES	Q64535	TP7B	Copper-transporting ATPase 2: Wilson disease-associated protein	rat	10.8	9 OUT	Wu J, Forbes JR, Chen HS, Cox DW. (1994). Nat. Genet. 7, 541-545.	
29	gi[6981614]	Q64357	VAMP2	Vesicle-associated membrane protein 2 (VAMP-2): Supantobrevin 2	rat	62.9	1 IN	Archer BT 3rd, Ozcelik T, Jahn R, Francke U, Sudhof TC. (1990) J Biol Chem. 265, 12267-17273	
30	gi 16923936	Q64271	VAMP3	Vesicle-associated membrane protein 3 (VAMP-3): Swaartobrevin 3	rət	49.5	1 IN	Che YH, Yamashita T, Tohyama MJ. (2002). Chem. Neuroanat.	
31	gi(13928870)	Q9Z270	VAPA	Vesicle-associated membrane protein A; 33 kD-VAMP- binding protein	rat	23.1	1 IN	Nishimura Y, Hayashi M, Inada H, Tanaka T. (1999). Biochem. Biophys. Res. Commun. 254, 21-26	
32	gi 11177880	Q9Z269	VAPB	Vesicle-associated membrane protein B	rat	22.2	1 IN	Nishimura Y, Hayashi M, Inada H, Tanaka T. (1999). Biochem. Biophys. Res. Commun. 254, 21-26	
33	gi[12831221]	O89116	VTI1A	SNARE Vti1a-beta protein	rat	52.1	1 IN	Antonin W, Riedel D, von Mollard GF. (2000). J. Neurosci. 20, 5724-5732	
34	gi 7949165	Q91XH6	VTI1B	Vesicle transport through interaction with t-SNAREs 1b homolog	mouse	28.9	1 IN	Antonin,W., Fasshauer,D., Becker,S., Jahn,R. and Schneider T.R. (2002). Nat. Struct. Biol. 9, 107-111	
35	gi 13928982	Q08851	STX5A	Syntaxin 5a	rat	39.9	1 OUT	Hui N, Nakamura N, Sonnichsen B, Shima DT, Nilsson T, Warren G (1997), Mol. Biol. Cell 8, 1777-1787.	
36	gi 13928908	Q9Z2Q7	STX8	Syntaxin 8; syntaxin-like protein 3135 (enriched early endosome)	rat	38 1	1 IN	Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. (2002). Nat. Struct. Biol. 9, 107-111.	
37*	gı 16758358)	Q62931	GOSR1	Golgi SNAP receptor complex member 1: <i>cis</i> -Golgi SNARE (p28)	rat	54.8	1 IN	Subramaniam VN, Peter F, Philp R, Wong SH, Hong W. (1996). Science 272, 1161-1163.	
38	gi 13928950)	O35165	GOSR2	Golgi SNAP receptor complex member 2: membrin	rat	31.6	1 IN	Hay JC, Chao DS, Kuo CS, Scheller RH. (1997). Cell 89, 149- 158.	
39	qi[18034791]	P54921	SNAPA	Soluble NSF attachment protein alpha	rat	51.98	0 IN	Clary DO, Griff IC, Rothman JE. (1990). Cell 61, 709-721.	
40 41	gi 4505331 gi 31543750]	Q99747 Q9Z2P6	SNAPG SNAP29	Soluble NSF attachment protein gamma Synaptosomal-associated protein, 29kD: SNAP-29	human rat	19.9 29.2	0 IN 0 IN	Clary DO, Griff IC, Rothman JE, (1990), Cell 61, 709-721. Steegmaier M, Yang B, Yoo JS, Huang B, Shen M, Yu, S, Luo	
42	gi 13489067	Q9QUL6	NSF	NSF: N-ethylmaleimide sensitive factor	rat	20 4	0 IN	Y, Scheller RH (1998). J. Biol. Chem. 273, 34171-34179. Beckers CJ, Block MR, Glick BS, Rothman JE, Balch WE.	
43	gi 4759086	O08547	SEC22L1	Vesicle trafficking protein sec22b	human	54	2 OUT	(2002) Nature 339, 397-398. Hay JC, Chao DS, Kuo CS, Scheller RH. (1997). Cell 89, 149-	
44	gi[16924008]	Q62891	RSEC22	Sec22 homolog	rat	20 9	4 IN	158. Hay JC, Hirling H, Scheller RH (1996). J. Biol. Chem. 271,	
45	gi 9506425	Q62896	BET1	BET1 homolog: Golgi vesicular membrane traffic protein p18	rat	36.4	1 OUT	5671-5679. Joglekar AP, Xu D, Rigotti DJ, Fairman R, Hay JC. (2003). J. Biol. Chem. 278, 14121-14133.	
46	Clathrin gi[9506497]	P11442	CLTC	Clathrin, heavy polypeptide (Hc)	rat	29	0 IN	Brodsky FM. Chen CY, Knuehl C, Towler MC, Wakeham DE.	
47	gi 6671553	Q35643	AP181	AP-1, beta 1 subunit: beta-prime adaptin	mouse	13.5	0 IN	(2001) Annu, Rev. Celi Dev. Biol. 17, 517-568, Robinson MS, Bonifacino JS. (2001). Curr. Opin. Cell Biol. 13.	
48	gi 8392872	P52303	AP181	Adaptor protein complex AP-1, beta 1 subunit	rat	18.2	0 IN	444-453 Robinson MS, Bonifacino JS. (2001). Curr. Opin. Cell Biol. 13	
49	gi 6 753070	P22892	AP1G1	Adaptor protein complex AP-1, gamma 1 subunit	mouse	8.2	0 IN	444-453 Robinson MS, Bonifacino JS. (2001). Curr. Opin. Cell Biol. 13,	
50	gi 66 71557)	P35585	AP1M1	Adaptor protein complex AP-1, mu subunit 1	mouse	28.1	0 IN	444-453 Robinson MS, Bonifacino JS. (2001). Curr. Opin. Cell Biol. 13,	
51	gi 21313640	Q9DBG3	AP2B1	Adaptor protein complex AP-2, beta 1 subunit	mouse	195	0 IN	444-453 Robinson MS, Bonifacino JS. (2001), Curr. Opin. Cell Biol. 13,	
								444-453	

(continued)

Table 1 continued.

