
Massive parallelization of serial inference algorithms for a
complex generalized linear model

Marc A. Suchard1,2,3, Shawn E. Simpson4, Ivan Zorych4, Patrick Ryan5, and David
Madigan4

1Department of Biomathematics University of California, Los Angeles, CA, USA

2Department of Human Genetics, David Geffen School of Medicine at UCLA, University of
California, Los Angeles, CA, USA

3Department of Biostatistics, UCLA School of Public Health, University of California, Los Angeles,
CA, USA

4Department of Statistics, Columbia University, New York, NY, USA

5Johnson & Johnson Pharmaceutical Research and Development Titusville, NJ, USA

Abstract

Following a series of high-profile drug safety disasters in recent years, many countries are

redoubling their efforts to ensure the safety of licensed medical products. Large-scale

observational databases such as claims databases or electronic health record systems are attracting

particular attention in this regard, but present significant methodological and computational

concerns. In this paper we show how high-performance statistical computation, including graphics

processing units, relatively inexpensive highly parallel computing devices, can enable complex

methods in large databases. We focus on optimization and massive parallelization of cyclic

coordinate descent approaches to fit a conditioned generalized linear model involving tens of

millions of observations and thousands of predictors in a Bayesian context. We find orders-of-

magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in

high-dimensional statistics and the algorithms we propose open up exciting new methodological

possibilities with the potential to significantly improve drug safety.

1 Motivation and Background

Increasing scientific, regulatory and public scrutiny focuses on the obligation of the medical

community, pharmaceutical industry and health authorities to ensure that marketed drugs

have acceptable benefit-risk profiles (Coplan et al., 2011). Longitudinal observational

databases provide time-stamped patient-level medical information, such as periods of drug

exposure and dates of diagnoses, and are emerging as important data sources for associating

the occurrence of adverse events (AEs) with specific drug use in the post-marketing setting

once drugs are in wide-spread clinical use (Stang et al., 2010). Some relevant papers

focusing on drug safety from observation databases include Curtis et al. (2008); Jin et al.

(2008); Li (2009); Norén et al. (2008); Schneeweiss et al. (2009); Kulldor et al. (2011)

Typical examples of these observation databases encompass administrative medical claims

databases and electronic health record systems, with larger claims databases containing

NIH Public Access
Author Manuscript
ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

Published in final edited form as:
ACM Trans Model Comput Simul. 2013 January ; 23(1): . doi:10.1145/2414416.2414791.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

upwards of 50 million lives with up to 10 years of data per life and exposure to 1000s of

different drugs (Ryan et al., 2012).

The scale of these massive databases presents compelling computational challenges when

attempting to estimate the strength of association between each drug and each of several

AEs, while appropriately accounting for covariates such as other concomitant drugs, patient

demographics and concurrent disease. Generalized linear models (GLMs) with unknown

parameter regularization or Bayesian priors offer one thriving opportunity to estimate

association strength while controlling for many other covariates (Madigan et al., 2011).

However, naive implementation even to find maximum a posteriori (MAP) point-estimates

in standard statistical packages grind to an almost stand-still with millions of outcomes and

thousands of predictors, and hope of estimating even poor measures of uncertainty on drug-

specific association estimates vanishes.

One usual approach to the computationally intensive task of statistical model fitting

entertains distributing the work across a specialized and costly cluster or cloud of

computers. This approach achieves most success when the distributed jobs consist of lengthy

“embarrassingly parallel” (EP) operations, such as the independent simulation of whole

Markov chains in MCMC (Wilkinson, 2006). However, the cluster with its distributed

memory commands high communication latency between operations, rendering even MAP

estimation in a GLM often unworkable, let alone estimation of second order terms such as

standard errors. MAP estimation is generally an iterative algorithm, and the potentially

parallizable work within each step is rarely sufficient to outweigh the communication

latency and thread management costs.

For massive parallelization that overcomes many of these issues, there exists a much less

expensive resource available in many desktop and laptop computers, the graphics

processing unit (GPU); see, for example, Suchard et al. (2010) for a gentle introduction in

statistical model fitting. GPUs are dedicated numerical processors originally designed for

rendering 3-dimensional computer graphics. A GPU consists of tens to hundreds of

processor cores on a single chip. These can be programmed to perform a sequence of

numerical operations simultaneously to each element of a large data array. The acronym

SPMD summarizes this single program, multiple data paradigm. Because the same

operations, called kernels, function simultaneously, GPUs can achieve extremely high

arithmetic intensity provided one can transfer input data and output results onto and off of

the processors efficiently. Because the parallel threads driving the kernels operate on the

same computer card, the cost of spawning and destroying millions of threads within each

iterative step of the MAP estimation is neglible, and communication latency between threads

is minimal. However, statisticians have been slow to embrace the new technology, due in

part to a preconception that GPUs work best with EP operations. To dispell these ideas,

Silberstein et al. (2008) first demonstrated the potential for GPUs in fitting simple Bayesian

networks. Recently, Suchard and Rambaut (2009) and Suchard et al. (2010) have seen

greater than 100-fold speed-ups in MCMC simulations involving highly structured graphical

models and mixture models. Lee et al. (2010) and Tibbits et al. (2011) are following suit

with Bayesian model fitting via particle filtering and slice sampling, and Zhou et al. (2010)

demonstrate GPU utility for high-dimensional optimization.

Suchard et al. Page 2

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

In this paper, we explore the use of GPU parallelization in fitting a real-world problem

involving a penalized GLM to massive observation datasets with high-throughput

computing needs. We entertain recent advances in a Bayesian self-controlled case series

(BSCCS) model (Madigan et al., 2011) and by exploiting the sparsity of the resulting

database design matrix, we optimize a cyclic coordinate descent (CCD) algorithm to

generate MAP estimates for this high-dimensional GLM. Given the substantial speed-up that

optimization and the GPU afford, we provide for the first time rough estimates of the prior

hyperparameters and limited measures of coefficient uncertainty.

