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ABSTRACT

Motivation: The ability to accurately model protein structures at the

atomistic level underpins efforts to understand protein folding, to en-

gineer natural proteins predictably and to design proteins de novo.

Homology-based methods are well established and produce impres-

sive results. However, these are limited to structures presented by and

resolved for natural proteins. Addressing this problem more widely

and deriving truly ab initio models requires mathematical descriptions

for protein folds; the means to decorate these with natural, engineered

or de novo sequences; and methods to score the resulting models.

Results: We present CCBuilder, a web-based application that tackles

the problem for a defined but large class of protein structure, the �-

helical coiled coils. CCBuilder generates coiled-coil backbones, builds

side chains onto these frameworks and provides a range of metrics to

measure the quality of the models. Its straightforward graphical user

interface provides broad functionality that allows users to build and

assess models, in which helix geometry, coiled-coil architecture and

topology and protein sequence can be varied rapidly. We demonstrate

the utility of CCBuilder by assembling models for 653 coiled-coil struc-

tures from the PDB, which cover496% of the known coiled-coil types,

and by generating models for rarer and de novo coiled-coil structures.

Availability and implementation: CCBuilder is freely available, with-

out registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/

Contact: D.N.Woolfson@bristol.ac.uk or Chris.Wood@bristol.ac.uk

Received on May 6, 2014; revised on July 12, 2014; accepted on

July 17, 2014

1 INTRODUCTION

The accurate prediction and modelling of protein structures

remain key challenges in structural bioinformatics. Advances

here enable applications in protein folding, design and engineer-

ing, where sequence information needs to be translated to give

insight into protein structure, function and mutation. However,

given the degrees of freedom inherent in polypeptide chains, the

modelling of all potential structures that a sequence, even of

modest length, could adopt is intractable computationally.

Therefore, it is necessary to restrict the structural space being

searched and modelled. Currently, this is done through compara-

tive modelling (Mart�ı-Renom et al., 2000), fold recognition

(Lobley et al. 2009; Wu and Zhang, 2008), fragment-based

recombination (Rohl et al., 2004) or other methods of restricting

conformational space (Rooman et al., 1991; Park and Levitt,

1995; Gibbs et al., 2001).

Another route is to define the space to be searched by struc-

tural parameterization of protein folds (Bowie et al., 1991; Koga

et al., 2012; Ponder and Richards, 1987). This becomes tractable

(i) if there is a high probability that a sequence will fall into a

broad class of protein structure; and (ii) if these 3D structures

can be described mathematically to allow robust parameteriza-

tion. The �-helical coiled coil is an example of such a protein fold

where there are good broad-brush links between sequence and

the overall structural class (Delorenzi and Speed, 2002; Lupas

et al., 1991; Vincent et al., 2013). Furthermore, the backbone

architectures can be described by a small number of structural

parameters (Crick, 1953a; Offer and Sessions, 1995). Therefore,

we have developed a tool for coiled-coil structures that uses para-

metric modelling.
Coiled coils are bundles of �-helices in which component

strands wrap around each other to form rope-like super-helical

structures (Lupas and Gruber, 2005). In the simplest cases, this is

encoded by a relatively straightforward seven-residue repeating

pattern of hydrophobic (h) and polar (p) amino acids, ‘hpphppp’

(Woolfson et al., 2012), often assigned abcdefg (Fig. 1a). This

patterning, combined with the �3.6 residues per turn of an �-
helix, generates a hydrophobic stripe that spirals around each

helix giving the interface between the component helices (Fig.

1b). The interface is packed tightly together through so-called

‘knobs-into-holes’ (KIH) packing (Crick, 1953b) where the

‘knob’ residue on one helix projects into a ‘hole’ generated by

a constellation of four residues on the partner helix (Fig. 1c).

Despite the relatively straightforward sequence repeat and

mode of packing, complexity arises because coiled coils are not

limited to the common dimeric, trimeric and tetrameric oligo-

mers: pentamers (Malashkevich et al., 1996), a decamer (Sun

et al., 2014) and a dodecamer (Koronakis et al., 2000) are

observed in nature, while there also exist a de novo hexamer

(Zaccai et al., 2011) and an engineered heptamer (Liu et al.,

2006). Furthermore, within these gross architectures, the helices

can be arranged in parallel, antiparallel or mixed topologies, and

the assemblies can be homo- or hetero-typic (Lupas and Gruber,

2005; Testa et al., 2009; Moutevelis andWoolfson, 2009). For the

lower-order assemblies (2–4), oligomer state is largely dictated by

the side chains that form the a/d interface (Harbury et al., 1993,

1994; Woolfson and Alber, 1995) and how they can pack*To whom correspondence should be addressed.
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together in space. The specification of oligomers above tetramer

is less well understood, but it is clear that more complex sequence

patterns than hpphppp are required (Woolfson et al., 2012). In

other words, we have a good understanding of how parallel

dimers, trimers and tetramers are specified by natural sequences

and how these can be made de novo; however, beyond these there

is more to learn.

