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Abstract

Diffusion process models are widely used in science, engineering and finance. Most diffusion

processes are described by stochastic differential equations in continuous time. In practice,

however, data is typically only observed at discrete time points. Except for a few very special

cases, no analytic form exists for the likelihood of such discretely observed data. For this reason,

parametric inference is often achieved by using discrete-time approximations, with accuracy

controlled through the introduction of missing data. We present a new multiresolution Bayesian

framework to address the inference difficulty. The methodology relies on the use of multiple

approximations and extrapolation, and is significantly faster and more accurate than known

strategies based on Gibbs sampling. We apply the multiresolution approach to three data-driven

inference problems – one in biophysics and two in finance – one of which features a multivariate

diffusion model with an entirely unobserved component.
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1 Introduction

Diffusion processes are commonly used in many applications and disciplines. For example,

they have served to model price fluctuations in financial markets (Heston, 1993), particle

movement in physics (McCann, Dykman, and Golding, 1999), and the dynamics of

biomolecules in cell biology and chemistry (Golightly and Wilkinson, 2008). Most diffusion

processes are specified in terms of stochastic differential equations (SDEs). The general

form of a one-dimensional SDE is

where t is continuous time, Yt is the underlying stochastic process, μ(·) is the drift function, a

function of both Yt and a set of parameters θ, σ(·) is the diffusion function, and Bt is

Brownian motion.
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While an SDE model is specified in continuous time, in most applications data can only be

observed at discrete time points. For example, measurements of physical phenomena are

recorded at discrete intervals — in chemistry and biology, molecular dynamics are often

inferred from the successive images of camera frames. The price information in many

financial markets is recorded at intervals of days, weeks, or even months. Inferring the

parameters θ of an SDE model from discretely observed data is often challenging because it

is almost never possible to analytically specify the likelihood of these data (the list of special

cases of SDEs that do admit an analytic solution is surprisingly brief). Inferring the

parameters from a discretely observed SDE model is the focus of this paper.

One intuitive approach to the problem is to replace the continuous-time model with a

discrete-time approximation. In order to have the desirable accuracy, one often has to use a

highly dense discretization. Dense discretization, however, leads to two challenging issues:

(i) accurate discrete-time approximations often require the discretization time length to be

shorter than the time lag between real observations, creating a missing data problem; (ii)

highly dense discretization often imposes an unbearable computation burden. In this paper,

we propose a new multiresolution Monte Carlo inference framework, which operates on

different resolution (discretization) levels simultaneously. In letting the different resolutions

communicate with each other, the multiresolution framework allows us to significantly

increase both computational efficiency and accuracy of estimation.

1.1 Background

With direct inference of SDE parameters typically being infeasible, researchers have

experimented with a wide number of approximation schemes. The methods range from

using analytic approximations (Aït-Sahalia, 2002) to utilizing approaches that rely heavily

on simulation (see Sørensen, 2004, for a survey of various techniques). An alternate strategy

to approximating the likelihood directly is to first approximate the equation itself, and

subsequently find the likelihood of the approximated equation. Among possible

discretizations of SDEs (see Pardoux and Talay, 1985, for a review), the Euler-Maruyama

approach (Maruyama, 1955; Pedersen, 1995) is perhaps the simplest. It replaces the SDE

with a stochastic difference equation:

where ΔYt = Yt − Yt−1, Δt is the time lag between observations Yt−1 and Yt, and Zt are i.i.d.

normal (0, 1) random variables. In most cases, one cannot choose the rate at which data is

generated – observation rate is typically dictated by equipment limitations or by historical

convention – and applying the discretization scheme directly to the observed data may yield

very inaccurate estimates.

More accurate inference is made possible, however, by incorporating the idea of missing

data into the approximation approach. In this framework, the Δt of the discretization scheme

can be reduced to below the rate at which data is actually gathered. The complete data Yt of

the specified model then becomes either missing or observed. Simulation could be used to

integrate out the missing data and compute maximum likelihood estimates of the parameters
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(Pedersen, 1995). The difficulty of this simulated maximum likelihood estimation method

lies in the difficulty of finding an efficient simulation method. See Durham and Gallant

(2002) for an overview.

The same methodology – combining the Euler-Maruyama approximation with the concept

of missing data – can also be used to estimate posterior distributions in the context of

Bayesian inference. For example, one can use the Markov chain Monte Carlo (MCMC)

strategy of a Gibbs sampler to conditionally draw samples of parameters and missing data,

and form posterior estimates from these samples (Jones, 1998; Eraker, 2001; Elerian, Chib,

and Shephard, 2001). While the approximation can be made more accurate by reducing the

discretization step size Δt, this will generally cause the Gibbs sampler to converge at a very

slow rate. Not only does the reduction in discretization step size lead to more missing data -

requiring more simulation time per iteration – but adjacent missing data values become

much more correlated, leading to substantially slower convergence.

For more efficient computation, Elerian, Chib, and Shephard (2001) suggested conditionally

drawing missing data using random block sizes. Along similar lines but from a general

perspective, Liu and Sabatti (2000) adapted group Monte Carlo methodology to this

problem: changing the block size and using group Monte Carlo to update the blocks.

Another possible approach to drawing missing data is to attempt to update all values in a

single step. Roberts and Stramer (2001) proposed first transforming the missing data so that

the variance is fixed and constant; then a proposal for all transformed missing data between

two observations is drawn from either a Brownian bridge or an Ornstein-Uhlenbeck process,

and accepted using the Metropolis algorithm. Chib, Pitt, and Shephard (2004) proposed a

different transformation method, avoiding the use of variance-stabilizing transformations.

