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Abstract

The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and

southern Australia and is currently threatened by habitat fragmentation, climate

change, sexually transmitted diseases, and low genetic variability throughout

most of its range. Using data collected during the Great Koala Count (a 1-day

citizen science project in the state of South Australia), we developed generalized

linear mixed-effects models to predict habitat suitability across South Australia

accounting for potential errors associated with the dataset. We derived spatial

environmental predictors for vegetation (based on dominant species of Eucalyp-

tus or other vegetation), topographic water features, rain, elevation, and tem-

perature range. We also included predictors accounting for human disturbance

based on transport infrastructure (sealed and unsealed roads). We generated

random pseudo-absences to account for the high prevalence bias typical of citi-

zen-collected data. We accounted for biased sampling effort along sealed and

unsealed roads by including an offset for distance to transport infrastructures.

The model with the highest statistical support (wAICc ~ 1) included all vari-

ables except rain, which was highly correlated with elevation. The same model

also explained the highest deviance (61.6%), resulted in high R2(m) (76.4) and

R2(c) (81.0), and had a good performance according to Cohen’s j (0.46).

Cross-validation error was low (~ 0.1). Temperature range, elevation, and rain

were the best predictors of koala occurrence. Our models predict high habitat

suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of

the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region

(5576 km2) of the Adelaide–Mount Lofty Ranges, a density–suitability relation-

ship predicts a population of 113,704 (95% confidence interval: 27,685–199,723;
average density = 5.0–35.8 km�2). We demonstrate the power of citizen science

data for predicting species’ distributions provided that the statistical approaches

applied account for some uncertainties and potential biases. A future improve-

ment to citizen science surveys to provide better data on search effort is that

smartphone apps could be activated at the start of the search. The results of

our models provide preliminary ranges of habitat suitability and population size

for a species for which previous data have been difficult or impossible to gather

otherwise.

Introduction

Predicting the spatial distribution of species can assist

management strategies for wildlife by estimating inter alia

relative densities, range sizes, and regions of potential

human conflict (e.g., Hirzel et al. 2006; Elith and Leath-

wick 2009; Barbosa et al. 2010). In terrestrial systems

where urban development is increasingly fragmenting

wildlife habitat (Hanski 2011), species distribution models

(resource selection functions) are particularly useful for
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identifying important refuge habitats. However, obtaining

data necessary to develop such models can be difficult,

time-consuming, and expensive, especially for nocturnal,

cryptic, or wide-ranging species (Stein and Ettema 2003).

To maximize the effectiveness of the typically limited

funding (Caughlan and Oakley 2001; Hutchins et al.

2009) available for wildlife management, expansive, effi-

ciently collected, reliable, and inexpensive monitoring

data are essential (Lovett et al. 2007).

In select circumstances, employing the power of citizen

science can provide such cost-efficient data to augment

research by professional scientists (Bonney et al. 2009;

Dickinson et al. 2010). Such projects involve the wider

community, typically through volunteers actively collecting

data, which enables researchers to increase the spatial or

temporal coverage of their sampling (Dickinson et al.

2012). For mainly these reasons, citizen-collected data use-

ful for scientific enquiry are rapidly proliferating (Cohn

2008; Couvet et al. 2008; Silvertown 2009; Roy et al.

2012). The endeavor has been facilitated more recently by

new technologies, such as smartphones and Web applica-

tions that enhance the collection and quality of timely,

accurate, and verifiable data (e.g., photographs and spatial

coordinates) (Dickinson et al. 2012; Roy et al. 2012).

Despite the rising popularity, applications for, and

quality of citizen science, there are still many idiosyncra-

sies in the data collected by nonprofessionals. For exam-

ple, even the relatively simple category of species’

presences required for habitat suitability models are sub-

ject to many potential errors, including biased sampling

(nonrandom site selection), incorrect species identifica-

tion, data entry errors, and a hesitancy to collect

“absence” data (Cooper et al. 2012; Fink and Hochachka

2012). Carefully considering the end application of

citizen-collected data, as well as limiting the opportunity

for entry and identification errors via well-crafted Web

applications, can minimize these biases or more easily

identify their magnitude.