2 Methods

GLMs assume subject outcomes arise from an exponential family distribution whose mean

is a deterministic function of an outcome-specific linear predictor (Nelder and Wedderburn,

1972). These models include, for example, logistic regression, Poisson regression and

several survival models. Often, study designs necessiate matching subjects or conditioning

on sufficient statistics of the generative distribution to infer the relative effects of predictors;

this leads to complex GLMs with likelihood-functions that grow computationally expensive

in massive datasets. We explore one such model as a case-study in optimization and

parallelization.

2.1 Bayesian Self-Controlled Case Series Model

Farrington (1995) proposed the self-controlled case series (SCCS) method in order to

estimate the relative incidence of AEs to assess vaccine safety. SCCS provides a cases-only

(subjects with at least one AE) design that automatically controls for time-fixed covariates.

Since each subject serves as her own control, all individual-specific effects drop out of the

model likelihood and the method compares AE rates between exposed and unexposed time-

intervals through an underlying inhomogeneous Poisson process assumption.

Suppose an observational database tracks the drug exposure and AE history of i = 1, … , N

subjects who each experience at least one AE. Figure 1 cartoons such a history. During

observation, subjects start and stop individual regiments of j = 1, … , J possible drugs

accumulated across all subjects. These regiments partition each subject’s observational

period into k = 1, … , Ki eras, during which drug exposure is (assumed to be) constant. Drug

exposure indicators xik = (xik1, … , xikJ)’ and time-lengths lik (generally recorded in days)

fully characterize each era for each subject, where xikj = 1 if exposed to drug j or otherwise

0. Finally, yik counts the number of AEs for subject i during era k and, for convenience, we

group yi = (yi1, … , yiKi)’, xi = (xi1, … , xiKi)’ and li = (li1, … , liKi)’.

A SCCS assumes that these AEs arise according to an inhomogeneous Poisson process,

where a subject baseline effect eϕi and drug exposures multiplicatively modulate the

underlying instantaneous event intensity for subject i during era k. Here, β =

(β1, … , βJ)’ are unknown relative risks attributable to each drug. Consequentially, yik ~

Poisson(λik). Due to computational demand, researchers have typically applied this model to

study only one potential exposure at a time, ignoring correlation between drugs. Madigan et

Suchard et al. Page 3

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

al. (2011) provide further details on the development of the multivariate SCCS involving

multiple drugs simultaneously as used here.

In order to avoid estimating parameters ϕi for all i, the SCCS method conditions on their

sufficient statistics. Under the Poisson assumptions, these sufficient statistics are the total

number of AEs ni = Σk yik that a subject experiences over her observation period, yielding

the model likelihood contribution for each subject,

(1)

Naturally, it is also clear from the likelihood expression that if a subject experiences no AEs

(ni = 0), then that subject does not contribute to the model likelihood, providing a cases-only

design.

Taking all subjects as independent, we write the log-likelihood as a function of unknown β

as

(2)

This likelihood furnishes a complex GLM that carries a high computational burden, arising

from the conditioning and renormalization. In practice, one needs to keep track of the sum of

a large number of terms for each subject and each term requires exponentiation and then

weighting. Such a burden quickly grows prohibitive for the millions of cases available in

observational databases.

Priors—In drug safety surveillance there exist thousands of potential drugs. This high

dimensionality can lead to severe overfitting under the usual maximum likelihood approach,

even for massive datasets, so regularization remains necessary. As an alternative, we adopt a

Bayesian approach by assuming a prior p(β) over the drug effect parameter vector,

constructing a BSCCS (Madigan et al., 2011) and performing inference based on posterior

mode estimates. We refer interested readers to Kyung et al. (2010) for a more in-depth

discussion of the connections between penalized regression and some Bayesian models.

To develop p (β), we naturally assume that most drugs have no appreciable effect and

consider distributions that shrink the parameter estimates toward or to 0 to also address

overfitting. We focus on two choices:

(3)

for all j, where σ2 is the unknown hyperparameter variance of each distribution. Under the

Normal prior, finding the posterior mode estimates is analogous to ridge conditioned-

Poisson regression with its L2-norm constraint on β, and, under the Laplacian prior, we

Suchard et al. Page 4

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

achieve a lasso conditioned-Poisson regression with its L1-norm constraint (Tibshirani,

1996).

2.2 Maximum A Posteriori Estimation using Cyclic Coordinate Descent

CCD algorithms (d’Esopo, 1959; Warga, 1963) for fitting generalized linear models with L1

or L2 regularization priors come in many flavors (Wu and Lange, 2008). The overarching

theme of these algorithms promotes forming a fixed or random cycle over the regression

parameters β and updating one element βj at a time, achieving after iteration their maximum

a posteriori estimates . These updates require evaluating the log

posterior gradient and Hessian , where P(β) = L(β) + log p (β), along a

single dimension only, and thus avoid the “Achilles heel” (Wu et al., 2009) of the more

standard multivariate Newton’s method that necessiates inverting the complete and high-

dimensional Hessian at each iteration.

Within the cycle, CCD implementations often differ in the size of the one-dimensional step

Δβj they take. The traditional algorithm proposes iterating one-dimensional Newton’s

method updates to convergence. Others consider a single-step update based (sometimes

loosely) on Newton’s method, where one bounds the second derivates or Δβj directly to

ensure a descent property and minimize algebraic work (Lange, 1995; Dennis Jr and

Schnabel, 1989; Zhang and Oles, 2001; Genkin et al., 2007; Wu and Lange, 2008). These

single-step algorithms often escape the excess overhead of monitoring for convergence of

the single-parameter Newton’s methods.