	1400004001	D10004	11150		cot	29.0	O INI	Poillar G. Goillard S. Castets F. Monneron A. (2002). I. Biol
52	gi[13929192]	P19804			rat	20.9	O IN	Chem. 277, 18961-18966. Wastak S. Lacoode Culterin V. Puertellano P. Blondeau F.
53	gi[7661968]	Q14677	EPN4	Epsin 4. entroprotan	numan	23.5	0.114	Girard M, de Heuvel E, Boismenu D, Bell AW, Bonifacino JS, McPherson PS. (2002). J. Cell Biol. 158, 855-862.
54	COPI gi 4758030ļ	P53621	COPA	alpha-COP	human	12	0 IN	Waters MG, Serafini T, Rothman JE. (1991). Nature 349, 248-
55	gi 11120716	O35142	COPB2	beta prime-COP	rat	9.3	0 IN	zo t. Csukai M, Chen CH, De Matteis MA, Mochiy-Rosen D. (1997).
56	gi 22122433	Q91W48	ARCN1	delta-COP	mouse	28.6	0 IN	J. Biol. Chem. 272, 29200-29206. Waters MG, Serafini T, Rothman JE. (1991). Nature 349, 248-
67	G-Proteins	011470	DAD1A	Bab10	human	64.4	0.161	251. Zahraduli A. Touchot N. Chardin P. Tavitian A. (1989). I. Biol
5/	gil4/209001	00110114	RADIA		moura	47.2	5 IN	Chem. 264, 12394-12401 Touched N. Zabraou A. Vielh E. Tavidian A. (1989) EASER
58	gi[21313162]	098004	RABIB	Radio	mouse	47.5	0.1N	Lett. 256, 79-84.
29	gi[10946940]	P33994	DAD6	Rab2	human	10.0	0 IN	(1990). Neuron 4, 797-805. Martinez O. Schmidt A. Salamera, t. Hoffack B. Roa M. Gourd
60	git199232311	P20340	RAD0	Rabo	rot	40.0 8 7 8	0.1N	B. (1994). J. Cell Biol. 127, 1575-1588. E. (1994). J. Cell Biol. 127, 1575-1588.
61	gi1302/3921	099326	PAR10		buman	14.5	0.1N	1435-1452. Chen YT. Hokomb C. Moore HP. (1993). Proc. Natl. Acad. Sci.
67	gij33033334	015907	RAB11B	RabitB	rat	29.8	0 IN	USA 90, 6508-6512. Lai F. Stubbs L. Artzt K. (1994). Genomics 22, 610-616.
64	gi 16758368	P35287	RAB14	Rab14	rat	34.9	0 IN	Elferink LA, Anzai K, Scheller RH. (1992). J. Biol. Chem. 267, 5788-5775
65	gi[10880989]	P35293	RAB18	Rab18	human	42.7	0 IN	Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M, (1994), J, Cell Sci. 107, 3437-
66	gi[8394133]	O35963	RAB33B	Rab33B	mouse	20.5	0 IN	Zheng JY, Koda T, Fujiwara T, Kishi M, Ikehara Y, Kakinuma M (1998), J. Cell Sci. 111, 1061-1069.
67	gi 16923986	090010	ARHA	RhoA	rat	58.5	1 IN	Hoshijima M, Kondo J, Kikuchi A, Yamamoto K. Takai Y. (1990). Brain Res. Mol. Brain Res. 7, 9-16.
68	gi 11968136	P01121	ARHB	RhoB	rat	38.8	1 IN	Kuroda S, Kikuchi A, Takai Y. (1989). Biochem. Biophys. Res. Commun 163 674-681.
69	gi 9625037	P35238	ARHG	RhoG	human	35.1	0 IN	Vincent S, Jeanteur P, Fort P. (1992). Mol. Cell Biol. 12, 3138- 3148.
70 71	gi 4757952 gi 13591955	P21181	CDC42	Cdc42 GTP-binding protein (G-atoba-i2)	human rat	52.4 23.4	0 IN 1 IN	Johnson DI, Pringle JR. (1990). J. Cell Biol. 111, 143-152. Itoh H et al. (1986). Proc. Natl. Acad. Sci. USA 83, 3776-3780.
72	gi 20357529	P11016	GNB2	GTP-binding protein, beta-2 subunit: G(I)/G(S)/G(T) beta subunit 2	human	18.8	0 IN	Gao B, Gilman AG, Robishaw JD. (1987). Proc. Natl. Acad. Sci. USA 84, 6122-6125.
73	Glycosylation Enzymes gi 13929462	P15291	B4GALT1	UDP-Gal:betaGicNAc beta 1,4-galactosyliransferase 1, glycoprotein-4-beta-galactosyliransferase 2	human	8	1 IN	Hansske B, Thiel C, Lubke T, Hasilik M, Honing S, Peters V, Heidemann PH, Hoffmann GF, Berger EG, von Figura K,
74	ail101811581	Q9QY13	B4GALT3	UDP-Gal:betaGicNAc beta 1,4-galactosyltransferase 1.	mouse	28.6	1 IN	Korner C. (2002). J. Clin. Invest. 109, 725-733. Bettenhausen B. Gossler A. (1995). Genomics 28, 436-441.
75	gil12621124	Q9JJ05	C1GALT1	glycoprotein-4-beta-galactosyltransferase 3 UDP-galactose:N-acetylgalactosamine-alpha-R beta 1,3-	rat	54.3	1 IN	Ju T, Cummings RD, Canfield WM. (2002). J. Biol. Chem. 277,
76	gij34328221	Q7TND1	GALNT1	galactose transferase UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminvltransferase 1	mouse	36	1 IN	169-177. Ten Hagen KG, Bedi GS, Tetaert D, Kingsley PD, Hagen FK,Bałys MM, Beres TM, Degand P, Tabak LA. (2001). J. Biol.
77	gil214268411	Q99ME1	GALNT2	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-	mouse	44.2	1 IN	Chem. 276, 17395-17404. Hagen FK, Ten Hagen KG, Beres TM, Balys MM,
78	gij7657112j	O08832	GALNT4	acetylgalactosaminyltransferase 2 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-	mouse	13.3	0 OUT	VanWuyckhuyse BC, Tabak LA. (1997). J. Biol. Chem. 272, Hagen FK, Ten Hagen KG, Beres TM, Balys MM,
79'	gi 6678788	P45700	MAN1A1	acetylgalactosaminyltransferase 4 Mannosidase 1, alpha; mannosyl-oligosaccharide alpha-	mouse	48 2	1 IN	VanWuvchuvse BC, Tabak LA. (1997). J. Biol. Chem. 272, Lal A, Schutzbach JS, Forsee WT, Nearne PJ, Moremen KW.