The Great Koala Count, a citizen science project orga-

nized in South Australia in November 2012 (koala-

count.ala.org.au), was designed to gather data on the

koala (Phascolarctos cinereus) population (including pres-

ences and absences), and the attitudes of the community

toward koalas and their management. The koala is a large,

wide-ranging folivore marsupial specializing on Eucalyptus

(Moore et al. 2005) and is native in four Australian states:

Queensland, New South Wales, Victoria, and South Aus-

tralia. However, they were extirpated from the small

southeastern corner where they occurred in South Austra-

lia following the fur trade in 1920 (Masters et al. 2004).

Koalas were otherwise absent from South Australia, with

no previous record of their presence since the Late Pleis-

tocene (Hope et al. 1977; McDowell 2013). After their

local extirpation, approximately 18 koalas were translocat-

ed from Victoria to Kangaroo Island, South Australia

(Fig. 1) (Masters et al. 2004; Duke and Masters 2005),

where lacking competition or predation (Moore and

Foley 2000), they became “overabundant” (estimated

population size > 5000 in 1994 and revised to 27,000 in

2001) (Masters et al. 2004). Due to their extensive euca-

lyptus browsing, a koala control program was started in

1997, leading to the reintroduction of 1105 koalas to the

southeastern corner of South Australia (Masters et al.

2004) where they persist today. Currently, koalas are

found throughout the Mount Lofty Ranges and the east-

ern and central suburbs of the City of Adelaide.

Despite their introduction success in South Australia,

koala populations are declining in Australia’s eastern
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Figure 1. Locations with reported koala

presences (black triangles) and absences (black

circles) during the census within the area used

for predicting koala habitat suitability in South

Australia. The data used for model training are

within the area covered by the dashed line.

Abbreviations stand for Eyre Peninsula (EP),

Yorke Peninsula (YP), Fleurieu Peninsula (FP),

and Kangaroo Island (KI). The Mount Lofty

Ranges are mostly within the area covered by

the dashed line.
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states (NSW Department of Environment and Conserva-

tion 2006; Queensland Government 2009) and the species

is listed nationally as Vulnerable under the Environment

Protection and Biodiversity Conservation Act 1999 (www.

environment.gov.au/topics/about-us/legislation/environ

ment-protection-and-biodiversity-conservation-act-1999).

Declines are attributed to multiple threats (Rhodes et al.

2011) such as habitat fragmentation from urban develop-

ment (Melzer et al. 2000; Seabrook et al. 2003), vehicle

collisions (Dique et al. 2003), and disease (Polkinghorne

et al. 2013). Even where populations are stable or increas-

ing, genetic diversity is low (Seymour et al. 2001) and is

possibly causing inbreeding depression (Cristescu et al.

2009; Whisson and Carlyon 2010).

The status, abundance, and range of the koala popula-

tion reintroduced to mainland South Australia have not

yet been investigated. Here, we use the presence and

absence data collected during the Great Koala Count to

predict suitable habitat in South Australia (including

Kangaroo Island and the mainland regions where they

have been reintroduced). Our main aim is to (1) provide

state-of-the-art statistical approaches to account for

potential biases arising from citizen surveys, (2) assess

habitat suitability for the species in South Australia

accounting for both environmental conditions and

anthropogenic impacts, and (3) provide a preliminary

population estimate based on suitability and plausible

densities. Our work shows that citizen science can be an

effective means to collect meaningful scientific data and

that their usefulness can be enhanced if appropriate statis-

tical tools are applied.

Materials and Methods

Koala presence/absence data

Koala occurrence data were collected during the Great

Koala Count held on 28 November 2012 mainly in Adela-

ide and the Mount Lofty Ranges region of South Austra-

lia. The project was promoted to the wider community

via (1) a partnership with a local radio station (891 ABC

Adelaide), (2) a specifically developed education project

for schools, (3) social media (particularly via Facebook),

(4) incidental media coverage (television, radio, and

newspaper), and (5) the communication networks of the

project partners (see Acknowledgments). We asked volun-

teer “citizen scientists” to search for koalas between 06.00

and 20.00 on the day of the count and to report both

sightings and nonsightings (i.e., presences and absences).