To explore MAP estimation via CCD for the BSSCS model, we follow the success of

Genkin et al. (2007) and employ an adaptable trust-region bound on Δβj, where the

unbounded Δβj follows from a single application of Newton’s method (Zhang and Oles,

2001):

(4)

We outline the complete fitting procedure in Algorithm 1. Following Genkin et al. (2007),

we declare convergence when the sum of the absolute change in Xβ from successive

iterations falls below ∊ = 0.0005. The preceeding approach has been effective in fitting the

BSSCS model to modest datasets (Simpson, 2011). Our present inquire in what follows

attempts to extend this success to massive observation databases.

2.3 Computational Work

To gain a handle on the computational work involved in fitting the BSCCS model, let

 count the total number of (unique within subject) exposure eras across all

subjects. Define X = vec () as the sparse K × J design matrix that consists solely of 0 and

Suchard et al. Page 5

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

1 entries, indicating if drug j contributes to each of the K patient/exposure-era rows.

Likewise, form Y = (y11, … , yNKN)’ and L = (l11, … , lNKN)’ as K-dimensional column

vectors, N = (n1, … , nN)’ as an N-dimensional column vector and M as a sparse N × K

loading matrix with entries

(5)

Making these substitutions into Equation (2), we achieve

(6)

where we have defined multiplication (×), exponentiation (exp) and forming the logarithm

(log) of a column-vector as element-wise operations. It remains possible to avoid the

Hadamard product definition of element-wise multiplication and, to come shortly, division

(/) in favor of standard matrix-multiplication and matrix-inversion by exploiting a

reparameterization of the loading matrix and diagonal matrices. However, their use belies

the simplicity of the element-wise, and hence highly parallelizable, operations we encounter

in practice in computing the unidimensional gradients and Hessians. Differentiating L with

respect to βj returns the necessary unidimensional gradient

(7)

where

(8)

and vector Xj is the jth column of X. Likewise, the relevant entry of the Hessian matrix falls

out as

(9)

2.4 Targets for Parallelization

CCD, along with most forms of statistical optimization and Markov chain Monte Carlo, is

an inherently serial algorithm. As reminded in Algorithm 1, even within a iteration t, one

cycles over parameters j to update and work cannot begin computing the next parameter

update until the current update completes. Such algorithms do not immediately appear

amenable to parallelization. However, all is not lost when one considers the proportion of

computational work performed within each update to the computational overhead of the

serial component. CCD carries a surprisingly light-weight serial component, and for the

BSCCS model applied to even the smallest observational database described below, over

99.5% of the run-time lies in computing gj(β) and hj(β) alone.

Suchard et al. Page 6

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

To provide insight for readers who wish to explore massive parallelization in their own

applications, we study the computational complexity of evaluating gj(β) and hj(β) and, in the

process, identify likely targets for optimization and parallelization. Common to both gj(β)

and hj(β) is W; hence efficient computation proceeds via first evaluating M[L × exp(Xβ)

×Xj] and M[L × exp(Xβ)] that comprise W. To compute these, we

1. Update [Xβ] – given Xβ and Δβj–1 from the previous iteration, Xβ ← Xβ +

Δβj–1Xj–1. When X is dense, the serial complexity of this operation is (K). For

sparse X, the worst-case complexity decreases to (Xmax) where Xmax is the

maximum of # (Xj) over j = 1, … , J and # (Xj) counts the number of non-zero

entries in Xj. In general, Xmax ⪡ K.

2. Evaluate or update [L × exp(Xβ)] – while this is also a K-dimensional vector, only

the elements for which Xj–1 are non-zero have changed; therefore, this step either

re-evaluates all elements with (K) or updates a few elements in (Xmax). In both

cases, the scaling constant is large because computing exp(x) requires 10s to 100s

of times longer than elementry floating point operations.

3. Evaluate or update M[L × exp(Xβ)] – for dense X, this a sparse-matrix/dense-

vector multiplication; # (M) = K, achieving (K). When X is sparse, it remains

faster to update just the affected elements in (Xmax); see Listing 3 for details of

this update.

4. Evaluate M[L × exp(Xβ) × Xj] – here we find either a sparse-matrix/dense-vector

multiplication an unusual sparse-matrix/sparse-vector multiplication with worst-

case complexity (Xmax)

Steps (1) through (3) depend on Xj–1 and convenience suggests performing these steps at the

end of the previous iteration to reduce book-keeping. We illustrate this point in Algorithm 1.

Also noted in Algorithm 1 is the observation that these steps only need envoking when Δβj ≠

0. For the Laplacian prior with its discontinuity at 0, Δβj = 0 occurs regularly.

Exploiting Sparsity—Starting with Step (1) above, a very naive implementation

recomputes the matrix-vector product at each cycle with complexity (KJ) and the potential

to drive run-time to a dead-lock. Zhang and Oles (2001) and Wu et al. (2009) independently

identify the savings that the one-dimensional update affords here. These works, along with

Genkin et al. (2007), exploit the sparsity of X in updating the dense K-dimensional vector

Xβ (Step 1). For comparison, these papers refer to Xβ as (r1, … , rN). However, we are

unaware of others who continue to exploit the sparsity of X in moving from Xβ through to

the subject-specific components of the gradient and Hessian (Steps 2 - 4).

With the numerator and denominator components of W in hand, we form a simple element-

wise transformation and take two simultaneous inner products to return N’W and N’ [W ×

(1 – W)]. We discuss the advantages of these fused reductions for both host CPUs and GPUs

shortly. This operation carries worst-case serial complexity (N) when all subjects have at

least one exposure era that the current drug influences. Since several drugs carry prevalences

among subjects nearing 25-50%, keeping track of the non-zero elements in W and

performing sparse operations often reduces efficiency given the extra over-head and

Suchard et al. Page 7

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

irregular memory access. In either case, the work in this fused-reduction is far greater than

the work required to compute the one-dimensional gradient and Hessian contributions of the

prior on βj, so we leave the prior details to the reader. Finally, after cycling over all drugs j,

we evaluate the convergence criterion. Whether one checks the change in Xβ (Genkin et al.,

2007) or in the log-posterior, these computations remain a daunting (K). Fortunately, we

only envoke them once per complete cycle and this task’s run-time becomes nearly

irrelevant for moderate J.