80	gi 6754620}	P39098	MAN1A2	1,2-mannosidase Mannosidase 1, beta	mouse	42.6	4 OUT	(1994). J. Biol. Chem. 269, 9872-9881. Herscovics A, Schneikert J, Athanassiadis A, Moremen KW.
81	gi 4758698	Q16706	MAN2A1	Mannosidase 2, alpha 1	human	18.6	1 IN	(1994). J. Biol. Chem. 269, 9864-9871. Misago M, Liao YF, Kudo S, Eto S, Mattei MG, Moremen KW,
82	gi 5540100	P49641	MAN2A2	Mannosidase, alpha, class 2A, member 2; mannosidase,	human	6.3	1 IN	Fukuda MN. (1995). Proc. Natl. Acad. Sci. USA 92, 11765- Misago M, Liao YF, Kudo S, Eto S, Mattei MG, Moremen KW,
83	gi 18158455	O35390	ENMAN	alpha type II-X Endo-alpha-mannosidase	rat	22.8	0 OUT	Fukuda MN. (1995). Proc. Natl. Acad. Sci. USA 92, 11766- Spiro MJ, Bhoyroo VD, Spiro RG. (1997). J. Biol. Chem. 272,
84	gi 9910280	Q9NYU2	None	UDP-glucose ceramide glucosyltransferase-like 1	human	6	1 IN	29356-29363. Aoki K, Ishida N, Kawakita M. (2003). J. Bioł. Chem. 278,
85	* gi 31981620	Q8CIC9	MGAT1	Mannoside acetylglucosaminyltransferase 1	mouse	56.4	1 IN	22887-22893. Nozaki H, Matsuzawa T, Nakamura T, Arai I, Urashima T.
86	gi[16758392]	Q09326	MGAT2	Mannosyl (alpha-1,6-)-glycoprotein beta-1,2-N-	rat	50.2	1 IN	(2003) Biochim, Biophys. Acta 1649, 140-145. D'Agostaro GA, Zingoni A, Moritz RL, Simpson RJ, Schachter
87	gi[20128770]	P70624	UGT1A7	acetylglucosaminyltransferase UDP glycosyltransferase 1 famity, polypeptide A7	rat	14.3	2 IN	H, Bendiak B. (1995). J. Biol. Chem. 270, 15211-15221. Grove AD, Kessler FK, Metz RP, Ritter JK. (1997). J Biol.
88	• gij16915936j	Q9UQ53	None	Mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-	human	31,3	2 IN	Chem. 272, 1621-1627. Yoshida A, Minowa MT, Takamatsu S, Hara T, Ikenaga H.
89	gi 8393371	Q9WTS2	FUT8	acetylglucosaminyltransferase 2 Fucosyltransferase 8: (alpha (1,6) fucosyltransferase);	mouse	19.5	2 OUT	Hayashi H, Yoneda A, Asada M, Ikekila M, Imamura T. (2000).
90	gi 22219438	Q9QW64	SIAT1	alpha-1,6-1ucosyliransrerase Sialyliransferase 1 (beta-galactoside alpha-2,6-	rat	57.9	0 OUT	Weinstein J, Lee EU, McEntee K, Lai PH, Paulson JC. (1987).
91	gi 6677957	P54751	SIAT4A	starytransferase 4A (beta-galactosidase alpha-2,3- sialytransferase 4A (beta-galactosidase alpha-2,3-	mouse	25.6	1 IN	Martin LT, Marth JD, Varki A, Varki NM. (2002). J. Biol. Chem. 272, 2920, 3938
92	qi 6981540	P97877	None	sialytransierase) Sialytransferase 8C (GT3 alpha 2,8-sialytransferase)	rat	13.9	1 IN	Zzng G, Gao L, Yu RK. (1997). Gene 1997, 131-134.
93	git10946990	Q9JMG2	COSMC	chaperone	noman	20.0	1 151	16613-16618. Cotting C Kuba L Zaba R. Brinkmann T. Klassiek K. (2000)
94	giti 19954641	CORKAGA	Nees	Nyosyinansierase z	iat .	20.1	1 1.1	Moliarity II, Hurt K L Respice AC, Storm PB, Larov W
90	Sulfation Enzymes	086464	None	ODF-glucuronale decarooxylase 1		31.5		Schnaar RL, Snyder SH. (2002). J. Biol. Chem. 277, 16968-
96	gi 7305591	O70281	TPST1	Protein-tyrosine sulfotransferase 1	mouse	44.6	1 IN	Ouyang Y, Lane WS, Moore KL. (1998). Proc. Natl. Acad. Sci. USA 95, 2896-2901.
97 98	gi 6678421 gi 13242253	O88856 Q02353	TPST2 HSST1	Protein-tvrosine sulfotransferase 2 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1	mouse rat	21.3 46.9	1 IN 1 IN	Ouvang YB, Moore KL. (1998). J. Biol. Chem. 273, 24770- Hashimoto Y, Orellana A, Gil G, Hirschberg CB. (1992). J. Biol. Chem. 267, 15744-15750
99	gi[7106357]	P52850	HSST2	N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2	mouse	10 1	t IN	Aikawa J, Grobe K, Tsujimoto M, Esko JD. (2001) J. Biol. Chem. 276, 5876-5882
10	0 gi 6754244	Q8R3H7	HS2ST1	- Heparan sulfate 2-O-sulfotransferase 1	mouse	24.2	1 IN	Rong J, Habuchi H, Kimata K, Lindahl U, Kusche-Gullberg M. (2000) Biochem J 346, 463-468
10	1 gi(15277317)	Q9EPS3	GLCE	Glucuronyl C5-epimerase; heparan sulfate-glucuronic acid C5-epimerase	mouse	17	1 IN	Crawford BE, Olson SK, Esko JD, Prinhal MA (2001). J. Biol. Chem. 276, 21538-21543.
103	Soluble Luminal 2 gi(16758210)	Q63083	NUCB1	CALNUC, Nucleobindin 1	rat	63.2	1 OUT	Weiss TS, Chamberlain CE, Takeda T, Lin P, Hahn KM,
10:	3 gij11072106j	Q9J185	NUCB2	NEFA precursor	rat	70.7	1 OUT	Farquhar MG. (2001). Proc. Natl. Acad. Sci. USA 98, 14961- Morei-Huaux VM, Pypaert M, Wouters S, Tartakoff AM, Jurgan
10	4 gij18426836j	Q91ZS3	CAB45	45 kDa calcium-binding protein	rat	41.1	1 IN	U, Gevaert K, Courtoy P. (2002). Eur. J. Cell Bioł. 87, 87-100. Zhu Y, Wang M, Lin H, Luo. (2001). J. Breast Cancer Res.
10	5 gil69788791	P04276	DBP	Vitamin D-binding protein	rat	30	0 OUT	Treat. 69, 29-38. Cooke NE. (1986). J. Biol. Chem. 261, 3441-3450.
	-							