A live radio broadcast on the morning of the count pro-

moted participation through discussion about koalas in

South Australia and how the public could collect and

submit data. Reports could be made through the Great

Koala Count website (koalacount.ala.org.au), or in near-

real time via Apple� and Android� smartphone apps

adapted from existing mobile applications created to feed

citizen-science data to the Atlas of Living Australia (ALA)

website (ala.org.au).

Data reported included (1) location (via GPS for

smartphones and online mapping tools for the website),

(2) a photograph for validation of the sighting, (3) search

effort in number of minutes, and (4) information about

the activity of the observed koala(s) (e.g., sleeping, sitting,

eating, climbing, drinking, walking, dead, or other). Data

were integrated with the Biological Data Recording Sys-

tem and stored in a bespoke web portal, hosted by the

ALA. Submitted records were visualized in near-real time

and displayed on the project website. We checked all

records prior to inclusion in our model, removing dupli-

cates or obviously erroneous entries (e.g., other species).

We contacted citizen scientists via e-mail for clarification

if their records were suspected to be inaccurate. If inaccu-

racies could not be rectified, we removed the associated

records. The cleaned dataset included 1359 reports with

exact location (latitude and longitude in WGS84 coordi-

nates with a precision of 0.01�) counting 1244 koala

sightings (i.e., presences) and 115 absences. The data

mostly covered the metropolitan area of Adelaide (the

main city in South Australia), and most reported koalas

were sighted nearby within conservation parks in the

Adelaide Hills or along streets or in backyards of the Hills

towns and Adelaide suburbs.

Following Rhodes et al.’ (2009) suggestion that koala

occurrence is best described by habitat variables measured

at a 1-km2 resolution, we overlayed a 1-km2 grid cell on

the ~ 5576-km2 main area covered by the census (Fig. 1).

The presence/absence reports resulted in a total of 255

“presence” grid cells and 32 absences. Due to the low

number of reported absences, we randomly selected 10

pseudo-absences for each presence (Barbet-Massin et al.

2012). A random selection of pseudo-absences yields the

most reliable distribution models when using regression

techniques (Barbet-Massin et al. 2012). We down-

weighted the pseudo-absence grid cells to 0.1, and con-

versely, we weighted grid cells with reported sightings/

absences to one or more (whenever >1 report fell within

the same grid cell). To account for model bias due to the

location of pseudo-absences selected, we iterated the

pseudo-absence selection process 100 times (Sequeira

et al. 2013).

Environmental data and anthropogenic
disturbances

We obtained spatial data on vegetation, topographic

water features, transport infrastructure (sealed and
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unsealed roads), and elevation from the Department of

Environment, Water and Natural Resources (DEWNR),

Government of South Australia. From the Australian

Government Bureau of Meteorology (www.bom.gov.au),

we obtained 20-year monthly averages (from 1993 to

2012) of maximum and minimum temperature, water

vapor pressure, solar exposure (with no data for Novem-

ber 2009), and rainfall.

We assembled the vegetation data based on the domi-

nant tree species and considering three main groups: (1)

“koala eucalyptus”: Eucalyptus species mostly used (eaten

and sheltered in) by koalas in South Australia (manna

gum E. viminalis, blue gum E. leucoxylon, red gum

E. camaldulensis, and stringybark E. baxteri, E. obliqua,

and E. macrohyncha) (Masters et al. 2004); (2) “other

eucalyptus”: other Eucalyptus species present in South

Australia but not commonly used by koalas; and (3)

“other vegetation” (i.e., not Eucalyptus). We used the

areas of each dominant group within each grid cell as

predictors in our models. We included topographic water

features by considering distance to inundated areas as

proxy for drinking water availability, considering only

year-round and seasonally inundated areas (water bodies).

We also included the density of watercourses (i.e., rain

watercourses) within each grid cell as a proxy for food

quality (i.e., possibly reflecting leaf water content). We

interpolated the elevation data using inverse-distance-

weighted interpolation and extracted values from the

resulting surface to each grid cell.