Fine-Scale Parallelization—From these computational complexities, we immediately

identify that Step (2) dominates run-time when X is dense at (K) and with a very large

scalar constant. On the other hand, for sparse X, the fused reduction at (N) trumps run-

time. Fortunately, these operations, along with the other update steps, are prime targets for

parallelization using GPUs.

Code Listing 1 presents a basic CUDA kernel to perform the dense computation of Step (2).

To envoke this kernel, the host program requests the short-lived execution of K threads, one

for each computed element. Unlike coarser-scale parallelization using MPI across clusters or

even multi-core approaches, the cost of creating and destroying threads is often negligible

for GPUs; this makes such fine-scale parallelization ideal for embedding within serial

algorithms. While each thread executes independently in this kernel as there is no shared

data between threads, we still group threads into relatively large thread-blocks of size, say, 8

× 16 or 16 × 16. For all NVIDIA hardware, 16 sequential global memory read/writes

“coalesce” into a single transaction, and the GPU interleaves the execution of multiple 16-

thread sets in the same block to hide transaction latency. While recent GPUs relax the

sequential requirement modestly, both processes significantly decrease memory-bandwidth

limitations, improving arithmetic throughput. All of the work of this kernel falls in a single

line of code. The theoretical complexity of this operation in parallel reduces to (1);

however, in practice, one achieves (K/C) where C counts the number of GPU processing

cores available to the host. This quantity can range from the low-10s on an integrated GPU

in a mobile device or laptop to the mid-100s on a dedicated GPU card in a desktop through

to the low-1000s on multiple GPU devices attached to a single host.

Fused Operations—We turn our attention to the element-wise transformation and

simultaneous inner products that provide a noteworthy example of effective optimization for

massive datasets. Fusing these steps into a single operation avoids explicitly forming W,

writing to its location in memory N times and then immediately reading from it N or 2N

times, depending on if we perform the inner products simultaneously or separately, for each

cycle step. Further, we only need to read from N once during the simultaneous reduction.

This can significantly reduce memory bandwidth requirements on both the host CPU and

GPU. Memory bandwidth measures the rate at which the processor can read data from or

store data to memory. With increasingly faster processor speeds, many algorithms in

statistics are memory bandwidth-limited rather than arthimetic throughput-limited. These

optimization strategies fall under the name of “lazy evaluation” to “reduce temporaries” and

warrant greater recognition among computational statisticians who provide high-

performance tools. Modern computing language compilers are very proficient at optimizing

Suchard et al. Page 8

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

away such intermediates for scalar operations, but often fail for vectors since large vectors

cannot be held entirely in processor registers. For CPU-computing, high-level linear algebra

libraries, such as Eigen, adeptly reduce the use of vector and matrix temporaries and provide

lazy evaluation through “expression templates” (Veldhuizen, 1995). For the GPU, the Thrust

library furnishes expression templates for fusing a univariate-to-univariate transformation

and reduction of a single input vector, and we highly recommend this tool. However,

currently, statisticians are hardpressed to find a GPU library that takes two input vectors,

performs a bivariate-to-bivariate transformation and simultaneously reduces both output

vectors. While such functionality may initially appear convoluted, it finds use in efficiently

computing the one-dimensional gradient and Hessian for any GLM with minor modification

to the transformation. To this end, we hand-craft our own.

Listing 2 presents our fused CUDA kernel. To envoke this kernel, the host program requests

the execution of a moderate number (PARTIAL_SUM ≤ 64) of thread-blocks in which each

block drives 256 or more (BLOCK_SIZE) threads depending on the hardware. In parallel,

each thread begins by looping over N/(PARTIAL_SUM × BLOCK_SIZE) elements in M[L
× exp(Xβ) × Xj], M[L × exp(Xβ)] and N, forming their transform and accumulating both

inner product contributions for these elements. We interleave which elements each thread

visits to coalesce memory transactions. Once completed, the threads within a block exploit

the block’s shared memory to perform two generic (log BLOCK_SIZE) tree-based parallel

reductions (Harris, 2010). While limited in quantity, shared memory on a GPU sports orders

of magnitude faster access time than global memory and is accessible by all threads in the

same block during their execution. Shared memory enables threads to conveniently share

data, such as is required in the tree-reduction. The CUDA software development kit (SDK)

furnishes several examples of tree-based parallel reductions. The output from this kernel are

sets of partial-sums for gj(β) and hj(β), each of length PARTIAL_SUM ⪡ N. Instead of

envoking a second round of parallel reduction on these partial-sums, we perform the final

work in series on the host. Because of high communication latency between the host and

GPU device, it takes comparable time to transfer 2 floating-point values as the modest 2 ×

PARTIAL_SUM. CPU/GPU work-balance will be a hallmark for speed-efficient statistical

fitting of massive datasets.

In terms of work-balance, while the fused reduction is the rate limiting step for sparse X on

both the CPU and GPU, we can significantly decrease the communication latency between

the host and GPU by additionally o -loading all of Steps (1) through (4) to the GPU well.

Instead of uploading 2 × N floating-point numbers to the GPU in each cycle step, we

succeed in reducing this number to a single floating-point Δβj. The cost, of course, is

additional programming and the need for performing sparse operations on the GPU.

Representation in Memory—Memory access is often irregular for sparse linear algebra,

and the computational statistician needs to pay particular attention to how both sparse

matrices and vectors are represented in memory (Bell and Garland, 2009; Baskaran and

Bordawekar, 2009). For example, the optimal representations for X and N differ. Only

single columns of X enter into Steps (1) and (4) at a time, highlighting the need for

compressed column storage (CCS) in which one places consecutive non-zero elements of

each column Xj into adjecent memory addresses. While the standard representational choice

Suchard et al. Page 9

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

for sparse-matrix/dense-vector (spMV) multiplication is compressed row storage (CRS),

naive CRS representation of X would be detrimental to run-time on computing hardware

with limited low-level caches, such as GPUs, since CRS is designed for row-by-row access.