(continued)

Table 1 continued.

106	gi 6679809	Q9Z1E1	FLOT1	Flotillin 1	mouse	30.8	1 OUT	Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF, (1997) J. Biol. Chem. 272, 13793-13802
107	gi 13929186	Q9Z2S9	FLOT2	Flotillin 2. reggie 1-1	rat	14.5	1 OUT	Lang DM, Lommel S, Jung M, Ankerhold R, Petrausch B, Laessing U, Wiechers MF, Plattner H, Stuermer CA (1998) J Neurobiol 37, 502-523.
108	Transporters gi[21687224]	Q96NC3	None	solute carrier family 30 (zinc transporter), member 6. hypothetical protein FLJ31101	human	14.5	7 IN	Huang L, Kirschke CP, Gitschier J. (2002), J. Biol. Chem. 277 26389-26395
109	gi[18777797]	Q64566	ATP2C1	Calcium-transporting ATPase type 2C, member 1	rat	15.7	10 IN	Gunteski-Hamblin AM, Ctarke DM, Shull GE. (1992).
110	gi 34328278	Q9DBH5	LMAN2	Vesicular integral-membrane protein VIP36	mouse	26.6	1 OUT	Biochemistry 37, 7500-7808. Harrison SM, Dunwoodie SL, Arkell RM, Lehrach H, Beddington RS. (1995). Development 121, 2479-2489
1	Endoplasmic Reticu gi[6978739]	ilum P11711	CYP2A1	Cytochrome P450 2a1	rat	30.3	1 IN	Matsunaga T, Nomoto M, Kozak CA, Gonzalez FJ. (1990).
2	gi 6978741	P15149	CYP2A2	Cytochrome P450 2a2	rat	35.4	1 IN	Biochemistry 29, 1329-1341. Matsunaga T, Nomoto M, Kozak CA, Gonzalez FJ (1990)
3	gi 15147326	P11509	CYP2A6	Cytochrome P450 2a6	human	16.6	1 IN	Biochemistry 29, 1329-1341. Yoshida R, Nakajima M, Nishimura K, Tokudome S, Kwon JT.
4	gi 19526798	Q8VCW9	CYP2A12	Cytochrome P450 2a12	mouse	9.8	1 IN	Yokoi T. (2003). Clin. Pharmacol. Ther. 74, 69-76. Iwasaki M, Lindberg RL, Juvonen RO, Negishi M. (1993)
5	gi 13699809	Q16696	CYP2A13	Cytochrome P450 2a13	human	15.4	1 IN	Biochem. J. 291, 569-573, Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C,
6* 7	gi 9506529 gi 130041661	P08683	CYP2C11	Cytochrome P450 2c11	rat	66	3 IN	Nakamura Y. (2003) J. Hum. Genet. 48, 249-270. Biagini C. Celler C. (1996). Biochem. Biophys. 326, 298-305 Combined R. Mada A. Starz, A. Mallar C. Companies C.
, ,	gil13994 (66)	P11510	CTP2C12		rat	9.2	1 IN	Caphiropoulos PG, Mode A, Strom A, Moller C, Fernandez C, Gustafsson JA. (1988). Proc. Natl. Acad. Sci. USA 85, 4214-
8 9	gij19924039j	P33260 P19225	CYP2C18 CYP2C22	Cytochrome P450 2c18 Cytochrome P450 2c22	human rat	20.4 42.7	1 IN 4 OUT	Finta C, Zaphiropoulos PG. (2000). Genomics 63, 433-438. Emi Y, Chijiiwa C, Omura T. (1990). Proc. Natl. Acad. Sci. USA
10	gi[13929204]	P24470	CYP2C23	Cytochrome P4S0 2c23	rat	40.3	0 OUT	87, 9746-9750. Karara A, Makita K, Jacobson HR, Fałck JR, Guengerich FP, DuBois RN, Capdevila JH. (1993). J. Biol. Chem. 268, 13565-
11	gi 31982435!	Q91WN9	CYP2C29	Cytochrome P450 2c29	mouse	19.4	0 OUT	13570. Matsunaga T, Watanabe K, Yamamoto I, Negishi M, Gonzalez
12	gi 8393233	P05179	CYP2C7	Cytochrome P450 2c39	rat	36.5	0 OUT	FJ, Yoshimura H. (1994). Biochim. Biophys. Acta 1184, 299- Kimura H, Yoshioka H, Sogawa K, Sakai Y, Fujii-Kuriyama Y.
13*	qi 6978747	P10634	CYP2D2	Cvtochrome P450 2d2	rat		1 IN	(1988), J. Biol. Chem. 263, 701-707. Matsunaga E. Umeno M. Gonzalez FJ, (1990), J. Mol. Evol
14	0167535821	P24456	CYP2D10	Cytochrome P450 2d10	mouse	14 7	1 IN	30, 155-169. Johikawa T, Itakwa T, Negishi M (1989), Biochemistov 28
15	01100240411	OBJERO	CVP2D14	Citashama R460 2418		10.4	4 (5)	4779-4784. Miruso D. Takahashi V. Hissi T. Imagla S. Kamataki T. Sugar
		00000	0000000		101	19.4	1 111	Y. (2003). Biochim. Biophys. Acta 1627, 121-128.
16	gij12836461j	Q9DB12	CYP2D26	Cytochrome P450 2d26	mouse		2 001	Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Muramatsu M, Hayashizaki Y. (2000). Genome Res. 10, 1617-1630.
1/	gi[13928734]	P05182	CYPZE	Cytochrome P450 2e1	rat	27.6	3 IN	Gong P, Gederbaum AI, Nieto N. (2003). J. Biol. Chem. 278, 29693-29700.
18	gi 23463305	P05183	CYP3A2	Cytochrome P450 3a2	rat	27.6	3 IN	Rekka E, Evdokimova E, Eeckhoudt S, Labar G, Calderon PB. (2002). Biochem. Pharmacol. 64, 633-643.
19	gi[21955148]	Q64581	CYP3A18	Cytochrome P450 3a18	rat	28.3	4 IN	Nagata K, Murayama N, Miyata M, Shimada M, Urahashi A,Yamazoe Y, Kato R. (1996). Pharmacogenetics 6, 103-111
20	gi 6681121	O35728	CYP4A14	Cytochrome P450 4a14	mouse	15.4	2 OUT	Heng YM, Kuo CS, Jones PS, Savory R, Schulz RM.Tomlinson SR, Gray TJ, Bell DR. (1997). Biochem. J. 325, 741-749.
21 22	ail96652251 gi 69787511	P33274 Q64654	CYP4F1 CYP51A1	Cvtochrome P450 4f1 Cytochrome P450 51a1	rat rat	43.7 9.9	2 OUT 2 OUT	Chen L, Hardwick JP. (1993). Biochem. Biophys. 300, 18-23. Aoyama Y, Funae Y, Noshiro M, Horiuchi T, Yoshida Y. (1994)
23	gi 13928780	P00388	POR	Cytochrome P450 (cytochrome) oxidoreductase	rat	43.7	1 IN	Porter TD, Beck TW, Kasper CB. (1990). Biochemistry 29,
24	gi 16507237	P11021	HSPA5/GRP78	Heat shock 70kDa protein 5 (glucose-regulated protein,	human	62.3	1 OUT	9814-9818. Munro S, Pelham HR. (1986). Cell 46, 291-300.
25	gi 57298771	P11142	HSP73	78kDa): BIP Heat shock cognate protein 70: heat shock 70kD protein 8	human	41.3	0 OUT	Rensing SA, Maier UG. (1994). J. Mol. Evol. 39, 80-86.
26	gi 6981324 gi 83933221	P04785	PDIA1	Protein disulfide isomerase (Protyl 4-hydroxylase, beta polypeptide) Protein disulfide isomerase 43 EBn60	rat	59.1 56.2		Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WJ. (1985). Nature 317, 267-270. Nurse B, Atti N, Ellison D H. (2002). Am J: Physiol. Renal
	gil5031973t	015084	PDIAG	Protein disuffide isomerase related eratein	human	20	1.007	Physicial 282, F424-F430.
20	gijoos 1975)	010004	F DIA6	CD-22	numan	20	1001	Biochem. 132, 451-455.
29	gi(16758848)	090106	ERP29	ERp29	rat	39.2		Sargsyan E, Baryshev M, Szekeiy L, Shanpo A, Mkrichian S (2002) J, Biol Chem. 277, 17009-17015.
24	91130727321	Booteco	CD004	ED-00	mouse	40.0	1000	A. Sitia R. (202). EMBO J. 21, 835-844.
31	gil77064951	Q9UBS4	ERJ3	ER-associated Hsp40 co-chaperone: hDj9; ERj3	human	49.4	1 IN	Mazzareila RA, Green M. (1987) J. Biol. Chem. 262, 8875- Ohtsuka K, Hata M. (2002). Cell Stress Chaperones 5, 98-112
33	gij6753304j	P19324	HSP47	Heat shock protein 47	mouse	34.8	1 IN	Koide T, Aso A, Yorihuzi T, Nagata K. (2000). J Biol. Chem 275, 27957-27963.
34	gi 12831229	Q80X75	CAB140	Calcium binding protein, 140 kDa: 170 kDa glucose regulated protein GRP170 precursor	mouse	23.2		Naved AF, Ozawa M, Yu S, Miyauchi T, Muramatsu H, Muramatsu T. (1995). Cell Struct. Funct. 20, 133-141.
20		D44507	170240		, at	10.0		Biol. 127, 1871-1883.
	gilo3929331	F11507	A1F2A2	ER and SR	rat	16.3	11 10	FEBS Lett. 249, 35-41.
3/	gili 1693172i	P18418	CALR	Calreticulin	rat	61.1	1 OUT	Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M. (1989). J. Biol. Chem. 264, 21522-21528.
38	gi 6671664	P35564	CANX	Calnexin	mouse	33.2	1 OUT	Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ 2nd, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ (1991) J. Biol. Chem. 266, 19599-19610
39	gi(11120720)	P70580	PGRMC1	Membrane associated progesterone receptor component 1, 25-DX	rat	46.8	2 OUT	Selmin O, Lucier GW, Clark GC, Tritscher AM, Vanden Heuvel JP, Gastel JA, Walker NJ, Sutter TR, Bell DA. (1996) Carcinogenesis 17, 2609-2615.
40	gi 6981486	P07153	RPN1	Ribophorin 1	rat	23.8	2 IN	Kreibich G, Marcantonio EE, Sabatini DD (1983) Methods Enzymol. 96, 520-530
41	gi[13928974]	P25235	RPN2	Ribophorin II	rat	25.8	3 OUT	Kreibich G, Marcantonio EE, Sabatini DD (1983) Methods Enzymol 96, 520-530
42	gi 6681153	O54734	DDOST	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit	mouse	33.8	2 IN	Yamagata T, Tsuru T, Momor MY, Suwa K, Nozaki Y, Mukasa T, Ohashi H, Fukushima Y, Momor T (1997) Genomics 45, 535 540
43	gi 31982666	Q99MP2	SSR1	Translocon-associated protein alpha, TRAP alpha	mouse	15	2 IN	Hartmann E, Gorlich D, Kostka S, Otto A, Kraft R, Knespel S, Burger E, Rapoport TA, Prehn S (1993) Eur J Biochem 214, 375-381
44	gi 13385134	Q9CYN2	SPC25	RIKEN cDNA 5730406115, 25-kDa subunit microsomal signal peptidase complex	mouse		2 IN	Strausberg RL et al. (2002). Proc. Natl. Acad. Sci. USA 99. 16899-16903.
45 46	gi 13994184) gi 6679891	O88941 O08794	None G2AN	Glucosidase 1 Alpha glucosidase 2, alpha neutral subunit	rat mouse	13.3 12.1	1 IN 2 OUT	Khan FA, Varma GM, Vijav IK. (1999). Glvcobiology. 9, 797- Arendt CW, Östergaard HL. (1997). J. Biol. Chem. 272, 13117-
47	gi 6679465)	O08795	PRKCSH	Alpha glucosidase 2, beta subunit	mouse	23 6	0 OUT	13125. Arendi CW, Östergaard HL, (1997) J. Biol. Chem. 272, 13117-
48	ail24497519i	P33908	MAN1A1	Mannosidase, aloha, class 1A, member 1, Man9-	human	28.3	2 (11)	13125. Tremblay LO, Campbell Dyke, N. Herecovics A. (1998)
40	0/16005808/	Q911KM7	MANIRI	mannosidase ILIDP.N-anetyl-alpha-D-galactosamine-polyeoptide N	moure	12.7	4 017	Giveobiology 8, 585-595 Gonzalez DS, Karaven K, Vandersell-Naim AS, L = A
45	2	270.000		acetylgalactosaminyltransferase 4			- 001	Moremen KW (1999) J. Biol. Chem. 274, 21375-21386