Golightly and Wilkinson (2008) extended this approach, proposing a global Gibbs sampling

scheme that can be applied to a large class of diffusions (where reducibility is no longer

required). Stuart, Voss, and Wilberg (2004) also investigated conditional path sampling of

SDEs, but employed a stochastic PDE-based approach instead. Beskos, Papaspiliopoulos,

Roberts, and Fearnhead (2006) proposed a method which not only draws all the missing data

at once, as these other researchers have suggested, but does so using the actual SDE, rather

than an Euler-Maruyama discretization. This is accomplished using exact retrospective

sampling of the actual diffusion paths. For further details on this inference approach, see

Beskos and Roberts (2005) and Beskos, Papaspiliopoulos, and Roberts (2009).

1.2 The multiresolution approach

While there has been much investigation on how to update missing data values in an Euler-

Maruyama approximation scheme, all such schemes rely on a single discretization level for

approximating the true likelihood. This leads to a delicate balance: on one hand, low

resolution (large Δt) approximations require less computation effort, but the results are

inaccurate; on the other hand, high resolution (small Δt) approximations are more accurate,

but they require very intense computation. We propose a multiresolution framework, which

simultaneously considers a collection of discrete approximations to estimate the posterior

distributions of the parameters, such that different levels of approximations are allowed to

communicate with one another. There are three critical advantages to this approach over
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using only one approximation level. First, the convergence rate of the MCMC simulation

can be substantially improved; coarser approximations help finer approximations converge

more quickly. Second, a more accurate approximation to the diffusion model can be

constructed using multiple discretization schemes: each level’s estimates of the posterior

distribution can be combined and improved through extrapolation. Third, the overall

accuracy of the posterior estimates can be augmented incrementally. If a smaller value of Δt

is later determined necessary, the computational burden is considerably lower relative to

starting a brand new sampler at the new value of Δt. This last feature allows the

multiresolution framework to be most useful in practice, as the appropriate value of Δt is

typically unknown at the outset of analysis. Allowing its value to be decreased incrementally

over the course of analysis can be of great practical service.

Taken in combination, these three features of the multiresolution method allow for more

computationally efficient, more accurate, and more convenient inference of the parameters.

The remainder of this paper is organized as follows: Section 2 introduces the general

notation used in this paper. Section 3 introduces the multiresolution sampler, a cross-chain

MCMC algorithm between Euler-Maruyama approximations at different resolution levels.

Section 4 describes how samples from these levels can be combined through extrapolation to

form more accurate estimates of the true posterior distribution. Practical implementations

the multiresolution approach – combining multiresolution sampling with extrapolation – are

presented in Section 5. The performance of the proposed method is illustrated with three

different SDE applications where no analytic form of the likelihood is presently known. The

paper concludes with a discussion in Section 6.

2 Notation and two illustrative examples

It is instructive to examine simple examples of diffusions to better understand the details of

different inference strategies. One of the simplest SDEs is the Ornstein-Uhlenbeck (OU)

process:

It is fortunate that the exact solution to this equation is known, thus allowing us to directly

examine the error introduced by approximate inference strategies.

Let Y = (Y0, Y1, ···, Yn) denote the n + 1 values of observed data, beginning with an initial

value Y0. For simplicity, it is assumed that the observations Y have been observed at regular

time intervals of ΔT. The exact likelihood of Y under the OU process is:

where g = (1 − exp(−2γΔT))/γ, and for simplicity we ignore the initial distribution of Y0 and

treat it as a fixed value. In order to contrast this exact likelihood with Euler-Maruyama

approximations to the likelihood, we introduce notation to describe the complete data – the
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union of the observations Y with the intermediate values of missing data. Let Y(k) be the

vector of complete data, where we put 2k − 1 regularly spaced values of missing data

between two successive observations, such that the complete data interobservation time in

Y(k) is Δt = ΔT/2k. For example, Y(0) = Y, and . In this

example with k = 1, the even indices correspond to observed values, and the odd indices to

missing values. Generally, the elements of the vector Y(k) are labeled from 0 to 2kn, with

every 2k th element corresponding to an actual observation. The likelihood of the complete

data under the Euler-Maruyama approximation is

Note that two different choices of k correspond to two different Euler-Maruyama

approximations. The observed data will be the same, yet correspond to differently indexed

elements. For instance, if  is an observed value of the process, then  will be the

identical value. For convenience, we use Y{k} to denote all the missing data in the kth

approximation scheme, Y{k} = Y(k)\Y.

The exact posterior distribution of the parameters in the OU process can be found by

specifying a prior p(μ, γ, σ): fexact (μ, γ, σ | Y) ∝ p(μ, γ, σ) fexact (Y | μ, γ, σ, Y0). The Euler-

Maruyama approximation is found by integrating out the missing data:

For the OU process, the posterior density fk(μ, γ, σ | Y) can be calculated analytically. As k

→ ∞, fk (μ, γ, σ | Y) will approach the true posterior fexact (μ, γ, σ | Y). This is illustrated in

Figure 1, which plots the posteriors of fk (σ | Y) and fk (γ | Y) for several values of k, along

with the respective true posteriors. These posteriors are based on 200 observations of a

simulated OU process with ΔT = 0.5, μ = 0, γ = 1, and σ = 1. The noninformative (improper)

prior p (μ, γ, σ) ∝ γ/σ was used, replicating the example of Liu and Sabatti (2000).