To account for anthropogenic disturbances, we included

two groups of road density: (1) sealed roads, representing

areas with high anthropogenic pressure, and (2) unsealed

roads (e.g., park paths), representing lower potential distur-

bance. To calculate distances, we used the Near tool in Arc-

GISTM 9.3.1 (ESRI, Redlands, CA) with an equidistant

cylindrical projection. We estimated areas with the function

calculate geometry using a Mollweide (equal area) projec-

tion. For road densities, we summed the length of sealed

and unsealed roads within each grid cell.

Our predictor dataset (after excluding collinear vari-

ables) included the following for each grid cell: (1) the

area with “koala eucalyptus” (koalaeuc; m2), (2) the area

with “other eucalyptus” (othereuc; m2), (3) the area

with trees other than eucalyptus (otherveg; m2), (4) the

density of watercourses (denswater; m of water course

per 1 km2), (5) the distance to water bodies (dist2water;

m), (6) elevation (elevation; m), (7) the density of

sealed roads (sealed; m of road per 1 km2), (8) the

density of unsealed roads (unsealed, m of road per

1 km2), (9) the temperature range for the month of

November calculated as the difference between the aver-

age maximum and minimum temperatures (temp.range;

°C), and (10) the average rainfall for the month of

November (rain; mm).

Citizen-collected data were highly biased toward

unsealed and sealed roads (Fig. 2); therefore, we used the

inverse of distance to the closest road (whether sealed or

unsealed) as an offset in the models to account for this

sighting effort bias. Together with the weighting consid-

ered between reported locations and pseudo-absences, we

considered this offset a proxy for sampling effort. We

assessed collinearity between predictors using Spearman’s

q within the pairs.panels function from the psych package

in R (Revelle 2013).

0 0.5 10.25

km

Great Koala Count locations
Unsealed roads
Sealed roads

Figure 2. Detail showing locations reported

during the census. Most of the locations occur

near sealed roads and park paths (unsealed

roads).
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Model development and spatial
autocorrelation

Using the koala presence/absence data in each grid cell as

a response, we first developed generalized linear models

(GLM) with a binomial distribution (logit link function)

with ten predictors for the complete dataset. The model

set included several possible combinations of these predic-

tors (i.e., explanatory variables or fixed effects) as well as

an offset for our proxy of sampling effort (Table 1). To

stabilize parameter estimation, we centered the explana-

tory variables included in each model. Following Burn-

ham and Anderson (2004), we used Akaike’s information

criterion corrected for small sample sizes (AICc) to rank

models. We then calculated the relative model weights

(wAICc) to assess the model strength of evidence.

We assessed the expected spatial autocorrelation

(McAlpine et al. 2008; Rhodes et al. 2009) both in the

observations and in model residuals by calculating Mo-

ran’s I (Diggle and Ribeiro 2007) after a Bonferroni cor-

rection (Legendre and Legendre 1998). For this, we used

the sp.correlogram function from the spdep library in R

(Bivand 2013). To reduce the spatial autocorrelation

observed in the residuals of the GLM, we included a spa-

tial random effect for grid cell size (4 km2) in the model

set (Lunney et al. 2009; Rhodes et al. 2009). Including

this random effect leads to the development of general-

ized linear mixed model (GLMM) with the lmer function

from the lme4 package in R (Bates et al. 2013). We used

the marginal and conditional R2 (Nakagawa and Schielz-

eth 2013) alongside the percentage of deviance explained

(%De) by each model as indices of goodness of fit. We

assessed the model’s predictive power using Cohen’s j
(Cohen 1960), and we also used a 10-fold cross-validation

(Davison and Hinkley 1997) to calculate the mean predic-

tion error for the highest-ranked model. We report the

median model rankings obtained from the 100 pseudo-

absence iterations.

We calculated the effect sizes for each predictor by (1)

dividing the coefficient estimates of each predictor by

their standard error (Bradshaw et al. 2012), (2) calculat-

ing the fraction of the relative model weight (wAICc)

from the sum of weights where each predictor occurred

and then (3) multiplying the standardized predictor coef-

ficient estimates (accounting for the standard error) by

the fraction of the relative model weight, and (4) sum-

ming each predictor contribution for all models where

they occurred. We developed all models using R (R Core

Team 2013).

Estimating abundance

There is usually a disconnect between predicted environ-

mental suitability and species abundance (Murphy et al.