Although methods are available to model coiled coils (Crick,

1953a; Offer et al., 2002; Grigoryan and Degrado, 2011), these

only generate the �-helical backbones, which severely limits the

modelling, prediction and design of coiled-coil structures. This is

because of the clear link between the make up of helix–helix

interfacing residues and coiled-coil oligomer state (Harbury

et al., 1993; Woolfson and Alber, 1995), i.e. a side-chain packing

effect, which must be captured in models.

Our aim was to improve the modelling and design of coiled-

coil sequences and structures and to develop a tool for non-

specialist to perform these tasks. While the large database of

known coiled coils has informed and allowed us to test our ap-

proach (Lupas and Gruber, 2005; Moutevelis and Woolfson,

2009; Testa et al., 2009), coiled-coil proteins present considerable

scope for generating completely de novo structures (Woolfson,

2005; Zaccai et al., 2011). This illustrates further the power and

potential of this type of structural parametric modelling.
We set out to create an application that could model as many

coiled-coil architectures and topologies as possible, that is, those

Fig. 1. Sequence and structural features of the �-helical coiled coil. (a) Helical wheel representing a coiled-coil dimer. Hydrophobic residues are typically

located at the a and d positions, with polar residues at the b, c, e, f and g positions. (b) A single helix from a coiled coil, highlighting the stripe of a/d

residues (grey) that forms the assembly interface. (c) KIH packing, where the knob residue (usually a or d) from one helix (grey) projects into a hole

created by four residues (black) on its partner (e.g. d’g’a’d’ or a’d’e’a’). (d) The pitch parameter describes the distance (Å) for a component helix to screw

360� around the super-helical axis. (e) The radius of assembly is measured from the super-helical axis to the centre of a component helix. (f) Interface

angle, or �1, is measured as the angle between the vector from the super-helical axis to the helical centre and the vector from the helical centre to the C�
carbon of an a-position residue
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observed already in nature plus those that are theoretically pos-
sible but currently without natural precedents. To do this, we
divided the problem into two parts: first, to generate backbone

models for the many coiled-coil structures possible; second, to fit
and score sequences onto these frameworks.
CCBuilder is a web-based application that generates complete

(backbone and side chain) atomistic models of heptad-based
coiled coils in conformations specified by the user. Models are
scored for feasibility with a measure of backbone strain, a test for

KIH packing, and two atom-based forcefields. A basic ‘Builder’
mode is capable of modelling homo- and hetero-oligomeric
coiled coils in parallel (up to 26 chains) and antiparallel (even

numbered chains up to 26) conformations. This covers 96.3% of
coiled coils in CC+ (Testa et al., 2009) with �50% sequence
redundancy. Furthermore, an ‘Advanced’ builder mode allows

parameters to be specified for individual �-helices around a
super-helical axis, enabling some of the remaining more unusual

coiled-coil conformations to be modelled. It also presents oppor-
tunities for building models for the many as yet unobserved, but
theoretically possible, coiled-coil structures.

2 METHODS

2.1 Application architecture

CCBuilder has three main parts: a web-based graphical user interface

(GUI), a coiled coil modelling component and a validation/scoring

method. The GUI is set up as part of a Linux, Apache, NoSQL/

MongoDB, Python/Django stack with a browser-based front end for

collecting input parameters and returning the resultant models to the

user. As models are generated server side, modelling, validation and visu-

alization can be performed on any device with a WebGL-enabled brow-

ser, including certain mobile platforms.

The GUI has a GLmol-powered molecular viewer (http://webglmol.

sourceforge.jp/index-en.html) to display the models generated (Fig. 2a).

Beside this, there are six main tabs: ‘Build’, ‘Log’, ‘Models’, ‘Interface’,

‘Plot’ and ‘Information’. ‘Build’ collects input parameters and displays

model scoring. It also has a list of example models based on known

coiled-coil crystal structures (Table 1) as a guide for parameter selection.