(continued)

Table 1 continued.

~ ~ ~	1 commuted							
50	gi 13928768	Q63108	None	Carboxylesterase 1	rat	43.9	1 IN	Robbi M, Van Schaftlingen E, Beaufay H. (1996). Biochem J
51	ail21717659	091YG2	None	Carboxylesterase 3	rat	56 3	0 OUT	313, 821-826. Wallace TJ, Kodsi EM, Langston TB, Gergis MR, Grogan WM
52	gi[6679805]	P45878	FKBP2	FK506 binding protein 2	mouse	50	1 OUT	(2001), J. Biol. Chem. 276, 33165-33174 Hendrickson BA, Zhang W, Craig RJ, Jin YJ, Bierer
53	gi 16716609	Q91ZD0	DHCR24	3-beta-hydroxysterol delta-24 reductase	mouse	192	3 IN	BE,Burakoff S, DiLella AG, (1993). Gene <i>134</i> , 271-275 Waterham HR, Koster J., Romeijn GJ, Hennekam RC, Vreken P. Andersson HC, FitzPatrick DR, Kellev RI, Wanders R
54	gi[10120490]	Q9QZH8	None	Arylacetamide deacetylase, homologous with hormone-	rat	20.9	3 IN	(2001). J. Am. J. Hum. Genet. 69, 685-694 Trickett JI, Patel DD, Knight BL, Saggerson ED, Gibbons GF,
55*	gi 6978813	P07687	EPHX1	sensitive lipase Epoxide hydrolase 1 (microsomal xenobiotic hydrolase)	rat	49.4	0 OUT	Pease RJ. (2001). J. Biol. Chem. 276, 39522-39532. Falany CN, McQuiddy P, Kasper CB. (1987). J. Biol. Chem
56	0169810501	P27364	None	3-beta-bydroxy-delta(5)-steroid debydrogenase	rat	45	1 OUT	262, 5924-5930. Zhao HF, Rheaume E, Trudel C, Couet J, Labrie F, Simard
57	gi 19924087	P23457	AKR1C9	3-alpha-hydroxysteroid dehydrogenase	rat	236	0 OUT	(1990). J. Endocrinology 127, 3237-3239. Usui E, Okuda K, Kato Y, Noshiro M. (1994). J. Biochem. 115.
58	gil83935701	P16232	HSD11B1	11-beta-hydroxysteroid dehydrogenase 1	rat	31	0 OUT	230-237. Waddell BJ, Hisheh S, Krozowski ZS, Burton P. (2003).
59	ai114091750	Q9Z1B9	HSD17812	17 beta-hydroxysteroid dehydrogenase type 3	rat	12	3 IN	J.Endocrinology 144, 3101-3106. Strausberg RL et al. (2002). Proc. Natl. Acad. Sci. USA 99,
60	gil167166091	Q91ZD0	DHCR24	24-dehydrocholesterol reductase: 3-beta-hydroxysterol	mouse	19.5	3 IN	16899-16903. Waterham HR, Koster J, Romeijn GJ, Hennekam RC, Vreken
61	oil19424208l	P50169	RDH1	delta-24 reductase Retinol debydrogenase type I	rat	19.6	0 OUT	P. (2001). Am. J. Hum. Genet. 69, 685-694. Chai X, Zhai Y, Napoli JL, (1996). Gene 169, 219-222.
62	gi 6978847	P36365	FMO1	Flavin-containing monooxygenase 1	rat	40.4	1 OUT	Lattard V, Lachuer J, Buronfosse T, Garnier F, Benoit E (2002). Biochem. Pharmacol. 63, 1453-1464.
63	gi 16758174	Q9EQ76	FMO3	Flavin-containing monooxygenase 3	rat	44.8	1 OUT	Lattard V, Lachuer J, Buronfosse T, Garnier F, Benoit E. (2002). Biochem. Pharmacol. 63, 1453-1464.
64*	gi 21426797	Q8K4C0	FMO5	Flavin containing monooxygenase 5	rat	41.1	2 OUT	Lattard V, Lachuer J, Buronfosse T, Garnier F, Benoit E (2002). Biochem. Pharmacol. 63, 1453-1464.
65 66	ai 115600461 gi 7106309	P00173 P97464	CYB5 EXT1	Cytochrome b5 Exostoses (multiple) 1	rat mouse	85.8 8.5	0 OUT 1 IN	Yoo M. (1997). Biochem. Biophys. Res. Commun. 236, 641- Lohmann DR, Buiting K, Ludecke HJ, Horsthemke B. (1997)
67	gi 9055216	Q9WVL6	EXT3	Exostoses (multiple) 3	mouse	8.9	1 IN	Cytogenet, Cell Genet, 76, 164-166. Carninci P, Havashizaki Y. (1999). Meth. Enzymol. 303, 19-44.
68	gi 31543694	Q8R0X7	SGPL1	Sphingosine phosphate lyase 1	mouse	6	4 OUT	Zhou J, Saba JD. (1998). Biochem. Biophys. Res. Commun. 242, 502-507.
69 70	ai 21703732 gi 6857787	Q91W90 O35465	TXNDC5 FKBP8	Thioredoxin FK506 binding protein 8 (38 kDa)	mouse	20.4 21.4	0 QUT 1 IN	Okazaki Y et al. (2002). Nature 420, 563-573 Pedersen KM, Finsen B, Celis JE, Jensen NA. (1999).
71	gi 6679465	O08795	PRKCSH	Alpha glucosidase II, beta-subunit	mouse	23.6	0 IN	Electrophoresis 20, 249-255. Arendt CW, Ostergaard HL. (1997). J. Biol. Chem. 272, 13117-
72	gi 19705453	P08011	MGST1	Microsomal glutathione S-transferase 1	rat	58.7	3 OUT	13125. DeJong JL, Morgenstern R, Jornvall H, DePierre JW, Tu CP.
73	gi[18373323]	P97886	UGT1	UDP glycosyltransferase 1 family, polypeptide A6	rat	34	2 IN	(1969), 3. Biol. Crieffi, 263, 6430-6436. Ikushiro S, Emi Y, Iyanagi T. (2002). Biochemistry 41, 12813-
74	gi 11560022]	P36510	UGT2A1	UDP-glucuronosyltransferase 2A1 precursor	rat	9.1	2 IN	Lazard D, Zupko K, Poria Y, Nef P, Lazarovits J, Horn S, Khen
75 76	ai 13928718i gi 14010881	P08541 P36511	UGT2B2 UGT2B12	UDP-glucuronosyltransferase 2B2 precursor UDP-glucuronosyltransferase 2B12 precursor	rat rat	68.7 50.8	1 OUT 1 OUT	Jackson MR. Burchell B. (1986). Nucleic Acids Res. 14, 779- Green MD, Clarke DJ, Oturu EM, Styczynski PB, Jackson MR, Burchell B, Tephly TR. (1995). Arch. Biochem. Biophys. 322,
77	gi 4507819	P54855	UGT2B15	UDP-glucuronosyltransferase 2B15 precursor	human	8.3	2 IN	460-468. Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K, Harigae S, Osawa S, Nakamura Y. (2002). Hum. Genet. 47, 505-510.
78	gi[23463309]	P08542	UGT2B3	UDP-glucuronosyltransferase 2B3 precursor	rat	50.4	1 OUT	Mackenzie PI. (1987). J. Biol. Chem. 262, 9744-9749 Kimura T. Ovene IS. (1987). Fur. J. Biochem. 168, 515-521
80	gi[13195672]	P58158	B3GAT3	Beta-1,3-glucuronyitransferase 3 (glucuronosyltransferase	mouse	23.6	1 OUT	Strausberg RL et al. (2002). Proc. Natl. Acad. Sci. USA 99, 16899-16903
81	gi 13929028	P30839	ALDH3A2	Aidehyde dehydrogenase family 3, subfamily A2	rat	53.9	3 IN	Miyauchi K, Masaki R, Taketani S, Yamamoto A, Akayama M, Tashiro Y (1991) J. Biol. Chem. 266, 19536-19542
82	gi 13162326	Q9ES38	BAL	Bile acid CoA ligase	rət	52	1 IN	Falany CN, Xie X, Wheeler JB, Wang J, Smith M, He D, Barnes S, (2002), J Lipid Res. 43, 2062-2071.
83	gi 8392962	Q91X34	BAAT	Bile acid-Coenzyme A: amino acid N-acyltransferase	rat	31.2	2 OUT	Furutani M, Ani S, Higashitsuji H, Mise M, Fukumoto M, Takano S, Nakayama H, Imamura M, Fujita J (1995). Biochem J 311 203-208
84	gi 11560006į	P10867	GULO	L-gulono-gamma-lactone oxidase	rat	37.3	0 OUT	Nishikimi M, Kawai T, Yagi K. (1992). J. Biol. Chem. 267, 21967-21972
85	gi 20302049	P20070	DIA1	NADH cytochrome b-5 reductase, diaphorase	rat	70.1	0 OUT	Pietrini G, Carrera P, Borgese N. (1988). Proc. Natl. Acad. Sci. USA 85, 7246-7250.
86	gi 13929176	Q9JLT5	WFS1	Wolfram syndrome 1: Wolfram syndrome 1 (wolframin)	rat	7.1	9 IN	Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabe Y, Shinoda K, Oka Y (2001). Hum. Mol. Genet. 10,
87	gi[19557691]	O15260	SURF4	Surfeit 4: surfeit locus protein 4: surface 4 integral membrane protein	human	7.4	5 OUT	Duhig T, Ruhrberg C, Mor O, Fried M. (1998). Genomics 52, 72-78.
88 89	gi[11968126] gi[20302024]	O88541 O63617	CYPB ORP150	Cyclophilin B Oxygen regulated protein (150kD)	rat rat	50.5 25.8	1 IN 0 IN	Kainer DB, Doris PA. (2000). Hypertension. 35. 958-964 Kuwabara K. Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda
90	gil40807491)	P33121	FACL2	Long-chain fatty-acid-coenzyme A ligase 1	human	8.9	1 IN	Y. (1996). J. Biol. Chem. 271, 5025-5032. Ghosh B. Barbosa E. Singhl. (1995). Mol. Cell. Biochem. 151.
91	gi[16758398]	O88813	FACL5	Long-chain fatty-acid-coenzyme A ligase 5	rat	41.1	1 IN	77-81. Lewin TM, Kim JH, Granger DA, Vance JE, Coleman RA
92	gi[13929034]	P97524	FACVL1	Very-long-chain-fatty-acid-CoA ligase	rat	43.1	0 OUT	(2001). J. Biol. Chem. 276, 24674-24679. Uchiyama A, Aoyama T, Kamijo K, Uchida Y, Kondo N, Oni T,
93	gi 21426787	Q8K4Y7	SRAPY	Apyrase	rat		1 IN	Hashimoto T. (1996). J. Bioł. Chem. 271, 30360-30365 Failer BU, Braun N, Zimmermann H. (2002). J. Biol. Chem.
94	gi[13195636]	Q9D1M0	SEC13R	Sec13 related protein	mouse	27.6	0 OUT	277, 36978-36986. Strausberg RL et al. (2002). Proc. Nati. Acad. Sci. USA 99,
95	gi 16924008	Q62891	RSEC22	Sec22 homolog	rat	20.9	4 IN	16899-16903. Hay JC, Hirling H, Scheller RH. (1996). J. Biol. Chem. 271,
96	gi 5454042	Q15436	SEC23A	Sec23 homolog A	human	30.2	0 OUT	5671-5679. S Paccaud JP, Reith W, Carpentier JL, Ravazzola M, Amherdt M,Schekman R, Orci L. (1996). Mol. Biol. Cell 7, 1535-1546