2006; Sagarin et al. 2006), such that indices of habitat

quality cannot necessarily be used directly to infer relative

abundance. Fortunately, recent empirical evidence for 69

Australian vertebrates demonstrates that for most species,

Table 1. Summary of generalized linear mixed-effects models relating probability of koala suitable habitat as a function of environment and cli-

matology in South Australia. Predictors include the following: veg (all vegetation variables, i.e., koala Eucalyptus – koalaeuc, other Eucalyptus –

othereuc, and other vegetation); water (density of watercourses and distance to water bodies), temp.range (temperature range), elevation, roads

(density of sealed and unsealed roads), and rain. Null represents the null model (i.e., without fixed effects). All models included an offset term for

effort, and the generalized linear mixed-effects models also included a spatial random effect (2-km2 grid cell). Shown for each model are biased-

corrected model probabilities based on weights of Akaike’s information criterion corrected for small sample sizes (wAICc, only >0.001 shown),

Bayesian information criteria (wBIC, only >0.001 shown), the percentage of deviance explained (%De), the cross-validation error (CVerror), and

Cohen’s j and both marginal and conditional R2 (R2(m) and R2(c); Nakagawa and Schielzeth (2013).

Model wAICc wBIC %De CVerror j R2(m) R2(c)

veg + water + temp.range + elevation + roads ~1 1 61.6 0.10 � 0.01 0.46 � 0.07 76.4 81.0

veg + water + temp.range + rain + roads <0.001 <0.001 57.6 0.13 � 0.01 0.33 � 0.06 66.2 72.8

veg + water + temp.range + elevation <0.001 <0.001 57.0 0.12 � 0.02 0.39 � 0.07 67.5 73.8

veg + temp.range + rain <0.001 <0.001 53.7 0.12 � 0.01 0.40 � 0.07 59.9 71.7

veg + water + temp.range + rain <0.001 <0.001 53.9 0.13 � 0.01 0.31 � 0.06 60.4 68.1

temp.range + rain <0.001 <0.001 52.3 0.10 � 0.02 0.27 � 0.09 56.2 76.7

veg + temp.range <0.001 <0.001 48.2 0.14 � 0.02 0.30 � 0.06 52.9 62.1

temp.range <0.001 <0.001 45.0 0.11 � 0.03 0.05 � 0.04 36.2 77.2

elevation <0.001 <0.001 41.4 0.15 � 0.02 0.24 � 0.08 5.0 81.6

veg + water <0.001 <0.001 15.3 0.15 � 0.02 0.24 � 0.08 27.5 41.6

veg <0.001 <0.001 14.9 0.11 � 0.02 0.04 � 0.04 26.3 40.6

koalaeuc <0.001 <0.001 11.6 0.16 � 0.03 0.20 � 0.07 22.1 37.2

roads <0.001 <0.001 1.8 0.11 � 0.03 0.04 � 0.04 17.0 33.1

null <0.001 <0.001 – 0.16 � 0.02 0.14 � 0.07 0.0 0.0

water <0.001 <0.001 5.7 0.16 � 0.02 0.04 � 0.06 4.0 22.7
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there is a linear or curvilinear relationship between habi-

tat suitability inferred from species distribution models

and relative abundance (VanDerWal et al. 2009). With no

specific information available for koalas, we assumed a

simple linear relationship between our relative habitat

suitability index (0 = lowest; 1 = highest) and density fol-

lowing the assumption that the relationship increased lin-

early up to half maximum density (Dmax) (see Fig. 2 in

VanDerWal et al. 2009). As an estimate of Dmax, we took

the mean of nine published upper-level density estimates

for populations across Australia (excluding extremely high

density values >4 ha�1; Table S1); this gave 1.57 ha�1

(SD = 1.19) or 157 � 119 km�2 (Table S1). Summing

over all 1-km2 grid cells provides an estimate of the total

population size within the 5576-km2 Adelaide–Mount

Lofty ranges study area.

Results

The predictor variables showed no evidence of major

collinearity (all Spearman’s q < 0.5) except for elevation

and rain (q = 0.90). For this reason, we did not include

these two predictors together in the same model.