As described in the introduction, the difficulty with this approximation scheme lies in the

integration of the missing data. Unlike the OU process, most SDE applications require

sampling of both the parameters and the missing data, and these are all strongly dependent

on one another. Consider the common solution of using a Gibbs sampler to integrate out the

missing data: the joint posterior of both parameters and missing data is sampled

conditionally, one parameter or missing data value at a time. As k increases, not only does it

take longer to iterate the sampler – as there is more missing data – but each sequential draw

is increasingly correlated. With all other values held constant, the conditional draws are

almost deterministic: the sampler becomes nearly trapped. To illustrate this difficulty, a

Gibbs sampler was run to generate samples from the posterior distributions of the

parameters, using the same set of simulated data of the OU process as in Figure 1. The
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autocorrelations of sampled σ and γ are shown in Figure 2, both increasing substantially

with k. This highlights the trade-off in using the Euler-Maruyama approximation approach.

While it allows for numerical tractability, it can be very computationally expensive to

achieve a high degree of accuracy relative to the true posterior specified by the original

diffusion.

With its constant diffusion function, the OU process is a very special example of an SDE. A

more complex SDE can help demonstrate some of the practical difficulties in working with

these types of models. A good example of this is the Feller process – frequently referred to

as CIR model in the economics literature (Cox, Ingersoll, and Ross, 1985) – as the diffusion

function is not constant. The Feller process is

(2.1)

The support of Yt is 0 to ∞, and the parameters γ, μ, and σ are also constrained to be non-

negative. A closed-form solution to the joint posterior of parameters of the Feller process

can be written using the special function Ia (·), the modified Bessel function of order a (Kou

and Kou, 2004):

(2.2)

This expression allows the error resulting from using the Euler-Maruyama approximation to

be examined directly. Figure 3 shows an example of different approximate posteriors using

one simulated dataset from the Feller process. A total of 200 data points were drawn using

ΔT = 0.5, and μ, γ, and σ all equal to 1. We use the same prior p (μ, γ, σ) ∝ γ/σ as before.

Here, the approximate Euler-Maruyama parameter posterior fk(μ, γ, σ | Y) cannot be obtained

analytically; a Gibbs sampler is used to integrate out the missing data instead. Using the

prior above, the conditional distributions of each parameter γ, κ = γμ, and σ2 are standard

distributions: either a (truncated) normal or an inverse-Gamma. The conditional distribution

of each value of missing data, however, is not a traditional one:

(2.3)

For most SDEs, the conditional distribution of missing data will not be a familiar one that

can be easily sampled from. One possibility is to use a Metropolized-Gibbs step: first draw a

new value of the missing data from a proposal distribution; then accept or reject the

proposed draw according to the Metropolis-Hastings rule. Among many possible proposal

distributions, a convenient one is:
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This normal proposal has the advantage of being readily drawn from and asymptotically

correct: as Δt → 0, the acceptance rate approaches 1 (Eraker, 2001). Note that when the

support of the process is strictly positive, we can simply use a truncated normal distribution.

Using this proposal, we applied the (Metropolized) Gibbs sampler to the Feller process. The

results serve as a second illustration of the difficulty of using the Gibbs approach to integrate

out the missing data as k becomes large. Figure 4 shows how the autocorrelations of σ and γ

substantially increase with k.

The OU and Feller process examples highlight the problems associated with applying a

Gibbs sampler to computing posteriors under Euler-Maruyama approximations. While it

may be theoretically possible to achieve arbitrary accuracy by selecting the appropriate

value of k, it may not be practically feasible to wait for the Gibbs sampler to converge.

Furthermore, the OU process and the Feller process are the rare cases where the difference

between the approximated and true posteriors can be observed. In practice, the accuracy of a

selected Euler-Maruyama approximation is unknown; one only knows that it converges to

the correct distribution as k → ∞.

3 Multiresolution sampling

3.1 The sampler

Traditionally, the use of an Euler-Maruyama approximation requires a single resolution

choice (corresponding to a single choice of Δt). The selection of a low resolution (large Δt)

will result in a quickly-converging sampling chain, which is, unfortunately, inaccurate. A

high resolution choice (small Δt) can result in a highly accurate estimate, yet will be slow –

many samples will be required both for convergence and to build up an estimate of the

posterior distribution.

In contrast, our proposed multiresolution sampler employs a collection of Euler-Maruyama

discretization at different resolutions. “Rough” approximations are used to locate the

important regions of the parameter space, while “fine” approximations fill in and explore the

local details. Low-resolution approximations quickly explore the global (parameter) space

without getting stuck in one particular region; high-resolution approximations utilize the

information obtained at the low-resolution explorations to yield accurate estimates in a

relatively short time. By combining the strength of low and high resolutions (and mixing

global and local explorations), this approach provides an inference method that is both fast

and accurate. The key ingredient of the multiresolution sampler is to link different resolution

approximations, using the empirical distribution of the samples collected at low resolutions

to leap between states during high resolution exploration.

In the multiresolution sampler, Euler-Maruyama approximations at m consecutive

resolutions k, k + 1, …, k + m − 1 are considered together. A sampling chain associated with

each resolution is constructed. The multiresolution sampler starts from the lowest resolution
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chain k. This initial chain is sampled using any combination of local updates. For example,

one may use the simple Gibbs algorithm to update the missing data Y{k} and the parameters

θ. Alternatively, one could combine the Gibbs algorithm with the block-update strategy of

Elerian, Chib, and Shephard (2001) or the group-update algorithm of Liu and Sabatti (2000)

to evolve (Y{k}, θ).