‘Log’ gives a detailed list of energies per residue, which is useful for

identifying clashes between side chains, as well as a full SOCKET

(Walshaw and Woolfson, 2001) report to indicate if and where KIH

interactions are made. ‘Models’ gives a history of the last 10 models

generated and allows these to be rebuilt or downloaded by the user.

‘Interface’ allows the interface angle—a parameter that defines the rota-

tion of helices relative to the long axis of the coiled coil (Fig. 1f)—to be

set graphically, easing parameter selection. ‘Plot’ displays a line graph of

the Rosetta and Bristol University Docking Engine (BUDE) scores for

the last 10 models generated. The ‘Information’ tab gives a brief guide to

operation and a list of useful references.

Building a model requires basic sequence and register information

along with oligomer state and three geometric parameters: radius, pitch

and interface angle/�1, Figure 1d–f. Initially, a poly-glycine model of the

�-helical backbone is generated using Crick’s mathematical description of

a coiled coil (Crick, 1953a), as implemented in MAKECCSC (Offer and

Sessions, 1995). To generate antiparallel helices, the coordinates of spe-

cified helices are rotated around the axis defined by the vector between

the centre of the antiparallel helix and the centre of the whole assembly.

This is performed using rotation matrices that are generated for each

antiparallel chain and are applied to the atomic coordinates. If a z-shift

parameter is required—which is a displacement of a helix along the length

of the super-helical axis, measured in Å—helices are also rotated about,

as well as translated along, the super-helical axis. This is to maintain the

orientation of the helices relative to the assembly. The rotation angle (��)

is calculated from the distance of z-shift (z) required and the pitch of the

assembly (P).

�=
z

P

� �
� 360 ð1Þ

This angle and the super-helical axis are used to generate a rotation

matrix, which is applied to the shifted strands, ensuring that these remain

in phase with the pitch of the assembly after translation.

After the backbone has been created, side chains are added onto this

frame using SCRWL 4 (Krivov et al., 2009), and the side-chain relaxation

algorithm from the Rosetta molecular modelling package as implemented

in PyRosetta (Chaudhury et al., 2010). The model is then ready for val-

idation. Three methods are applied to test model validity: a measure of

backbone strain, testing for KIH packing, and two all-atom scoring

functions.

As users are free to specify a broad range of values for input param-

eters, there is the potential to generate strained helices (i.e. helices where

geometry and hydrogen bonding are far from ideal) through using either

Fig. 2. Overall architecture, appearance and workflow of CCBuilder. (a)

GUI displaying the molecule viewer and the ‘Basic’ build tab, which

contains fields for parameter entry and displays the returned model scor-

ing. (b) Application architecture and workflow

CCBuilder
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low or high pitch values. Rather than restrict the permitted values, a

measure of backbone strain is used to allow users the choice of what

models to accept and reject. To determine whether the backbone in the

models is strained, the number of residues per �-helical turn (n) was

calculated, using Helanal (Bansal et al., 2000), for a set of 32 878, non-

redundant, �-helices selected from 2417 crystal structures with a reso-

lution of better than 1.6 Å and sequence identity530%. The value for

n for the model, which is extracted fromMAKECCSC when the model is

generated, is returned to the user with an indication of how it compares

with the reference distribution.

Models are tested for KIH packing using SOCKET (Walshaw and

Woolfson, 2001). A full report is available in the ‘Log’ tab detailing

which residues are involved. The cut-off distance for finding KIH packing

is 7 Å as default, but this can be modified via the ‘Build’ tab. Knob

residues are highlighted in the model viewer as ‘sticks’ compared with

the ‘line’ representation for other residues.

Two scoring functions are applied to the final model: Rosetta (Bradley

et al., 2005) using the standard force field, with the ‘Score 12’ patch; and

BUDE (McIntosh-Smith et al., 2011; Mcintosh-smith et al., 2014).

BUDE uses an empirical free-energy force field to predict the free

energy of binding between two molecules. BUDE is a general purpose,

GPU-accelerated, molecular-docking program designed to perform vir-

tual screening, binding site identification and protein–protein docking in

real space. Here, we have applied it to calculate binding energies between

the component chains of coiled-coil models by making minor modifica-

tions to the original residue-based force field parameters (the resulting

force field is Bude_FF-R1).