On the other hand, loading matrix M does enter into W as a spMV multiplication operation

when X is dense, suggesting CRS. For sparse X, # (Xj) ⪡ # (M), so precomputing MXj for

all j in coordinate (COO) representation is simple and effective. COO representation consists

of two index arrays, one to hold the row-indicators and one to hold the column-indicators of

the non-zero entries, held in a third value array. Here the column-indicators of MXj

conveniently are the same as the column-indicators of Xj. Stored as a structure of arrays

(SoAs), memory access to the row- and column-indicators is sequential, well-cached on the

host CPU and coalesced on the GPU. However, retrieving the individual elements of L ×

exp(Xβ) remains irregular. Finally, the non-zero entries of both X and N are all one, so they

need not be stored.

Executing an independent thread for each non-zero element of Xj to update M[L × exp(Xβ)

Xj] may result in race conditions when multiple threads attempt memory transactions on the

same elements in M[L × exp(Xβ) × Xj] in global memory. One solution entertains launching

one or more cooperative threads tied to each of the N rows in MXj. This may generate large

inefficiencies as many rows in MXj contain only zeros. Alternatively, the last few

generations of GPUs contain small on-processor memory caches that enable relatively quick

“atomic” transactions, in which only one thread may access a specific address in global

memory at a time. This avoids race conditions and allows us to fuse the sparse updates of

Steps (1) through (3) together into a single kernel. Listing 3 presents our sparse CUDA

kernel to update Xβ, L × exp(Xβ), and M[L × exp(Xβ)] given Δβj. We envoke this kernel

with one thread per non-zero entry in Xj, grouping threads into large blocks to help hide

memory latency.

Precision—Graphics rendering traditionally requires at most 32-bit (single precision)

floating-point computation to encompass 8-bits of red, green, blue and alpha. Ensuingly,

GPU performance remains greatest at single precision. While the latest generations of GPUs

can operate with 64-bit (double precision) numbers, the precision boost comes with a

performance cost because the GPU contains fewer double precision arthimetic logical units,

resulting in approximately half the maximum floating-point operations per second. Further,

double precision mandates reading and writing twice as much information. For fitting the

BSCCS model to massive datasets, single precision arthimetic suffices; the computations do

not involve substracting approximately equal quantities, nor multiplying small quantities,

both of which may lead to underflow. To demonstrate this point, finding for BSCCS

is a convex optimization problem (Simpson, 2011). Subsequently, hj(β) < 0 and all elements

of [W × (1 – W)] ≥ 0. Likewise, all elements of L, exp (Xβ) and, therefore, W ≥ 0.

2.5 Hyperparameter Selection and Measures of Coefficient Uncertainty

We aim to provide a full Bayesian analysis of all unknown parameters in our model.

However, at present this remains beyond our computational limits. As a stopgap solution,

we borrow two frequentist Monte Carlo proceedures. We learn about the hyperparameter σ2

through a 10-fold cross-validation scheme. Previously, the computational cost of fitting the

Suchard et al. Page 10

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

BSCCS model was too great to consider the hyperparameter as random, requiring an

arbitrarily fixed value. Under this cross-validation scheme, we randomly separate the cases-

only dataset into 10 portions, fit the BSCCS model via CCD on 10–1 of these portions and

compute the predictive log-likelihood L (β) of the remaining portion given the fit. We repeat

this process across a log-scale grid of hyperparameter values and chose the hyperparameter

that maximizes the predictive log-likelihood. To moderately reduce the number of iterations

required to acheive convergence of the CCD algorithm for successive hyperparameter

values, we order the grid values from smallest to largest prior variance and exploit a series

of “warm-starts.” At small variance under the Laplacian prior, most coefficients shrink to 0

and only slowly enter into the regression as the variance increases (Wu et al., 2009). Under

the warm-start, the maximized regression coefficients from the previous fit serve as starting

values for the next fit. In general, the predictive log-likelihood surface is relatively flat in the

region around its maximum, so precise estimation of the hyperparameter is unnecessary.

Alternative maximization strategies involving an initial bracketing of the maximized

predictive log-likelihood and an intervaled line search often yield more precise estimates in

fewer evaluations of the predictive log-likelihood.

Along with the infeasibility of estimating the hyperparameter, generating measures of

uncertainty on the regression coefficients has remained taxing, to say the least, for the

BSCCS model applied to massive observational databases. As a first attack at this problem,

we examine the non-parametric bootstrap (Efron and Tibshirani, 1986) in the context of a L1

regularized GLM (Park and Hastie, 2007). Procedures for generating standard errors for

parameter estimates in the context of L1 or L2 regularization that are both computationally

efficient and theoretically well-supported remain out of reach. The simple non-parametric

bootstrap approach we pursue here has some short-comings (see Chatterjee and Lahiri

(2011) for a related discussion in the context of linear regression), but we view it as a

pragmatic approach pending a more complete solution. Without getting embroiled in this

discussion, we report 95% confidence intervals derived from the 2.5% and 97.5% quantiles

of 200 bootstrap samples. Under the Laplacian prior and as a “poor man’s estimate” of the

posterior probability that βj ≠ 0, we also report for each drug, the observed bootstrap

proportion in which achieves a non-zero MAP estimate.

3 Demonstration

We examine the computational performance of fitting the BSCCS model across several

large-scale observational databases and AEs. In particular, we show results from two

medical claims databases and acute liver injury, acute renal failure, bleeding and upper

gestrointestinal tract ucler hospitalization events in order to provide an examplar range of

dataset sizes. Our results explore the effects of optimization and parallelization and are not

meant here to identify medical products associated with these events. The MarketScan™

Commercial Claims and Encounters (CCAE) Research Database from Thomson Reuters is a

large administrative claims database containing 59 million privately insured lives and

provides patient-level deidentified data from inpatient and outpatient visits and pharmacy

claims of multiple large employers. The MarketScan Lab Database (MSLR) contains 1.5

million persons representing a largely privately-insured population, with administrative

Suchard et al. Page 11

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

claims from inpatient, outpatient, and pharmacy services supplemented by laboratory results.