After an initial burn-in period, an empirical distribution of (Y{k}, θ) is constructed from the

Monte Carlo samples. The multiresolution sampler then moves to the second lowest

resolution chain, at level k +1. At each step of the multiresolution sampler, the state of

(Y{k+1}, θ) is updated using one of two operations. With probability 1 − p, say 70%, the

previous sample ( , θold) undergoes a local update step to yield the next sample. For

example, in the case of Gibbs, this involves conditionally updating each element of θold and

each missing data value in . With probability p, say 30%, a global, cross-resolution

move is performed to leap ( , θold) to a new state.

The cross-resolution move is accomplished in three stages. First, a state ( , θtrial) is

drawn uniformly from the empirical distribution formed by the earlier chain at resolution k.

Second, ( , θtrial) is augmented to ( , θtrial) by generating the necessary

additional missing data values (as missing data in the Euler approximations at levels k and (k

+1) have different dimensions). Third, ( , θtrial) is accepted to be the new sample with

a Metropolis-Hastings type probability. As this cross-resolution step plays a pivotal role in

the multiresolution sampler’s effectiveness, we shall describe it in full detail in Section 3.2.

After running the (k+1)-resolution chain for a burn-in period, an empirical distribution of

(Y{k+1}, θ) is constructed from the posterior samples; this empirical distribution will in turn

help the (k+2)-resolution chain to move. The multiresolution sampler on the (k+2)-resolution

chain is then started and updated by the local move and the global cross-resolution move

with probabilities 1 − p and p. In the cross-resolution move, the old sample ( , θtrial)

leaps to a new state with the help of the empirical distribution constructed by the (k+1)-

resolution chain. In this way, the multiresolution sampler successively increases the

resolution level until the Euler-Maruyama approximation with the finest resolution k+m is

reached. Each sampling chain (other than the one at the lowest resolution) is updated by two

operations: the local move and the cross-resolution move. The basic structure of the

multiresolution sampler is summarized in Algorithm 1

Algorithm 1

The Multiresolution Sampler

1 Let i = 0. Start from the k-resolution chain. Collect samples from fk (θ, Y{k} | Y) using any combination of
local updating algorithms.

2 Discard some initial samples as burn-in, and retain the remaining samples as the empirical distribution of
(Y{k}, θ) from fk (θ, Y{k} | Y).

3
Let i ← i + 1. Start the (k+i)-resolution chain. Initialize the chain to a state ( , θold).
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4 With probability 1 − p, perform a local update step to generate a new sample from fk+i (θ, Y{k+i} | Y), using
any combination of local updates.

5 With probability p, perform a cross-resolution move:

a.
Randomly select a state ( , θtrial) from the empirical distribution of the (k+i-1)-
chain.

b.
Augment ( , θtrial) to ( , θtrial) by generating additional missing data values.

c.
With a Metropolis-Hasting type probability r, accept ( , θtrial) as the next sample in the

chain; with probability 1 − r, keep the previous values of ( , θold) as the next sample in
the chain.

6
Rename the most recent draw as ( , θold), and repeat from Step 4 until a desired number of samples
are achieved (typically determined in part by monitoring the chain for sufficient evidence of convergence).

7 Discard some initial samples of the chain as burn-in, and retain the remaining samples to form an empirical
distribution of (Y{k+i}, θ) from fk+i (θ, Y{k+i} | Y). If a finer approximation to the SDE is desired, repeat from
Step 3.

3.2 The cross-resolution move

The cross-resolution move provides the means for successive resolution approximations to

communicate with each other, allowing a rapidly mixing low resolution approximation to

speed up the convergence of a higher resolution chain. There are two key insights behind the

move: (i) As the amount of missing data increases, the posterior distributions of the

parameters under different resolutions become closer; an example of this can be seen in

Figures 1 and 3, which illustrate how the posterior distributions of θ overlap to an increasing

degree as k, the resolution level, increases. Notably, the high resolution cases are where help

is most needed because of the slow convergence of the local update. This suggests that in the

sampling of a high resolution chain (say k = 5), generating proposals (independently) from a

lower resolution chain (say k = 4) will have a high chance of being accepted, and will

significantly speed up the high resolution chain’s convergence. (ii) Although it is not

feasible to directly draw from an Euler-Maruyama distribution, we can employ the empirical

distribution to resolve this difficulty. With a sufficient number of samples, the empirical

distribution built on them will be nearly identical to the analytic one. Furthermore, it is

trivial to draw from an empirical distribution: simply select uniformly from the existing

samples.

Based on these two insights, the cross-resolution move is implemented in the multiresolution

sampler by using the empirical distribution of a low resolution chain to generate a new

sample for the high resolution chain. To carry this move out, it is important to note that

different resolution levels do not share the same dimensionality. Thus, once a sample is

drawn from the empirical distribution of a lower resolution scheme, we must augment it

with additional missing data values. A natural way of doing this is to divide the missing data

at resolution (k+1) into two groups, Y{k+1} = Y{k} ∪ Z{k+1}, where Z{k+1} are the additional

missing data at resolution (k+1). Figure 5 illustrates how such successive approximations

line up relative to one another. Thus, the lower resolution chain k generates the missing Y{k},

and we are free to propose the remaining Z{k+1} from any distribution
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Typically, the dimensionality of Z{k+1} is high, but each of its components are independent

of each other, conditioned on θ, Y{k}, and Y, such that Tk+1 boils down to independent draws

from univariate distributions (or d-dimensional distributions for a d-dimensional SDE),

which are much easier to construct.