For CCBuilder, BUDE scores a single conformation specified by the

user during model generation. One �-helix in the coiled coil is designated

as the ‘ligand’, with the other helix/helices designated as the ‘receptor’

before energy of binding is calculated. This is repeated for each strand in

the assembly and averaged to generate the final score. As BUDE is de-

signed to minimize thousands of potential drug candidates, each in a

range of different conformations, the binding energy of a single conform-

ation can be evaluated in a fraction of a second, making it ideal for a web-

based application where response time contributes to overall user

experience.

2.2 Helix-building validation

To test the model-building protocol, we rebuilt a set of 594 parallel

homo-oligomeric coiled coils (oligomer state between 2 and 6 and �40

amino acids) selected from CC+, a relational database of coiled-coil

proteins (Testa et al., 2009). The parameters required to build models

of these coiled coils were extracted from the crystal structures using

TWISTER (Strelkov and Burkhard, 2002), which measures them in

three residue frames before averaging across the length of the protein.

The coordinates of the structure and the model were fitted, and the

RMSD was calculated using the McLachlan algorithm (McLachlan,

1982) as implemented in the program ProFit (Martin, A.C.R., http://

www.bioinf.org.uk/software/profit/). To allow for comparison between

sequences of different length, the RMSD scores were normalized using

the RMSD100 algorithm (Carugo and Pongor, 2001), whereN=number

of amino acids.

RMSD100=
RMSD

1+ln

ffiffiffiffiffiffiffiffi
N

100

r ! ð2Þ

CCBuilder’s antiparallel mode was tested in the same manner. A set of

59 homo-oligomeric antiparallel coiled-coil dimers, with �40 amino

acids, was modelled in CCBuilder, and RMSD values between the

model and the crystal structure calculated and normalized to

RMSD100 scores.

3 RESULTS

3.1 Residues per �-helical turn as a measure of backbone

strain

Helanal (Bansal et al., 2000) was used to determine the mean

value of n in a set of �-helices extracted from high-resolution

structures (51.6 Å) (Fig. 3a). This was found to be 3.60, which

should represent average geometry for an unstrained �-helix.
However, the distribution was broader than expected, with a

shoulder around n=3.3. This closely mirrors an aforementioned

distribution found in a smaller set of �-helices (Chothia et al.,

1981), with the shoulder being attributed to segments of 310-helix

found at the ends of �-helical regions. These non–�-helical re-
gions were filtered out using helix definitions fromDSSP (Kabsch

and Sander, 1983) (Fig. 3b), generating a mean value of n=3.65.

For comparison, we determined the distribution in �-helices from
coiled coils of the CC+ database (Testa et al., 2009). For these,

the mean value was 3.62. As judged by Student’s t-test, the

two distributions were indistinguishable, t(6768)=27.90,

P=2.2� 10–16. Thus, models returned with n=3.65� 0.07

should be considered as models with good backbone geometry

for coiled coils and helical assemblies in general.

3.2 Model validation

Models were constructed based on parameters derived from

known crystal structures to test CCBuilder’s model-building

protocol. The building process was automated to produce 653

models for comparison with the corresponding crystal structure

(Table 2 and Fig. 4). We found that backbones were modelled

well, with an average RMSD100 score of50.80 Å measured over

all backbone atoms, similar to previously reported values for

Table 1. ‘Standard’ helical and coiled-coil parameters

Oligomer state PDB code Sequence (gabcdef)4 Residues per

�-helical turn

Radius (Å) Pitch (Å) Interface

angle (�)

2 4DZM EIAALKQ EIAALKK EIAALKW EIAALKQ 3.62 (0.06) 5.07 (0.26) 225.8 (70.3) 26.42 (2.29)

3 4DZK EIAAIKQ EIAAIKK EIAAIKW EIAAIKQ 3.60 (0.03) 6.34 (0.22) 194.0 (36.1) 19.98 (1.77)

4 3R4A ELAAIKQ ELAAIKK ELAAIKW ELAAIKQ 3.60 (0.02) 6.81 (0.07) 213.2 (6.8) 22.06 (1.27)

5 1MZ9 ELQETNA ALQDVRE LLRQQVK EITFLKN 3.62 (0.04) 8.57 (0.16) 174.1 (12.8) 14.27 (4.10)

6 3R46 ELKAIAQ ELKAIAK ELKAIAW ELKAIAQ 3.57 (0.05) 9.13 (0.14) 228.4 (29.4) 16.40 (1.13)