These databases constitute part of the data community established within the the

Observational Medical Outcomes Partnership (OMOP). OMOP is a public-private

partnership between government, industry and academia to conduct methodological research

to inform the appropriate use of observational healthcare data for active medical product

surveillance.

These example datasets span N = 115K to 3.6M cases-only patients taking J = 1224 to 1428

different drugs. The datasets provide K = 3.8M to 75M total (unique) exposure eras per

analysis. We perform all benchmarking on the Amazon Elastic Compute Cloud, exploiting

an Intel Xeon X5570 CPU @ 2.93GHz and one NVIDIA Tesla C2050. This GPU device

sports 448 cores @ 1.15GHz. Performance on less expensive, commodity-grade GPUs, such

as the NVIDIA GTX580, is often greater due to a slightly larger number of cores per GPU

and higher memory-bandwidth. Due to data licensing agreements, however, we are

restricted to Amazon hardware.

Figure 2 presents the relative speed-up our algorithms enjoy when inferring MAP estimates.

These gains first compare implementing Steps 2 - 4 as sparse operations and then porting

computing to the GPU. Sparsity generates up to a 181-fold speed-up; while the GPU

multiplies this by up to another 37-fold. To put these times on an absolute scale, MAP

estimation for our largest dataset originally drained over 51 hours; sparse operations on the

GPU reduce this time to 29 seconds. Naturally, with fitting times standing in the 10s of

hours, the hopes for cross-validation or bootstrap remain low, but grow very practical at 10s

of seconds per replicate.

Cross-validation to learn the hyperparameter σ2 across these four datasets returns optimal

variances ranging from 0.05 to 0.15 for L1 and 0.02 to 0.13 for L2. Importantly, these ranges

are approximately an order-of-magnitude smaller than the arbitrary fixed value previously

assumed in our BSCCS studies for drug surveillance. Employing the optimal

hyperparameter, Figure 3 reports non-parameteric bootstrap confidence intervals of drug

effects for a single representative dataset under the L1 prior. This dataset explores

angioedema events within the CCAE database and contains N = 76K case-only patients,

taking J = 1162 drugs and yielding K = 2.1M exposure eras. In the figure, we first rank all

drugs by their MAP estimate in decreasing order and then plot the 95% confidence

intervals for the 441 drugs for which > 0.50. Darker interval shading reflects larger .

While a general trend holds in which larger more often return 95% confidence intervals

that do not cover 0, we identify notable exceptions. Namely, Drotrecogin alfa, an anti-

thrombotic, anti-inflammatory agent used in the treatment of severe sepsis, returns with the

fourth largest effect estimate, but its confidence interval continues to cover 0, reflecting the

high sampling variability in this estimate.

4 Discussion

Efficient algorithmic design and massive parallelization open the door for fitting complex

GLMs to massive datasets. Computational statisticians regularly capitalize on the sparsity of

Suchard et al. Page 12

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

their model and data, and this is an important design issue for the BSCCS we consider here,

since the design matrix X consists purely of sparse covariates. In particular, we identify that

the sparsity of X carries all the way through to computing the subject-specific contributions

to the model gradient and Hessian, resulting in over a 100-fold speed-up compared to the

most advanced CCD algorithms for GLMs of which we are aware. Many GLMs, however,

command dense covariates as well, such as baseline measurements, and other techniques

become necessary. Here fusing multiple transformations and reduction together into

vectorizable kernels is the first step in off-loading the work to the GPU, and we hope our

discussion in this paper raises awareness of these techniques among computational

statisticians. The end result for the BSCCS model is an approximate 30-fold speed-up on a

single GPU compared to a single CPU core. These techniques also port directly to utilizing

multi-core CPUs and multiple GPUs simultaneously, although we do not explore this avenue

in this paper to simplify comparisons.

Advancing model complexity is both possible in the sampling density of the data and in the

prior assumptions on the unknown model parameter. Here we have only considered

independent and identically distributed prior densities over the drug effect sizes. More

biologically plausible hierarchical distributions are conveniently available. For example, to

borrow strength, we may favor grouping drugs a priori into classes based on mode of action

or therapeutic targets. Similarly, we may wish to explore borrowing strength across related

outcomes. Because computation of the prior gradient and Hessian remains extremely light-

weight, no modification to the GPU code is necessary and run-times should remain as quick.

One immediate advantage of the orders-of-magnitude reduction in run-time stands the

ability to nest point-estimation within both cross-validation and bootstrap frameworks,

making these Monte Carlo frameworks feasible. Cross-validation and bootstrapping begin to

allow us to estimate model hyperparameters and report measures of uncertainty around the

usual point-estimates. For the drug surveillance community, this represents a giant leap

forward. For example, most of the statistial methods in OMOP are implemented in the

statistical packages SAS or R (http://omop.fnih.org/MethodsLibrary). One of our own

preliminary implementations of the BSCCS model in R, using just a sparse matrix package

and no further linear algebra libraries, requires around 5.3 hours to generate a single MAP

estimate from a dataset with only N = 7460. With this benchmark in mind, it is no wonder

why almost all computationally expensive fitting of massive datasets in the field has ignored

cross-validation and bootstrapping; see, e.g., Funk et al. (2011), and a presentation at the

2011 International Congress on Pharmacoepidemiology involving a similar study redoubled

this point by claiming that bootstrapping is computationally infeasible with more than 20K

patients. High performance statistical computing involving massive parallelization shows

that these limitations are quickly lifting.