Algorithm 2

Cross-resolution Move of Multiresolution Sampler

1
Let (θold, ) be the current set of parameters and missing data. Draw (θtrial, ) from the

empirical distribution of fk(θ, Y{k}|Y). Let .

2
Draw  from a distribution . Let

. Recall that . Let

.

3
Similarly, let  and

. Accept ) as the next sample from fk+1(θ,
Y{k+1} | Y) with probability

r = min {1,
πk+1

trial / (πk
trialτk+1

trial)

πk+1
old / (πk

oldτk+1
old ) }.

Otherwise, with probability 1 − r, keep  as the next sample.

Algorithm 2 summarizes the cross-resolution move from the kth approximation to the (k

+1)th approximation. A reader familiar with the equi-energy sampler (Kou, Zhou, and

Wong, 2006) might note that the idea of letting different resolutions communicate with each

other echoes the main operation of the equi-energy sampler, in which a sequence of

distributions indexed by a temperature ladder is simultaneously studied: the flattened

distributions help the rough ones to be sampled faster. Indeed, it was the equi-energy

sampler’s noted efficiency that motivated our idea of the cross-resolution move. We

conclude this section by giving practical guidelines for how to choose the proposal

distribution Tk+1, and how to determine the appropriate probability p of a cross-resolution

move.

3.2.1 Choosing Tk+1—We are free to choose the distribution Tk+1 to conditionally

augment the additional missing data (Step 2). A good choice, however, will make the

acceptance rate of the independence move approach 1 as k increases. To see how the cross-

resolution move improves the Monte Carlo convergence, let us turn to the OU example

process introduced in Section 2. A simple proposal in this case is
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independently for each , where Δt = ΔT/2k+1. This is the proposal used to

update the missing data in the Gibbs sampler of Section 2. The autocorrelations of the OU

process parameters σ and γ under the cross-resolution move are shown in Figure 6. These

can be directly contrasted with the Gibbs sampler autocorrelations shown in Figure 2, as the

identical data set was used in both samplers. In addition to the evident improvement of the

autocorrelation, we note that in the cross-resolution move – in contrast to the local update

move – the autocorrelation decreases as k increases. This reflects the fact that the acceptance

rate is increasing as the successive Euler-Maruyama approximations increasingly overlap

with one another.

A good choice of Tk+1 can make the multiresolution sampler very efficient. On the other

hand, a poor choice of Tk+1 can result in a low acceptance rate of the cross-resolution

proposal. There does not appear to be, however, a foolproof recipe that guarantees a good

distribution Tk+1 for any arbitrary SDE. One useful technique that can make Tk+1 easier to

choose is to transform some aspect of the SDE to stabilize the variance (Roberts and

Stramer, 2001). For instance, if Yt is a Feller process (2.1) and we let , then

by Itō’s formula . The distribution of missing data under Zt,

with its constant variance function, is much closer to a normal than the original Yt. Figure 7

shows the autocorrelation of σ and γ from the output of the multiresolution sampler on Zt.

As k increases, the convergence rate of the multiresolution sampler improves. This stands in

contrast to Figure 4 of the Gibbs sampler.

3.2.2 Choosing p—The probability p of making a cross-chain move in the multiresolution

sampler (or the fraction of moves on a deterministic schedule) can be chosen as follows.

Consider a local-update MCMC algorithm (for example, the Gibbs sampler or the block

update algorithm). For a given quantity of interest τ = h(θ), we may approximate the

effective sample size EG of N iterations of these local updates up to first order by

where η is the lag-1 autocorrelation of τ: η = cor(τ(t), τ(t+1)) (see for instance Liu, 2001,

Section 5.8). Now suppose that at each cycle of the local updates, a cross-resolution move

targeting p(θ, Y{k+1} | Y) with acceptance rate a is made with probability p. Then τ(t) and

τ(t+1) are independent with probability ap and have correlation η with probability 1−ap, such

that the lag-1 autocorrelation of τ using these cross-resolution moves decreases to (1−ap)η.

If EM denotes the effective sample size of the multiresolution sampler combining local

updates with cross-resolution proposals, the efficiency of this algorithm relative to the local

updates alone can be measured as
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(3.1)

The value of p can then be adjusted if a and η are known, or estimated after an initial pilot

run. For instance, if the basic Gibbs sampler has lag-1 autocorrelation η = .75 for a

parameter of interest, it takes ap = .25 to double the effective sample size. For η = .9, we

only need ap = .1, which helps quantify the great potential of multiresolution sampling when

the autocorrelations of the local updates are high.

4 Multiresolution inference

The multiresolution sampler uses the rapid convergence of low resolution chains to in turn

speed up the high resolution chains. At the completion of sampling, the multiresolution

sampler has samples from several approximation levels. For the subsequent statistical

inference, a naive approach might be to simply focus on the highest resolution

approximation – since it is the most accurate – and ignore the low resolution samples,

treating them just as a computational byproduct of the procedure. This approach, however,

does not use all the samples effectively, wasting a great deal of both information and

computation. In fact, the different approximations can be combined by extrapolation to

significantly reduce the estimation error.