Note: Values in brackets are for the standard deviations.
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backbone models (Grigoryan and Degrado, 2011). With side-

chain atoms included, the calculated models reproduced the ex-

perimental structures with a reasonable mean RMSD100 score

of 2.20 Å. This value is inflated, especially in lower order coiled

coils, as five of seven residues of the heptad repeat—i.e. those

other than a and d—are relatively unconstrained (Fig. 1a). It

should follow that as oligomer state increases, more residues

become constrained as the helix–helix interfaces broaden—i.e.

to partially include those at e and g—and therefore, the averaged

RMSD100 scores should decrease. This was observed with aver-

age all-atom RMSD100 scores for dimers (250), trimers (266)

and tetramers (50) being 2.38 Å, 2.13 Å and 1.69 Å, respectively.
On average, the RMSD100 scores were higher for the antipar-

allel models than the parallel models (Table 2). This can be

understood in that the latter required an extra parameter (the

z-shift) to describe them, leading to a larger parameter and struc-

ture space. As TWISTER (Strelkov and Burkhard, 2002) does

not measure this parameter and could not determine this a priori,

z-shifts were applied to each model individually as they were

constructed, through sequentially varying the value and scoring

the model.
The overlays of Figure 5 are used to illustrate the fits between

the model and experimental structures in more detail. These are

for the well-characterized coiled-coil dimer from the yeast tran-

scriptional activator GCN4 (2ZTA) (Gonzalez et al., 1996), an

antiparallel dimeric coiled coil from bovine IF1 (1GMJ)

(Cabez �on et al., 2001), the de novo parallel hexameric coiled

coil CC-Hex (3R3K) (Zaccai et al., 2011) and a slipped engin-

eered heptameric mutant of the aforementioned GCN4 peptide

(2HY6) (Liu et al., 2006). These were selected to demonstrate a

range of different model types that CCBuilder can generate.

From these overlays, it is apparent that CCBuilder captures

the gross structural properties of the assemblies, with good align-

ment of the backbones.

As mentioned above, a possible consequence of coiled-coil

folding is that residues outside the a and d sites could be rela-

tively unconstrained (Fig. 1). That said, along with residues at

the e and g sites, it is those at a and d that contribute most to

stability and oligomer-state definition for the vast majority of

coiled-coil structures. Thus, we felt it important that these resi-

dues were modelled accurately. Of the core residues in the exam-

ined structures, the experimentally observed rotamers were

consistently selected in our models for valine and isoleucine,

and the correct leucine rotamers were reproduced well in both

dimers and the slipped heptamer. However, for CC-Hex, the

rotamers of the leucine side chains were almost all incorrectly

assigned, possibly indicating that these residues are less con-

strained in this particular structure. Interestingly, and consistent

with this, we find that these leucine residues, which fall at a sites,

are highly mutable in CC-Hex where we have made and solved

X-ray crystal structures for Leu!Asp, His and Cys mutants

(Burton et al., 2013; Zaccai et al., 2011). We will explore

elsewhere if rotamer selection can be improved using a coiled-

coil–specific rotamer library.

Fig. 4. Distribution of RMSD100 scores measured between the backbone

atoms of models generated with CCBuilder and crystal structures of

known coiled coils. The set used for validation contained 594 parallel

and 59 antiparallel coiled coils extracted from CC+ The mean

RMSD100 score was 2.20 Å (SD=0.67) for all atoms, 0.77 Å

(SD=0.49) for backbone only and 0.76 Å (SD=0.53) for C� carbons

only

Fig. 3. Distribution of residues per �-helical turn. (a) Residues per �-

helical turn (n) in a set of 32 878 �-helices extracted from 2417 crystal

structures with a resolution of51.6 Å and sequence identity530%, using

helix definitions contained in the header of the coordinate files. Mean

values of n=3.60 (SD=0.20). (b) Grey bars: values of n found in a

subset of 13 703 helices from the distribution in Figure 3A, using helices

defined by DSSP (Kabsch and Sander, 1983). Mean=3.65 (SD=0.07).

White bars: values of n found in 4167 helices extracted from 1473 coiled-

coil crystal structures. Mean=3.62 (SD=0.07)

Table 2. Average RMSD100 scores between models generated with

CCBuilder and known coiled-coil structures, for both parallel and anti-

parallel conformations

Orientation Number of

models

Average RMSD100 scores (Å)

All atoms Backbone C� Only

Parallel 594 2.17 (0.68) 0.74 (0.45) 0.72 (0.50)

Antiparallel 59 2.45 (0.59) 1.17 (0.68) 1.11 (0.67)

Combined 653 2.20 (0.67) 0.77 (0.49) 0.76 (0.53)

Note: Values in brackets are for the standard deviations.