Moran’s I correlograms showed high spatial autocorrela-

tion in the residuals of the GLM (p < 0.001; Fig. S1).

Including the spatial random effect in the GLMM

assisted in reducing the spatial autocorrelation to close

to zero (Fig. S1), and therefore, we only provide the

GLMM results.

The model with all predictors except rain had the high-

est statistical support (wAICc > 0.999), and both highest

R2(m) (76.) and deviance explained (>61%) (Table 1).

R2(c) for this model was the second highest (81.0). Eleva-

tion alone received a slightly higher R2(c) (81.6) and

explained 41.4% of the deviance. While the model includ-

ing only the anthropogenic disturbances (i.e., densities of

sealed and unsealed roads) explained < 2% of the devi-

ance, by adding these variables to other predictors, the

deviance explained increased by ~ 4.5% (Table 1). The

cross-validation error was ~ 0.1, and j was 0.46 � 0.07

for the top-ranked GLMM (Table 1).

The models revealed highest habitat suitability for koala

occurrence in the region of the Adelaide–Mount Lofty

Ranges where most of the reported presences were

obtained (Fig. 3). When predicting to the southern sec-

tion of South Australia, habitat suitability was estimated

>0.9 in Kangaroo Island. Similar suitability was obtained

for the southern extremities of the three South Australian

peninsulas (Eyre, Yorke, and Fleurieu Peninsulas) and in

scattered locations along the southeastern coast of South

Australia (Fig. 3).

According to the model-weighted, standardized param-

eter estimates, temperature range had the highest contri-

bution (effect size = 10.13) in habitat suitability, followed

by elevation, rainfall, density of sealed roads, and vegeta-

tion (Fig. 4). Temperature range had the largest negative

effect on koala occurrence (Figs. 4 and 5A), reflecting that

koalas use habitats with relatively more constant tempera-

tures. Higher relative elevation and rainfall correlated pos-

itively with koala occurrence (Fig. 5B and C). Density of

unsealed roads, distance to water bodies, and density of

watercourses all had a contribution <1 (Fig. 6).

0 50 10025
km

(A)

(B)

0 80 16040
km

Figure 3. Predicted habitat suitability for

koalas in South Australia derived from the

generalized linear mixed-effects models:

(A) prediction to the southern part of South

Australia, including areas where koalas could

occur; (B) area covered by the census

(5531 km2) and used to train the models; and

black triangles represent reported koala

presences.
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Based on the linear relationship between density and

habitat suitability, we estimated the mean total popula-

tion in the Adelaide–Mount Lofty Ranges study area

(5576 km2) at 113,704 (95% confidence interval based on

�2 standard deviations of maximum density: 27,685–
199,723). This equates to an average density over the

study area of 5.0–35.8 km�2. The large uncertainty is a

function of the high coefficient of variation (100 9 1.19/

1.57 = 75.5%) of the maximum density estimate applied.

To understand whether our models were successful in

dealing with the bias in our dataset, we compared the

results of the top-ranked model with results when disre-

garding some of the components added to deal with

biases (Table 2). This comparison resulted in poorer devi-

ance explained and poorer goodness of fit (despite the

higher R2) when not considering components associated

with the presence/absence bias, but no considerable

change when removing the offset term (only slightly lower

R2). These results indicate that a larger offset should pos-

sibly have been considered. However, a test run specifi-

cally considering a larger contribution for the offset term

(not shown) resulted in a prediction of zero koala occur-

rence in South Australia.

Discussion

We have provided the first citizen science-generated esti-

mates of koala habitat suitability and population size by

applying state-of-the-art technology and statistical tech-

niques to account for the typical biases and uncertainty

in data collected by nonscientists (Silvertown 2009; Dick-

inson et al. 2010; Courter et al. 2013). The use of the

photographic application on mobile phones enabled us to

confirm the counted animal as a koala. GPS technology
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facilitated the collection of geolocated data, which enables

any double counting to be detected easily. The census day

was hot (35°C maximum), and koalas do not move from

their trees during daylight hours, so many of the tradi-

tional sampling biases for mobile animals were avoided.