4.1 Multiresolution extrapolation

Extrapolation is a technique often used in numerical analysis. It is a series acceleration

method used to combine successive approximations to reduce error. Richardson

extrapolation (Richardson, 1927) is a general statement of the approach, which can be

applied whenever a function F(h) converges to a value F0 = limh→0 F(h). Consider the

expansion of such a limit:

(4.1)

where m′ > m and am ≠ 0. Taking the view that F(h) is an approximation to the limit F0, two

successive approximations F(h) and  can be combined to form a more accurate estimate

of F0 by eliminating the amhm term in the expansion:

Compared to F(h), the error in R(h) is at least an order smaller. Additional extrapolation can

be applied recursively to R(h) to eliminate even higher order terms in the expansion. The

Romberg method of integration is an example of Richardson extrapolation applied to

numerical integration (Romberg, 1955). Richardson extrapolation has also been applied to

simulating and numerically solving SDEs (Talay and Tubaro, 1990; Kloeden, Platen, and

Hofmann, 1995; Durham and Gallant, 2002).
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In our Bayesian inference of diffusions, the multiresolution sampler gives us samples from

several Euler-Maruyama approximations of the posterior distribution. Our goal is to

combine them in order to have a more accurate estimate of the true posterior. To do so, we

perform extrapolation. This multiresolution extrapolation allows us to reduce the

discretization error by an order or more. For example, suppose a function g(θ) of the

parameters is of scientific interest. An extrapolated point estimate can be obtained by first

calculating the posterior mean or median of g(θ) based on the samples from each Euler-

Maruyama approximation and then performing an extrapolation. Similarly, a 1 − α credible

interval of g(θ) can be obtained by calculating its α/2 and 1 − α/2 quantiles from each Euler-

Maruyama approximation and then performing an extrapolation on these quantiles. For most

inference problems, point and interval estimation suffices. Occasionally, one might want to

look at the marginal posterior density of a particular parameter θj. In this case, we can

perform extrapolation on a kernel density estimate f̂(θj) at each value of θj on a grid. By

piecing together these extrapolated values we obtain an extrapolated estimate for the

marginal posterior density of θj.

A key ingredient of successful extrapolation is establishing the exponent m in equation (4.1).

We will show in Appendix A that the Euler-Maruyama approximation for the posterior

distribution has the exponent m = 1 for the posterior mean, quantiles, and kernel density

estimates.

As an example of the method, consider combining the k = 2 and k = 3 approximations of a

given quantile α of θj. Let us designate this extrapolated quantile estimate as .

With m = 1, and with the k = 3 approximation having twice the discretization rate as the k =

2 approximation, we have the formula

Combining k = 3 and k = 4 is similar:

Combining k = 2, k = 3, and k = 4, however, is different. Rather than combine the quantiles

directly, we (recursively) combine the extrapolated estimates  and 

together:

Note that here this combination is to eliminate the next higher-order term; thus, in this

formula, m = 2.
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4.2 Illustration of multiresolution extrapolation

To provide an illustrative example, extrapolated density approximations for the OU, Feller,

and variance-stabilized Feller processes are displayed in Figure 8. Several observations

immediately follow from this Figure:

i. Combining two posterior estimates through extrapolation significantly reduces the

error. Combining the approximations using only 3 and 7 interpolated missing data

points between observations (k = 2 and k = 3), for example, generally produces an

estimate that is as accurate or even more accurate than the corresponding estimate

based on a single approximation using 31 values of missing data (k = 5). This

illustrates a major advantage of the multiresolution approach: using the combined

strength of the multiresolution sampler and extrapolation, one does not always

require a highly dense discretization rate for an accurate result; proper combination

of low resolution approximations can often lead to a better result than a single high

resolution approximation.

ii. A comparison between the Feller and variance-stabilized Feller results again

highlights the advantage of using a variance-stabilizing transformation wherever

possible.

iii. Combining three Euler-Maruyama approximation schemes (in this example, k = 2,

3, and 4), can be effective at reducing the overall error, as this eliminates both the

first- and second-order errors. Thus, even in cases where the discretization error is

largely in higher-order terms, the benefit derived from using extrapolation has the

potential to be quite significant.

These observations suggest that whenever the computational challenge of sampling from a

high-dimensional Euler-Maruyama approximation is substantial, it can be more efficient to

sample from several lower-dimensional approximations and combine the resulting estimates

with a final extrapolation step.

5 Multiresolution method in practice

In this Section, we shall apply the multiresolution approach to three realistic SDE models,

one in biophysics and two in finance. Comparisons were made to chains that used only the

simple Gibbs-type local updates. However, it is worth emphasizing that any strategy that

increases the efficiency of the Gibbs sampler can be incorporated into the multiresolution

sampler’s local updates. This includes the block-update strategies of Elerian, Chib, and

Shephard (2001) or the group moves of Liu and Sabatti (2000). The metric we use for

comparison is the relative mean squared error (MSE) R̂, the ratio of the mean squared error

of the Gibbs approach to the mean squared error of the multiresolution approach, both

relative to the true posterior parameter distribution in each example. Since the true posterior

in these nontrivial examples cannot be obtained analytically, we performed an exhaustive

search. Higher and higher resolution chains were run to full convergence (many millions of

iterations), until the last chain matched the extrapolated estimate of the two chains directly

below it to within 0.1 standard deviations on 50 equally spaced quantiles of each
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parameter’s marginal density. This last chain was then retained as a proxy for the ground

truth.

5.1 Double-well potential model for optical trap

The following general potential model is used to model a wide number of natural

phenomena:

where U(x) is a potential function, and U′(x) is the first derivative of U(x) with respect to x.

In a variety of circumstances, such as enzymatic reactions and electron transfer, the potential

function is characterized as having a double well. In such cases, the following potential is

often used as a model:

The SDE model corresponding to data Yt observed in this potential is thus:

Note that U(x) has local minima at ±β and a local maximum at −c/4, provided c < 4|β|.

Figure 9(a) plots the double-well potential U(x).