^a National Center for Biotechnology Information (NCBI) Accession Number ^b Swiss Prot Accession Number

 Sinso non-cost non-non- Prediction of transmembrane domains using HMMTOP (Version 2.0). The number represents the number of predicted transmembrane domains and the 'in' and 'out' represent the predicted localization of the N-* Arginine dimethylated (refer to Table 3)

Table 2. Unknown Protein Identifica	ation
-------------------------------------	-------

	Accession no. ^a	Protein description	Species	% Coverage	TMDs ^b
1*	gl 27229118	Q9DD20 [#] -putative methyltransferase	Mouse	34.0	1
2	gl 21703704	Q8VCS2 [#] -Chr 17, Wayne State University 94	Mouse	18.2	5
3	gl 29150272	RIKEN cDNA 1110003H02	Mouse	27.6	0
4	gl 13386156	RIKEN cDNA 0610005A07	Mouse	29.4	0
5	gi 31981046	RIKEN cDNA 0610039N19	Mouse	29.8	0
6	gi 13385678	RIKEN cDNA 1200007D18	Mouse	34.1	2
7	gl 19527236	RIKEN cDNA 1110014L17	Mouse	46.3	2
8	gl 13385718	RIKEN cDNA 2400003B06	Mouse	53.7	0
9	gi 19526900	RIKEN cDNA 2010200123	Mouse	11.0	2
10	gi 21313538	RIKEN cDNA 1810037C20	Mouse	36.5	1
11	gl 13385912	RIKEN cDNA 2310034L04	Mouse	60.0	0
12	gl 21313316	RIKEN cDNA 2510039018	Mouse	18.8	2
13	gi 21313032	RIKEN cDNA 2900024C23	Mouse	17.8	1
14	gi 31559920	RIKEN cDNA 4633402C03	Mouse	9.4	2
15	gi 13385750	RIKEN cDNA 4833420E20	Mouse	11.1	5
16	gi 13277372	RIKEN cDNA 6330583M11	Mouse	34.1	0
17	gl 21312890	RIKEN cDNA 3230402M22 gene	Mouse	36.9	0
18	gl 21361757	Hypothetical protein PRO0971	Human	28.1	0
19	g1 40255240	Hypothetical protein FLJ10276	Human	22.6	0
20	gi 21361732	Hypothetical protein FLJ11099	Human	9.5	6
21	g1 40254928	Hypothetical protein FLJ11274	Human	10.7	7
22	gi 21362102	Hypothetical protein FLJ13576	Human	14.1	9
23	gi 8923392	Hypothetical protein FLJ20421	Human	19.2	1
24	gl 18677735	Hypothetical protein MGC12103	Human	19.8	0
25	g1 23956396	Hypothetical protein MGC27952	Mouse	23.5	0
26	gl 22122511	Hypothetical protein MGC30562	Mouse	9.2	1
27	gl 13385022	Hypothetical protein, MGC7041	Mouse	26.9	1
28	gi 9506865	Hypothetical protein MNCb-5081	Rat	42.4	0
29	gl 21361757	Hypothetical protein PRO0971	Human	28.1	0
30	gl 21489985	Hypothetical protein RMT-7	Rat	14.8	1
31	gi 21703824	Similar to KIAA0475 gene product	Mouse	40.6	1
32	gl 7706278	Breast cancer antigen 84	Human	17.5	2
33	gl 13384938	Serologically defined breast cancer antigen 84	Mouse	16.7	2
34	gi 15808990	Carcinoma related gene, F-LANa	Mouse	25.5	4
35	gl 19527026	Expressed sequence AA959742	Mouse	29.3	1
36	gl 19923442	CGI-100 protein	Human	18.8	2
37	gl 11067391	Hypothetical protein FLJ10525	Rat	6.5	3
38	gi 19924091	Synaptic glycoprotein SC2	Rat	16.9	4
39	gl 7657176	Transmembrane protein 4	Human	36.6	0
40	gi 20531765	CLLL6 protein; hypothetical protein from clone 24774	Human	68.9	0
41	ğl 24418883	Hypothetical protein DKFZp434F2322	Mouse	29.8	1

* Arginine dimethylated (refer to Table 3).

Swiss prot accession number.

^a National Center for Biotechnology Information (NCBI) accession number.

^b Prediction of transmembrane domains by using HMMTOP (Version 2.0).

fractionation technique produces a "pure" preparation, proteins from other organelles such as mitochondria and perixosomes may be present as minor contaminants of the Golgi fraction. These would not be detectable by other less sensitive techniques. Therefore, because verification of the functional significance of these proteins in the Golgi requires both localization studies and functional assays, to be conservative, we listed these proteins in their most widely accepted categories.

Of the 421 proteins identified in the Golgi fraction, 110 are previously documented resident Golgi proteins (Table 1). Of these, 70 proteins (64%) are predicted transmembrane proteins (HMMTOP software, version 2.0). Multiple families of Golgi proteins are well represented (Figure 1B). Importantly, previous Golgi proteomes reported very few Golgi transferases (for glycosylation and sulfation) (Taylor *et al.*, 2000; Wu *et al.*, 2000; Bell *et al.*, 2001). In this study, 23 glycosylation (21%) and six sulfation (5%) enzymes were identified.

2914

Furthermore, three of the transferases involved in glycosylation were later shown to be arginine dimethylated (see below; Table 3).

Identification of Novel Putative Golgi Proteins

Of the proteins identified in the Golgi fraction, 41 were proteins with no previously reported functions (Table 2). To establish whether these were Golgi residents or proteins from other organelles, it was necessary to determine their intracellular localization. For practical purposes, we selected two of the unknown predicted transmembrane proteins (protein #1/Q9DD20/putative methyltransferase and protein #2/Q8VCS2) from Table 2. Sequence analysis of Q9DD20 suggested a 20-amino acid N-terminal transmembrane domain and a domain with high sequence similarity to the SAM binding domain KOG4300 in the Conserved Domain Database at National Center for Biotechnology Information (Figure 3A, yellow and green shaded areas, re**Figure 2.** Subcellular localization of proteins of unknown function identified by subcellular proteomics. Fluorescence detection of GFP and antibody staining was performed in NRK cells. Top, immunofluorescence shows the localization of *cis*-Golgi protein GM130 (red, left). The fluorescence from the expression of MethT-EGFP (protein #1 in Table 2/Q9DD20) (green, middle) is shown to overlap with GM130. Bottom, double immunofluorescence shows the colocalization of *cis*-Golgi marker giantin (red, left) and Q8VCS2 (protein #2 in Table 2) (green, middle). Both unknown proteins are highly concentrated in the perinuclear region.

spectively). SAM is the donor molecule for most methyltransferases. Therefore, this domain prediction suggested that the protein may be a putative methyltransferase (Schubert *et al.*, 2003). Corresponding cDNAs were acquired for both unknown proteins, fused with GFP and expressed in NRK cells. When expressed in NRK cells, colocalizations with various markers were used to determine their subcellular localization. Both proteins localized to the *cis*-Golgi judged by their colocalization with known Golgi markers (Figure 2). The top panels show that the presumptive EGFPtagged methyltransferase (MethT-EGFP, Q9DD20) colocalizes with the *cis*-Golgi protein GM130. The bottom panels show that an antibody against Q8VCS2 colocalizes this protein with the *cis*-Golgi marker giantin. These results confirm that two of the 41 unknown proteins are Golgi localized.

Identifications of Arginine Dimethylated Proteins in the Golgi Proteome

To search for methylation of arginine residues in the proteome, the MS/MS spectra were researched against the subset database to consider modifications of 1) +14 on R (methvlation) and 2) +28 on R (dimethylation). A subset database including only rat sequences was used to expedite SEQUEST differential modification searches. Eighteen proteins were identified to be arginine dimethylated in the Golgi proteome and of these, 10 were confirmed Golgi proteins, including the methyltransferase Q9DD20 (Table 3). Protein arginine methylation is a posttranslational modification that results in the addition of monomethyl or dimethyl groups to the guanidino group of arginine. As expected, most of the proteins represented are the abundant proteins with high sequence coverage. The methylated proteins are not all Golgi localized but reside in multiple subcellular organelles. The methylated residues are localized on protein domains reported to be either lumenal or cytoplasmic. This implies that there are at least two methyltransferases necessary for these modifications and that a SAM transporter is present in the Golgi membrane.