In many cases, the goodwill and effort of citizen scien-

tists are invalidated by the error-ridden data they collect,

thus making the entire exercise largely useless for scien-

tific applications (Mayer 2010). Of course, citizen science

activities serve purposes other than just scientific data col-

lection (e.g., engagement, learning, appreciation) (Trum-

bull et al. 2000), but they should primarily serve to

collect data that can truly advance knowledge, especially

in cases where such data would be too difficult or expen-

sive to collect otherwise. An example of a successful pro-

ject involving citizen science is the study on dung

decomposition by beetles (Kaartinen et al. 2013), which

allowed assessment of large-scale factors (across all of Fin-

land) affecting dung decomposition. Another good exam-

ple for the amount of data that can be generated by

citizen scientists and used for scientific purposes is The

Christmas Bird Count, a long-term citizen science survey

running since 1900 (http://birds.audubon.org/christmas-

bird-count). In 2011 alone, the project attracted 63,227

observers who collectively counted nearly 65 million bird

observations (LeBaron 2012). The data collected have

been used in an extensive list of scientific publications

within different themes, such as community ecology

(Hurlbert and Haskell 2003), biogeography (Root 1988),

and patterns of population change (Niven et al. 2004;

Link et al. 2006). Koala counting is potentially an ideal

citizen science project because the target species is large,

common, easily visible, stationary (over a day), and pop-

ular. Further, a citizen science approach to data collection
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Figure 6. Partial residual plots for the water

and roads fixed effects included in the top-

ranked models: (A) density of watercourses

(m km�2), (B) distance to water bodies (m), (C)

density of sealed roads (m km�2), and (D)
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Table 2. Summary of the generalized linear mixed-effects model results disregarding some of the components used to deal with biases associated

with citizen-collected data. Only results for the highest-ranked model (veg + water + temp.range + elevation + roads) are shown. Predictors

include the following: veg (all vegetation variables, i.e., koala Eucalyptus – koalaeuc, other Eucalyptus – othereuc, and other vegetation); water

(density of watercourses and distance to water bodies), temp.range (temperature range), elevation, and roads (density of sealed and unsealed

roads). All models included a spatial random effect (2-km2 grid cell). Shown for each model are biased-corrected model probabilities based on

weights of Akaike’s information criterion corrected for small sample sizes (wAICc), the percentage of deviance explained (%De), the cross-valida-

tion error (CVerror), and Cohen’s j and both marginal and conditional R2.

Disregarding: wAICc %De CVerror j R2(m) R2(c) Largest effect

Original ~1 61.6 0.10 � 0.01 0.46 � 0.07 76.4 81.0 Temperature (10.13)

Offset 1 62.7 0.11 � 0.03 0.48 � 0.07 75.9 80.6 Temperature (10.20)

Weights 1 49.0 0.25 � 0.02 0.15 � 0.03 82.3 83.2 Sealed roads (21.26)

Pseudo-absences1 1 49.0 0.01 � <0.01 0.14 � 0.02 82.3 83.2 Sealed roads (21.26)

1The model disregarding pseudo-absences uses the entire background environmental data within the area covered by the dashed line in Fig. 1.
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is appealing as koalas are widely distributed and the costs

of a professional count would be prohibitive.

The spatial and/or temporal nonrandomness in sam-

pling effort typical of many citizen-collected datasets

(Sn€all et al. 2011; Hurlbert and Liang 2012) can render

their analysis challenging. While we partially dealt with

the location bias by introducing an offset for distance to

roads in our models (Fig. 2), timing-associated biases

were dealt with prior to analysis by restricting data collec-

tion to 1 day only. This could also be applied (or

extended) to other citizen data for which the timing of

observations is biased (Hurlbert and Liang 2012) by (1)

using only a subset of the data collected or (2) requesting

data collection specifically outside the peak season when

it is normally collected. While statistical approaches can-

not rectify all problems, they can potentially rescue many

citizen science datasets. The bias of citizen scientists

toward reporting only sightings of species (rather than

absences) can also be problematic. In our case, we

accounted for the lack of real absences by generating

pseudo-absences, but this is merely a preliminary step.

We suggest that the collection of real absences should be

improved in future projects.

Changing the searching protocol and allowing the

smartphone apps to collect data automatically during

the search could potentially provide such information.