We apply this model to an example from biophysics. In this case, Yt describes the location of

a particle when placed in an optical trap. McCann, Dykman, and Golding (1999) studied the

behavior of a submicrometer-sized dielectric particle in a double-well optical trap. They

acquired the location of the particle in time using a high-speed camera. While McCann et al.

have not made their data publicly available, they have published their estimates of the

double-well potential itself, as well as some of the inferred particle positions over time. We

fit the double-well potential model to these results and found values of β = 0.1725, c =

0.0259, γ = 5000, and σ = 3. Using these parameters, we simulated this process and sampled

observations at a rate of ΔT = 1 ms to record a total of 500 data points. An example of

simulated observations from the process are plotted in Figure 9(b).

Using an exhaustive numerical search, we determined that resolution level k = 5 was

indistinguishable from our proxy for the ground truth. We compare the ratio of the MSE of

the Gibbs approach to that of the multiresolution method as follows. After a burn-in period

of 10,000 iterations, we ran the Gibbs sampler for 1000 iterations at resolution k = 5, i.e.

with 31 values of missing data between observations. A prior p(γ, β2, c, σ) ∝ γ/σ ·1{c < 4|β|}

is used to obtain the parameter posteriors, where 1{·} denotes the indicator function. With

this prior the conditional parameter draws of γ, κ = γc, β2, and σ2 are truncated normals or

inverse-Gamma. We recorded the time it took to draw these 1000 samples, then gave the

same time budget to the multiresolution sampler on levels k = 3 and k = 4; that is, with 7 and

15 values of missing data between observations. At level k = 4, the lag-1 parameter
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autocorrelations were around .85 and the cross-resolution proposals from k = 3 had a 30%

acceptance rate. We set the cross-resolution proposal rate to p = 0.5, such that the

multiresolution sampler at k = 4 is expected to have twice the effective sample size of the

Gibbs sampler at k = 4 according to the rule-of-thumb in (3.1).

Each sampler (Gibbs and multiresolution) was run many times starting from different initial

values, to produce the ratio of MSE between the Gibbs and multiresolution estimates

displayed in Table 1. Here, the multiresolution sampler is roughly two to three times as

efficient as a single Gibbs sampler. This is roughly the value we expect, assuming that (3.1)

holds and that the computation time for Gibbs samplers doubles with each k.

5.2 Generalized CIR model for US treasury bill rate

Diffusions are often used as models for short-term interest rates in the field of mathematical

finance. Chan et al. (1992) have suggested using the generalized Cox, Ingersoll and Ross

(gCIR) model:

where γ, σ, ψ, and Yt are all positive. Both the OU and Feller processes are special cases of

this generalized process: ψ = 0 is the OU process and ψ = 1/2 is the Feller process.

We apply the gCIR model to interest rate data consisting of 16 years of monthly records,

from 8/1982 to 11/1998, of the 3-month U.S. Treasury Bill rate, as compiled by the Federal

Reserve Board. This data, shown in Figure 10, is available for download at http://

research.stlouisfed.org/fred2/series/TB3MA/downloaddata?cid=116. The data has been

converted into a fraction by dividing by 100 (thus 0.1 is a rate of 10%). There are 196

observations in total.

The prior used in our investigations is p(γ, μ, σ, ψ) ∝ γ/σ, with the prior on ψ additionally

being uniform on the interval [0, 1]. This is the same prior on ψ used by Roberts and

Stramer (2001). We used ΔT = 1/12 to reflect that the data was recorded monthly. Our

exhaustive numerical evaluation of the ground truth yielded posterior means of μ, γ, σ and ψ

equal to 0.0471, 0.1923, 0.0628, and 0.6851 respectively.

Following burn-in (10,000 iterations), we ran the Gibbs sampler for 10, 000 iterations at the

appropriate level k = 5 (as determined by the exhaustive numerical search). We ran the

multiresolution sampler on k = 2 and k = 3 for the same amount of time alocated to the

Gibbs sampler. In this case, the lag-1 autocorrelations for k = 3 were around 0.95 while the

multiresolution acceptance rate was again around 30%. Setting the cross-resolution move

probability to p = 0.5 was expected to increase efficiency by a factor of 4. The resulting

posteriors of the two chains k = 2 and k = 3 were combined using multiresolution

extrapolation into final estimates of posterior quantiles. The simulation was independently

repeated multiple times for both the Gibbs sampler and the multiresolution method.

Table 2 shows the ratio of the MSE of the Gibbs estimate to the MSE of the multiresolution

approach, for a range of posterior quantiles of σ and ψ, two parameters of particular interest
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to researchers studying short term interest rate. For this particular model and data set,

extrapolation allows us to skip two resolution levels k = 4 and k = 5, such that the

multiresolution approach is seen to be 10 to 30 times more efficient than a standard Gibbs

sampler.

5.3 Stochastic volatility model

So far, we have benchmarked the multiresolution approach against a single Gibbs sampler of

an Euler-Maruyama approximation. The added cost of obtaining multiresolution samples is

well offset by the increasing autocorrelation as the resolution k increases. It should be

pointed out, however, that for univariate SDEs there exists an alternative data augmentation

scheme which does not use Euler-Maruyama discretization, or any direct discretization of

the complete diffusion path Yt itself. Instead, it is based on a factorization of Yt with respect

to a parameter-free Brownian measure, made possible by the Girsanov change-of-measure

theorem. This approach was first considered by Roberts and Stramer (2001) and has been

developed, for instance, in Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006).