We achieve this success by exploiting the GPU within a serial CCD algorithm. CCD is a

generic optimization approach and we envision extensions working for massive dataset

applied to models beyond the GLM setting as well. Moving past CCD, Zhou et al. (2010)

consider similar block-relaxation and majorization techniques to attack large-scale matrix

factorization and multidimensional scaling using GPUs. Here and in CCD, one breaks a

high-dimensional optimization problem into a series of low-dimensional updates that

Suchard et al. Page 13

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://omop.fnih.org/MethodsLibrary

involve many scalar operations. As Zhou et al. (2010) demonstrate with their quasi-Newton

acceleration application, one ideally aims for one-dimensional updates, as even slightly

higher-dimensional operations carry heavy data-dependency that can outweigh the

advantages of the GPU.

To accomplish parallelization within a serial algorithm, we take advantage of the wide

vector-processing capabilities of the GPU to perform simple operations simultaneously

across a large input of data. This vectorization lacks branches in the kernel code, avoiding

thread divergence and serialization of the work within the wide vector. As a result, expected

speed-up scales most directly with the quantity of data. This differs considerably from

distributing EP tasks, such as those that arise in many Monte Carlo approaches including the

independent and often divergent particle evolution in a sequential Monte Carlo, to separate

cores of the GPU. Here, we receive at little cost more particles and higher precision

estimates with additional cores. Unfortunately, however, this strategy loses out on scaling in

the critical dimension of the data as massively parallel devices continue to mushroom in

size.

Acknowledgments

The Observational Medical Outcomes Partnership is funded by the Foundation for the National Institutes of Health
through generous contributions from the following: Abbott, Amgen Inc., AstraZeneca, Bayer Healthcare
Pharmaceuticals, Inc., Bristol-Myers Squibb, Eli Lilly & Company, GlaxoSmithKline, Johnson & Johnson,
Lundbeck, Inc., Merck & Co., Inc., Novartis Pharmaceuticals Corporation, Pfizer Inc, Pharmaceutical Research
Manufacturers of America (PhRMA), Roche, Sanofi-Aventis, Schering-Plough Corporation, and Takeda. MAS is
funded in part by the National Institutes of Health (R01 HG006139) and a research award from Google.

References

Baskaran, M.; Bordawekar, R. Optimizing sparse matrix-vector multiplication on GPUs. IBM research
report RC24704. 2009.

Bell, N.; Garland, M. Efficient sparse matrix-vector multiplication in CUDA. Proc. ACM/IEEE Conf.
Supercomputing (SC), Portland; OR, USA. New York: ACM; 2009.

Chatterjee A, Lahiri S. Bootstrapping lasso estimators. Journal of the American Statistical Association.
2011; 106:608–625.

Coplan P, Noel R, Levitan B, Ferguson J, Mussen F. Development of a framework for enhancing the
transparency, reproducibility and communication of the benefit–risk balance of medicines. Clinical
Pharmacology & Therapeutics. 2011; 89:312–315. [PubMed: 21160469]

Curtis J, Cheng H, Delzell E, Fram D, Kilgore M, Saag K, Yun H, Du-Mouchel W. Adaptation of
Bayesian data mining algorithms to longitudinal claims data: coxib safety as an example. Medical
care. 2008; 46:969–975. [PubMed: 18725852]

Dennis J Jr, Schnabel R. A view of unconstrained optimization. Handbooks in operations research and
management science. 1989; 1:1–72.

d’Esopo D. A convex programming procedure. Naval Research Logistics Quarterly. 1959; 6:33–42.

Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures
of statistical accuracy. Statistical Science. 1986; 1:54–75.

Farrington C. Relative incidence estimation from case series for vaccine safety evaluation. Biometrics.
1995; 51:228–235. [PubMed: 7766778]

Funk M, Westreich D, Wiesen C, Stürmer T, Brookhart M, Davidian M. Doubly robust estimation of
causal effects. American journal of epidemiology. 2011; 173:761–767. [PubMed: 21385832]

Genkin A, Lewis D, Madigan D. Large-scale Bayesian logistic regression for text categorization.
Technometrics. 2007; 49:291–304.

Suchard et al. Page 14

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Harris, M. Optimizing parallel reduction in CUDA. 2010. nVidia, online

Jin H, Chen J, He H, Williams G, Kelman C, O’Keefe C. Mining unexpected temporal associations:
Applications in detecting adverse drug reactions. Information Technology in Biomedicine, IEEE
Transactions on. 2008; 12:488–500.

Kulldorff M, Davis R, Kolczak M, Lewis E, Lieu T, Platt R. A maximized sequential probability ratio
test for drug and vaccine safety surveillance. Sequential Analysis. 2011; 30:58–78.

Kyung M, Gill J, Ghosh M, Casella G. Penalized regression, standard errors, and Bayesian lassos.
Bayesian Analysis. 2010; 5:369–412.

Lange K. A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical
Society, Series B. 1995; 57:425–437.

Lee A, Yau C, Giles M, Doucet A, Holmes C. On the utility of graphics cards to perform massively
parallel simulation of advanced Monte Carlo methods. Journal of Computational and Graphical
Statistics. 2010; 19:769–789. [PubMed: 22003276]

Li L. A conditional sequential sampling procedure for drug safety surveillance. Statistics in medicine.
2009; 28:3124–3138. [PubMed: 19691034]

Madigan, D.; Ryan, P.; Simpson, S.; Zorych, I. Bayesian methods in pharmacovigilance. In: Bernardo,
J.; Bayarri, M.; Berger, J.; Dawid, A.; Heckerman, D.; Smith, A.; West, M., editors. Bayesian
Statistics 9. Oxford University Press; Oxford, UK: 2011. p. 421-438.

Nelder J, Wedderburn R. Generalized linear models. Journal of the Royal Statistical Society. Series A
(General). 1972; 135:370–384.

Norén, G.; Bate, A.; Hopstadius, J.; Star, K.; Edwards, I. Temporal pattern discovery for trends and
transient effects: its application to patient records. Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining; ACM, New York. 2008. p.
963-971.