For example, participants would be required to activate

their app as soon as they start searching (rather than

just when they find a koala), so that the apps could

report nonsightings at regular intervals (temporal or

spatial) while koalas are not detected. Further advanta-

ges of this method are that it provides (1) accurate

information about search effort and (2) possible

improvement of detection probability (Pollock et al.

2002) by allowing comparison of sighting provided by

different participants on the same tracks. Another possi-

ble way to improve information associated with sam-

pling effort is to allow citizens to gauge their own

participation. This could be done by including a ques-

tion asking the citizen scientist to estimate his or her

search intensity (e.g., from 1 to 10, with 1 representing

a casual sighting independent of active searching, and

10 representing an extremely active search, specifically

trying to obtain a sighting).

The new ecological knowledge we generated with the cit-

izen science dataset has many potential theoretical and

management applications. Our results show that in addi-

tion to the expected highly suitable habitat on Kangaroo

Island (Masters et al. 2004) and in the Adelaide–Mount

Lofty Ranges region itself, there are also suitable areas in

the southern regions of Eyre, Yorke, and Fleurieu Peninsu-

las (Fig. 1). However, as is happening in other Australian

states (Seabrook et al. 2003), predicted suitable habitat in

mainland South Australia is highly scattered, with most

suitable fragments occurring on the southeastern coast of

South Australia. The predicted habitat suitability outside

the area used to calibrate the model (the section of Mount

Lofty range, Fig. 1) is coherent with the few scattered sight-

ings reported elsewhere within South Australia during the

Great Koala Count, and also with the locations where koalas

were reintroduced from Kangaroo Island as part of the

population control program from 1997.

Temperature range had the largest negative effect on

koala occurrence, suggesting that koalas use habitats with

relatively more constant temperatures. Higher relative ele-

vation and rainfall correlated positively with koala occur-

rence. Together, these results suggest that deviations from

ideal microclimatic conditions are the most limiting com-

ponents of the physical environment for this species at

the edge of its range. Given the poor predictive perfor-

mance of the vegetation indices (see below), it is also

plausible that climate and elevation were reasonable sur-

rogates for food and sheltering vegetation.

The weak effect of the vegetation variables might arise

in part from the biased sampling. The contribution of

the koala eucalyptus vegetation class was also unexpect-

edly lower than the contribution from the other vegeta-

tion variables. Occurrence data were collected only

during 1 day (28 November 2012), and temperatures

were above 30°C during most of that day, reaching a

maximum of 35.4°C. If koalas were mostly using trees as

heat shelters rather than for feeding (a typical behavior

on extremely hot days) (Crowther et al. 2013), the

importance of certain vegetation types could have been

overlooked. Indeed, <9% of the sightings reported a

koala feeding, with most reporting sleeping or low activ-

ity (57% sleeping/sitting). Moreover, our vegetation clas-

sification was based on the most dominant tree species,

so areas classified as “other” (i.e., dominant species other

than Eucalyptus) could still contain Eucalyptus species.

Also, the vegetation layers we used contained data

acquired in 2000 and might not have accurately

described current vegetation conditions.

Interestingly, despite the low deviance explained by

density of roads alone, this variable was particularly

important for predicting the occurrence of koalas. A simi-

lar result was obtained by Rhodes et al. (2006) in areas

where anthropogenic impacts occurred nearby. While

there is clearly much yet to discern about koala distribu-

tion and population size in South Australia, our paper

demonstrates that citizen science-collected datasets can be

useful to advance ecological knowledge about particular

species and ecosystems. Continuing to refine the survey

protocol, as well as collecting more data across different

areas and climatic conditions, would increase the confi-

dence in our predictions.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Moran’s I plots showing the reduction in spa-

tial autocorrelation in the GLM residuals when a random

effect was included to the models (GLMM).

Figure S2. Comparison of predicted habitat suitability for

koalas in South Australia derived from the generalized

linear mixed-effects models excluding: (A) weight differ-

ence between recorded and generated pseudo-absences;

(B) pseudo-absences generation (i.e., using only the

recorded absences); and (C) the offset to account for

effort bias near roads and paths.

Table S1. Published population density estimates for koa-

las. All estimates expressed in koalas ha�1.
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