CCBuilder
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4 DISCUSSION

We have described CCBuilder, a web-based interactive tool for

generating models of coiled-coil structures. The input sequences

and parameters can be taken from known examples, or can be

completely novel, allowing modelling of natural and de novo
coiled coils. For the former, CCBuilder produces models that
accurately match existing crystal structures, not just for the

common parallel dimers, trimers, tetramers and antiparallel
dimers but also for more unusual coiled-coil geometries. For
de novo coiled coils, unrestricted selection of parameters allows

the user to freely explore potential coiled-coil conformation
space, but this is only useful if there is robust model validation
to guide the users design. In CCBuilder, this is provided through

the combination of a measure of backbone strain, checking for
KIH packing and the choice of two all-atom scoring functions.
Using the number of residues per �-helical turn as a measure

of backbone strain exploits a parameter that is generated during
backbone construction at little computational cost. It also en-
sures good �-helical backbone geometry, which we find to be

tightly defined in general protein structures and coiled coils.
The KIH check, which is done rapidly on the fly with
SOCKET (Walshaw and Woolfson, 2001), is important to

ensure that this signature feature of coiled coils that gives intim-
ate helix–helix packing is captured in the models.
For the final stage of model validation, both the Rosetta and

BUDE force fields are included to offer the user a choice of
scoring method. For this application of constructing coiled-coil
bundles, however, we find that BUDE is better suited to scoring

interactions between the component helices than the standard
Rosetta force field. We believe that this is because of (i) the
relative hardness of atoms in the two force fields, with BUDE

being the ‘softer’, allowing better accommodation of minor geo-
metrical inaccuracies; and (ii) the BUDE hydrophobicity func-
tion giving a better representation of desolvation.

Both the models created for the large rebuild of known coiled-
coil structures (Table 2 and Fig. 4) and the dimeric and hexame-
ric models shown in Figure 5a–c used only the parameters

included in the ‘Basic’ build mode. With this functionality
alone, it is possible to model496% of known coiled-coil struc-
tures (Moutevelis and Woolfson, 2009; Testa et al., 2009), which

should account for the vast majority of biologically relevant
coiled coils. It should be possible to model most of the remaining
coiled coils using the features included on the ‘Advanced’ mode,

which allows parameters to be specified for each chain individu-
ally relative to a central helical axis. The advanced mode was
used to recreate the heptameric model (Fig. 5d), where one of the

interfaces between component helices is slipped by a heptad
(�10 Å), leaving a layer of hydrophobic ‘core’ residue unsatisfied
on two strands. Modelling this required systematic variation of z-

shift for each component chain. Nonetheless, the model returned
closely matched the experimental structure.
CCBuilder also allows the construction of models for coiled-

coil sequences where structural data are not available. The re-
sulting coordinate sets have potential as search models for mo-
lecular-replacement solutions for X-ray diffraction data or as

initial structures in molecular modelling and dynamics simula-
tions. Furthermore, CCBuilder could be used predictively, allow-
ing the rational design of mutants of existing coiled coils, or for

completely de novo sequences and structures. Thus, CCBuilder
should expedite the generation and visualization of models and
allow real-time refinement of these via the input parameters by

the user, above and beyond what is available through any other
software currently available. The combination of measuring

Fig. 5. Overlays of crystal structures and models generated by

CCBuilder. (a) Parallel dimer (2ZTA) RMSD 0.59 Å all atoms, 0.30 Å

backbone and 0.30 Å C� only. (b) Antiparallel dimer, with distinct z-

shifted, (1GMJ) RMSD 0.98 Å all atoms, 0.63 Å backbone and 0.64 Å

C� only. (c) Parallel hexamer (3R3K) RMSD 0.71 Å all atoms, 0.34 Å

backbone and 0.34 Å C� only. (d) Slipped parallel heptamer (2HY6)

0.35 Å all atoms, 0.30 Å backbone and 0.29 Å C� only. Key:

Magenta=Crystal structure, Green=CCBuilder model
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backbone geometry, checking for KIH packing and all-atom

scoring functions allows the robust assessment of the feasibility

of models. Thus, we suggest that CCBuilder is the best currently

available tool for the design of coiled-coil proteins and assem-

blies that are theoretically possible, but hav1e yet to be observed

in nature (Woolfson et al., 2012).
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