Park M, Hastie T. L1-regularization path algorithm for generalized linear models. Journal of the Royal
Statistical Society. 2007; 69:659.Series B

Ryan, P.; Suchard, M.; Madigan, D. Learning from epidemiology: a framework for interpreting large-
scale observational database studies Under review. 2012.

Schneeweiss, S.; Rassen, J.; Glynn, R.; Avorn, J.; Mogun, H.; Brookhart, M. Epidemiology. Vol. 20.
Cambridge, Mass; 2009. High-dimensional propensity score adjustment in studies of treatment
effects using health care claims data; p. 512-522.

Silberstein, M.; Schuster, A.; Geiger, D.; Patney, A.; Owens, J. Efficient computation of sum-products
on GPUs through software-managed cache. Proceedings of the 22nd Annual International
Conference on Supercomputing; ACM, New York. 2008. p. 309-318.

Simpson, S. Ph.D. thesis. COLUMBIA UNIVERSITY; 2011. Self-controlled methods for
postmarketing drug safety surveillance in large-scale longitudinal data.

Stang P, Ryan P, Racoosin J, Overhage J, Hartzema A, Reich C, Welebob E, Scarnecchia T,
Woodcock J. Advancing the science for active surveillance: rationale and design for the
observational medical outcomes partnership. Annals of internal medicine. 2010; 153:600–606.
[PubMed: 21041580]

Suchard M, Rambaut A. Many-core algorithms for statistical phylogenetics. Bioinformatics. 2009;
25:1370–1376. [PubMed: 19369496]

Suchard M, Wang Q, Chan C, Frelinger J, Cron A, West M. Understanding GPU programming for
statistical computation: Studies in massively parallel massive mixtures. Journal of Computational
and Graphical Statistics. 2010; 19:419–438. [PubMed: 20877443]

Tibbits M, Haran M, Liechty J. Parallel multivariate slice sampling. Statistics and Computing. 2011;
21:415–430.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B. 1996; 58:267–268.

Veldhuizen T. Expression templates. C++ Report. 1995; 7:26–31.

Warga J. Minimizing certain convex functions. Journal of the Society for Industrial and Applied
Mathematics. 1963; 11:588–593.

Suchard et al. Page 15

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wilkinson, D. Parallel Bayesian computation. In: Kontoghiorghes, E., editor. Handbook of Parallel
Computing and Statistics. Chapman & Hall/CRC; New York: 2006. p. 481-512.

Wu T, Chen Y, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized
logistic regression. Bioinformatics. 2009; 25:714–721. [PubMed: 19176549]

Wu T, Lange K. Coordinate descent algorithms for lasso penalized regression. The Annals of Applied
Statistics. 2008; 2:224–244.

Zhang T, Oles F. Text categorization based on regularized linear classification methods. Information
Retrieval. 2001; 4:5–31.

Zhou H, Lange K, Suchard M. Graphics processing units and high-dimensional optimization.
Statistical Science. 2010; 25:311–324. [PubMed: 21847315]

Suchard et al. Page 16

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 1.
Representative drug exposure and adverse event (myocardial infarction, MI) history for one

78 year-old male. In constant exposure era k = 4, this subject suffers an MI (yi,4 = 1) and is

taking Vioxx, Olanzapine and Celecoxib (xi,4,V = xi,4,C = 1). In era k = 10, this subject

suffers two MIs (yi,10 = 2) and is taking Quetiapine (xi,10,Q = 1).

Suchard et al. Page 17

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 2.
Maximum a posteriori estimation for several observational databases under the Bayesian

self-controlled cases series model. We provide run-times for three implementations: dense

computation on the CPU (white circles), sparse computation on the CPU (black circles) and

sparse computation on the GPU (black squares).

Suchard et al. Page 18

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 3.
Exemplar uncertainty analysis of angioedema as an adverse event under the L1 prior. Here,

we plot the non-parametric bootstrap 95% confidence intervals for the 441 drug effects that

demonstrated non-zero coefficients in at least 50% of the bootstrap replicates. Gray-scaling

reports the proportion of bootstrap replicates in which effect estimates are non-zero.

Suchard et al. Page 19

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Listing 1.
Dense CUDA kernel for element-wise evaluation of L × exp(Xβ) given L and Xβ

Suchard et al. Page 20

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Listing 2.
Fused CUDA kernel for transformation and reduction of numerators M[L × exp(Xβ) × Xj],

denominators M[L × exp(Xβ)] and N to partial-sums of gj(β) and hj(β). Partial-sums end in

length PARTIAL_SUM and we further reduce these on the host for efficiency. Function

paralleReduction performs a generic logarithimic-order reduction in shared memory.

Suchard et al. Page 21

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Listing 3.
Sparse CUDA kernel for updating Xβ, L × exp(Xβ), and M[L × exp(Xβ)] given Xj and Δβj

Suchard et al. Page 22

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Suchard et al. Page 23

Algorithm 1

Cyclic coordinate descent algorithm for fitting Bayesian self-controlled case series model. Computationally

demanding steps are highlighted as targets for parallelization. While all variables are defined in the text, we

identify β here as the J-dimensional regression coefficients over which we wish to maximize the log-posterior

in this algorithm.

1: Initialize: β = 0 which implies [Xβ] = 0, [L × exp (Xβ)] = L, and M[L × exp (Xβ)] = ML

2: Initialize: outer iteration counter t = 1

3: repeat

4: for inner cycle j = 1 to J do

5: Compute unidirectional gradient gj(β) and Hessian hj(β) (target for parallelization)

6: Compute Δβj given gj(β), hj(β) and derivatives of prior p(β)

7: if Δβj 6= 0 then

8: β ← β + (Δβj)ej

9: Update [Xβ], [L × exp Xβ] and M[L × exp Xβ] (target for parallelization)

10: end if

11: end for

12: Update t ← t + 1

13: until convergence in Xβ occurs

14: Report: β^MAP and maximized log-posterior P(β
^

MAP)

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 October 17.