Interestingly, the putative methyltransferase, was identified to be dimethylated at Arginine-230 by 12 independent

	Accession no. ^a	Protein identification	Modification site	Localization ^b
Golgi				
1	gl 27229118	Putative transmembrane methyltransferase	R230	Cytoplasmic
2	gl 16758214	Integral membrane protein Tmp21-I (p23)	R171 & R176	Lumenal
3	gl 13384724	p24B, <i>cis</i> -Golgi protein	R102	Lumenal
4	gl 20301975	TGN38, trans-Golgi network protein 1	R74	Lumenal
5	gl 7305095	Golgi autoantigen, golgin subfamily a, 5, Golgin-84	R27 & R88	Cytoplasmic
6	gl 16758358	Golgi SNAP receptor complex member 1; cis-Golgi SNARE (p28)	R102	Cytoplasmic
7	gl 31981620	Mannoside acetylglucosaminyltransferase 1	R41 & R46	Lumenal
8	gl 16915936	Mannoayl (α -1,3-)-glycoprotein β -1,4-N-acetylglucosaminyltransferase 2	R8 & R17	Lumenal
9	gl 6678788	Mannosidase 1, α	R106 & R168	Lumenal
10	gl 20301956	GRASP55, golgi reassembly stacking protein 2	R30 & R47	Cytoplasmic
ER				, ,
11	gl 6978747	Cytochrome P450 2d2	R333 & R487	Cytoplasmic
12	gl 9506529	Cytochrome P450, 2c29	R144	Cytoplasmic
13	gi 6978813	Epoxide hydrolase 1 (microsomal xenobiotic hydrolase)	R295	Lumenal
14	gl 8393322	Protein disulfide isomerase A3, ERp60	R329 & R404	Lumenal
15	gl 21426797	Flavin containing monooxygenase 5	R5	Lumenal
Secretory	-			
16	gl 20330802	Transferrin	R42	Lumenal
Endosome	-			
17	gi 18017593	Endosomal membrane protein, EMP70, member 2	R55 & R90	Lumenal
18	gl 19111162	Endosomal membrane protein, EMP70, member 3	R61 & R116 & R 206	Lumenal

^a National Center for Biotechnology Information (NCBI) accession number.

^b Localization of modified protein domain.

Α

Figure 3. Identification of arginine dimethylation on putative methyltransferase. The protein identified by gi 27229118 NP_082129. RIKEN cDNA 061000 was selected from the list of proteins of unknown function for further analysis. (A) Protein sequence is displayed in boxed text. Shaded regions indicate coverage by identified peptides (gray), the predicted TMD (yellow), and the predicted SAM binding domain (green). Peptides are displayed below the protein sequence in blue text. Modified peptides are displayed in bold blue text, and modification site is indicated on the protein sequence with an arrow. The modified peptide tagged with ** was synthesized to confirm the modification site. (B) Spectrum of the dimethylarginine modified peptide acquired from Golgi MudPIT analysis is displayed on the left. Spectrum of the synthetic dimethylarginine-modified peptide is displayed on the right. Spectra are annotated using Roepstorff and Fohlman nomenclature (Roepstorff and Fohlman, 1984).

overlapping peptides (Figure 3A, bolded blue peptides). Arg-230 is located near the C terminus of the protein and the localization is predicted to be cytoplasmic. To verify the modification, one of the identified arginine dimethylated peptides, LEWQPPPFR*WLPVGPH (modified residue labeled with an asterisk), was synthesized. Tandem mass spectra were collected from the synthetic peptide and compared against the spectrum acquired in the Golgi sample (Figure 3B). The spectra from the Golgi fraction and the synthetic peptide are nearly indistinguishable. Both spectra contain prominent y5, y12, and b11 fragment ions resulting from the favored fragmentation at the N-terminal side of proline residues.

Little is known about the functional and regulatory implications of arginine methylation of nonnuclear proteins, but recent evidence has indicated a role in Golgi function. The drug ilimaquinone, which inhibits the synthesis of the methyl donor SAM, vesiculates the Golgi complex and

Figure 4. Methyltransferase activity is detected in the stacked Golgi fraction. Stacked Golgi fractionated from rat liver was incubated with [^{3H}]SAM in the presence and absence of 0.2% TrintonX-100 and resolved by SDS-PAGE. The gel was infiltrated with fluorographic reagent, dried, and exposed to film. Different labeled bands were detected in the presence and absence of detergent. The labeled bands were excised, digested with trypsin, and identified by mass spectrometry.

blocks secretion (Takizawa et al., 1993; Radeke et al., 1999). Addition of SAM can reverse the ilimaquinone effect (Casaubon and Snapper, 2001). Together with our proteomic evidence for arginine dimethylation of multiple Golgi proteins, these results suggest that the Golgi has endogenous methyltransferase activity. To test this prediction, the enriched stacked Golgi fraction was incubated with [3H]SAM plus/minus TX-100 (Lin et al., 2000). The resulting samples were resolved by SDS-PAGE, and the dried gels exposed to film. More than 10 bands were labeled (our unpublished data). These were excised from the dried gels and in-gel digested with trypsin for protein identification by mass spectrometry. Three proteins from the original list of dimethylated Golgi proteins (α -manosidase 1/#1, cytochrome 450 2d2/#2, and Tmp23/#3) (Table 3) were identified in these bands (Figure 4). These data support the hypothesis that select Golgi and ER membrane proteins are modified by dimethylation of arginine residues.

DISCUSSION

We have performed a proteomic survey of an enriched stacked Golgi fraction from rat liver and have analyzed the results in the context of publicly available annotations. Our proteomic analysis is a survey of the abundant proteins within the Golgi fraction. All protein identifications have high confidence by using a minimum of five independent peptides for identification. Because the likelihood of obtaining multiple peptide identifications per protein is greater for highly abundant proteins (Gao *et al.*, 2003), these criteria favor the analysis of the most abundant proteins within the fraction. This approach was used to optimally identify abundant proteins of unknown function within the fraction. Approximately 10% of the identified proteins in this Golgi fraction are unknowns (41 proteins listed in Table 2) and

represent a rich source of candidates to explore novel functions or integrate known functions of this organelle.

Many known ER proteins were identified in the Golgi fraction. The ER physically adheres to multiple trans-Golgi cisternae (Novikoff, 1964; Ladinsky et al., 1999; Marsh et al., 2001), and this interaction is postulated to be the site of transfer of ceramide to sphingomyelin synthase, which facilitates the synthesis of sphingolipid for sorting and exit at the trans-Golgi (van Meer and Lisma, 2002; Munro, 2003; Hanada et al., 2003). As expected, the ER remains attached to the stacked Golgi during the fractionation protocol (our unpublished data), and ER proteins account for 22% of the total proteins identified. Other proteins fall into categories that are functionally linked to the Golgi or in transit through the Golgi. These proteins have been listed in separate categories. Twenty-six percent of the total proteome are bona fide, literature confirmed, Golgi proteins with the transferases forming the largest group. Because the Golgi proteome will vary in different cells and tissues and in different functional states, this study serves as a baseline to be compared in future studies.

A number of proteins in the isolated Golgi fraction were posttranslationally modified with dimethylation of arginine residues. One of these methylated proteins has a predicted SAM binding domain, suggesting that it is a methyltransferase. All methyltransferases are thought to directly transfer the methyl group from SAM to a substrate/acceptor and SAM binding domains have a high degree of homology (Schubert et al., 2003). Methylation of histones for chromatin regulation and gene silencing is a well-studied example. DNA is also methylated and abnormal methylation patterns on DNA are a nearly universal finding in cancer, making this an actively studied area today (Laird, 2003). Interestingly, from the point of view of our study, most methylated nuclear proteins are modified in the cytosol, and known methyltransferases are cytosolic (Friesen *et al.*, 2001a,b). In contrast to methylated nuclear proteins, however, little is known about methylation of proteins elsewhere in the cell or the functional and regulatory implications of this modification (McBride and Silver, 2001). This protein seems to be a member of a novel methyltransferase family, and our data suggests that there are two methyltransferases (cytosolic and lumenal) as well as a SAM transporter in the Golgi membrane. Because little is known about methylation of ER and Golgi proteins, this represents an exciting new area of study.

The concept arising from the nuclear methylation data is that methylation (especially of arginines) promotes specific protein–protein interactions required in assembly of functional complexes (Friesen *et al.*, 2001a,b). We know little about functional complexes formed with the proteins in the Golgi proteome. One of the big quandaries in the field is that arginine methylation seems to be irreversible. Methylases have never been identified, neither as an activity nor as an enzyme. However, most investigators believe that methylation is regulatory and that methylases will be uncovered (Bannister *et al.*, 2002).

Compelling data suggest that methylation of Golgi proteins is important and physiologically relevant. Many of the golgins, a group of matrix-like and tethering proteins, are direct targets in autoimmune disease (Shields and Arvan, 1999; Doyle and Mamula, 2002; Nozawa *et al.*, 2002). The question to be addressed is are the golgins methylated when they become targets for the autoimmune reaction? The theory that methylation is a factor in autoimmune disease is based on numerous reports from the multiple sclerosis field and other diseases involving demyelination. At the outset of the disease, myelin basic protein becomes symmetrically arginine dimethylated and, in parallel, phosphorylation is greatly reduced or absent (Kim *et al.*, 2003). Although many golgins are reversibly phosphorylated, there is no information available about their methylation or coordinated methylation/ phosphorylation. In the histone field, it is postulated that coordinated dimethylation and phosphorylation regulate gene silencing. Allis and colleagues have proposed the hypothesis that binary switches of dimethylated and reversibly phosphorylated neighboring residues in defined cassettes can regulate protein–protein interaction (Fischle *et al.*, 2003). These models provide a very compelling argument for studying methylation of Golgi proteins.

The data obtained from these studies will be further mined to obtain information on other posttranslational modifications. Goals for the future will be to make organellar proteomics a robust and high-throughput tool that will facilitate the understanding of global changes in protein expression and modification that occur with cellular function and disease states.

ACKNOWLEDGMENTS

We acknowledge support from the National Institutes of Health grants F32-AI54333 (to C.C.W.), F32-DK59731 (to M.J.M.), R01-MH067880 (to J.R.Y.), and R01-GM42629 (to K.E.H.).

REFERENCES

Allan, V.J., Thompson, H.M., and McNiven, M.A. (2002). Motoring around the Golgi. Nat. Cell Biol. 10, 236–242.

Andersen, J.S., Wilkinson, C.J., Mayor, T., Mortensen, P., Nigg, E.A., and Mann, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574.

Bannister, A.J., Schneider, R., and Kouzarides, T. (2002). Histone methylation: dynamic or static? Cell 109, 801–806.

Bell, A.W., et al. (2001). Proteomics characterization of abundant Golgi membrane proteins. J. Biol. Chem. 276, 5152–565.

Casaubon, R.L., and Snapper, M.L. (2001). S-adenosylmethionine reverses ilimaquinone's vesiculation of the Golgi apparatus: a fluorescence study on the cellular interactions of ilimaquinone. Bioorg. Med. Chem. Lett. *11*, 133–136.

Colanzi, A., Suetterlin, C., and Malhotra, V. (2003). Cell-cycle-specific Golgi fragmentation: how and why? Curr. Opin. Cell Biol. 15, 462-467.

Donaldson, J.G., and Lippincott-Schwartz, J. (2000). Sorting and signaling at the Golgi complex. Cell 101, 693–696.

Doyle, H.A., and Mamula, M.J. (2002). Posttranslational protein modifications: new flavors in the menu of autoantigens. Curr. Opin. Rheumatol. 1, 244–249.

Eng, J.K., McCormack, A.L., and Yates III, J.R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. *5*, 967–989.

Fischle, W., Wang, Y., and Allis, C.D. (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479.

Florens, L., et al. (2002). A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526.

Friesen, W.J., Massenet, S., Paushkin, S., Wyce, A., and Dreyfuss, G. (2001a). SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell. 7, 1111–1117.

Friesen, W.J., Paushkin, S., Wyce, A., Massenet, S., Pesiridis, G.S., Van Duyne, G., Rappsilber, J., Mann, M., and Dreyfuss, G. (2001b). The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. *21*, 8289–8300.

Gao, J., Opiteck, G.J., Friedrichs, M.S., Dongre, A.R., and Hefta, S.A. (2003). Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res. 2, 643–649. Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M., and Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809.

Huber, L.A., Pfaller, K., and Vietor, I. (2003). Organelle proteomics: implications for subcellular fractionation in proteomics. Circ. Res. 92, 962–968.

Kim, J.K., Mastronardi, F.G., Wood, D.D., Lubman, D.M., and Moscarello, M.A. (2003). Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol. Cell Proteomics 2, 453–462.

Ladinsky, M.S., Mastronarde, D.N., McIntosh, J.R., Howell, K.E., and Staehelin. L.A. (1999). Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149.

Laird, P.W. (2003). The power and the promise of DNA methylation markers. Nat. Rev. Cancer 4, 253–266.

Lin, C.H., Hsieh, M., Li, Y.C., Li, S.Y., Pearson, D.L., Pollard, K.M., and Li, C. (2000). Protein N-arginine methylation in subcellular fractions of lymphoblastoid cells. J. Biochem. *128*, 493–498.

Link A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, R.D., Garvik, B.M., and Yates III, J.R. (1999). Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. *17*, 676–682.

Lowe, M., Nakamura, N., and Warren, G. (1998). Golgi division and membrane traffic. Trends Cell Biol. 8, 40-44.

MacCoss, M.J., et al. (2002a). Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905.

MacCoss, M.J., Wu, C.C., and Yates III, J.R. (2002b). Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599.

Marsh, B.J., Mastronarde, D.N., Buttle, K.F., Howell, K.E., and McIntosh, J.R. (2001). Organellar relationships in the Golgi region of pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Nat. Acad. Sci. USA *98*, 2399–2406.

Martin, S.E., Shabanowitz, J., Hunt, D.F., and Marto, J.A. (2000). Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 72, 4266–4274.

McBride, A.E., and Silver, P.A. (2001). State of the Arg: protein methylation at arginine comes of age. Cell *106*, 5–8.

Mootha, V.K., et al. (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640.

Munro, S. (2003). Cell biology: earthworms and lipid couriers. Nature 42, 775–776.

Nozawa, K., Casiano, C.A., Hamel, J.C., Molinaro, C., Fritzler, M.J., and Chan. C. (2002). Fragmentation of Golgi complex and Golgi autoantigens during apoptosis and necrosis. Arthritis Res. 4, 1–9.

Novikoff, A.B. (1964). GERL, its form and function in neurons of rat spinal ganglia. Biol. Bull. 127, 358

Palade, G.E. (1975). Intracellular aspects of the process of protein secretion. Science 189, 347–358.

Radeke, H.S., Digits, C.A., Casaubon, R.L., and Snapper, M.L. (1999). Interactions of (-)-ilimaquinone with methylation enzymes: implications for vesicular-mediated secretion. Chem. Biol. 9, 639–647.

Roepstorff, P. and Fohlman J. (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass. Spectrom. 11, 601.

Schirmer, E.C., Florens, L., Guan, T., Yates III, J.R., and Gerace, L. (2003). Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science *301*, 1380–1382.

Schubert, H.L., Blumenthal, R.M., and Cheng, X. (2003). Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335.

Shields, D., and Arvan, P. (1999). Disease models provide insights into post-Golgi protein trafficking, localization and processing. Curr. Opin. Cell Biol. *11*, 489–494.

Tabb, D.L., McDonald, H.D., and Yates, III, J.R. (2002). DTASelect and Contrast: tools for assembling and comparting protein identification form Shotgun proteomics. J. Proteome Res. 1, 21–26.

Takizawa, P.A., Yucel, J.K. Veit B., Faulkner, D.J. Deerinck, T., Soto, G., Ellisman, M., and V. Malhotra, V. (1993). Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73,1079–1090.

Taylor, R.S., Jones, S.M., Dahl, R.H., Nordeen, M.H., and Howell, K.E. (1997). Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol. Biol. Cell *8*, 1911–1931.

Taylor, R.S., Wu, C.C., Hays, L.G., Eng, J.K., Yates, J.R. 3rd, and Howell, K.E. (2000). Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis. *16*, 3441–3459.

Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., Vandenheede, J.R., and Seufferlein, T. (2002). Protein kinase D: an intracellular traffic regulator on the move. Trends Cell Biol. *12*, 193–200.

van Meer, G., and Lisma, Q. (2002). Sphingolipid transport: rafts and translocators. J. Biol. Chem. 277, 25855–25858.

Ward, T.H., Polishchuk, R.S., Caplan, S., Hirschberg. K., and Lippincott-Schwartz, J. (2001). Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. *155*, 557–570.

Washburn, M.P., Wolters, D. and Yates III, J.R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. *19*, 242–247.

Westermann, S., Cheeseman, I.M., Anderson, S., Yates III, J.R., Drubin, D.G., and Barnes, G. (2003). Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. *163*, 215–222.

Wu, C.C., MacCoss, M.J., Howell, K.E., and Yates III, J.R. (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. *21*, 532–538.

Wu, C.C., and Yates III, J.R. (2003). The application of mass spectrometry to membrane proteomics. Nat. Biotechnol. 21, 262–267.

Wu, C.C., Yates III, J.R., Neville, M.C., and Howell, K.E. (2000). Proteomic analysis of two functional states of the Golgi complex in mammary epithelial cells. Traffic 1, 769–782.