Borrowing from the terminology employed by these authors, we have implemented one such

“exact-path” scheme on the double-well and gCIR models presented above. Although the

conditional parameter draws are more difficult than with the Euler-Maruyama

approximation, the autocorrelations of θ were much lower, both discretization schemes

having the same level of accuracy for a given resolution k. While it is possible to implement

a multiresolution sampler on the exact-path scheme, the benefit of reducing small parameter

autocorrelations even further is rather modest, and generally does not make up for the cost

of obtaining multiresolution samples in the first place.

An important step of the exact-path scheme above was to transform the given diffusion

process Yt to a different diffusion process Zt = η(Yt, θ) with unit diffusion:

It is easy to show that η(y, θ) = ∫ σ−1(y, θ)dy satisfies this requirement in the univariate case.

However, for multidimensional diffusion processes such a transformation generally does not

exist. A simple example is Heston’s (1993) stochastic volatility model for a financial asset

St,

(5.1)

where the two Brownian motions BSt and BVt have correlation cor(BSt, BVt) = ρ. In typical

applications, only discrete observations S = (S0, …, Sn) of the financial asset are recorded.

The “instantaneous variance” or volatility process Vt is completely unobserved.

Implementation of the exact-path scheme for Heston’s model is not as simple as in the

univariate case, but can be achieved by using simultaneous time-scale transformations t ↦

ϑV(t) and t ↦ ϑS(t) (Kalogeropoulos, Roberts, and Dellaporta, 2010). Even then, the
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transformations are only possible because the volatility Vt itself is a diffusion process:

. While extending the exact-path approach to the more

general setting appears to pose a considerable technical challenge, the Euler-Maruyama

Gibbs-type scheme can easily be adapted to multiple dimensions. This simple scheme does,

however, suffer from a heavy computational burden, which stands to be greatly reduced by

the multiresolution approach.

We have fit Heston’s stochastic volatility model to 400 weekly 3-month U.S. Treasury Bill

rates from 5/11/1965 to 29/6/1973, displayed in Figure 11. Inference was performed using

Euler-Maruyama posterior approximations on the transformed process Xt = log(St) and

. Since there are 252 trading days in a year, the financial convention for weekly

data is to set ΔT = 5/252. We used the prior p(α, γ, μ, σ, ρ) ∝ γσ2; a variety of

noninformative priors were found to give very similar answers.

Posterior densities and autocorrelations for σ and ρ are displayed in Figure 12, for Gibbs

samplers at resolution levels k = 0 to k = 4. Since the volatility process Vt is unobserved, the

n + 1 = 400 volatility points V = (V0, …, Vn) corresponding to the observed data S must also

be integrated out, which has a considerable impact on the mixing time of the Gibbs

samplers. Even at the lowest level k = 0, the lag-1 autocorrelation of σ is 0.98, the highest of

any autocorrelation encountered in the previous examples. At level k = 4, over 20 million

Gibbs samples were required to give the posterior densities their full convergence shape.

In the following evaluation, we compare the multiresolution approach not only to a single k

= 4 Gibbs sampler, but also to parallel Gibbs samplers running at k = 2 and k = 3. This

accounts for the widespread availability of simultaneous computing resources, allowing

researchers to run several Euler-Maruyama approximations at once and later combine them

to produce estimates by extrapolation.

In total, three Gibbs samplers were run for 200,000 iterations each, at k = 2, 3, and 4. The

first two Gibbs samplers k = 2 and k = 3 were combined to form extrapolated parameter

estimates. To benefit from available technology, a parallelized version of the multiresolution

sampler was implemented as follows. First, a Gibbs sampler is started at k = 0 and run for

some burn-in period. Then, another Gibbs sampler is started at k = 1, and both samplers are

run simultaneously; the cross-resolution proposals linking these samplers can now be drawn

uniformly from an ever-increasing pool of samples. After another burn-in period, a third

Gibbs sampler is started at k = 2 and run alongside the two others. It is linked to the k = 1

sampler by cross-resolution proposals, which continue to link k = 1 to k = 0. Finally, the k =

3 Gibbs sampler is added to the ensemble, with cross-resolution proposals connecting all

four samplers. Multiresolution extrapolation is then performed using the last two levels k = 2

and k = 3.

A direct time comparison between the Gibbs samplers and the multiresolution sampler is

difficult and perhaps uninformative in this setting. Instead, we assume that computation time

scales as O(2k) for the same number of samples. We also assume that the cost of computing

one cross-resolution proposal and acceptance rate, when correctly implemented, is

negligible compared to the cost of computing one full cycle of missing data and parameter

Kou et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



updates in the Gibbs sampler. In our experience, this tends to be the case when the complete

data themselves are the parameters’ sufficient statistics. Thus, each step of the

multiresolution sampler consists of both a local update cycle and a cross-resolution move.

Now, suppose that the multiresolution sampler is given M iterations at k = 0, then spends M

iterations running k = 0 and k = 1 together, M iterations at k = 0, 1, 2, and M iterations at k =

0, 1, 2, 3. This is equivalent to M(1 + 1/2 + 1/4 + 1/8) ≈ 2M iterations of the Gibbs sampler

at k = 3, and M iterations of the Gibbs sampler at k = 4.

Extrapolated quantiles using multiresolution samplers with M = 100, 000 iterations are

compared to the extrapolated quantiles of the Gibbs samplers at k = 2 and k = 3 in Table 3.

Even though the cross-resolution acceptance rate is only around 15%, the MSE of the

extrapolated Gibbs samplers is generally three to ten times higher than for the

multiresolution sampler. Moreover, this assumes that the user running the Gibbs samplers

either knows that extrapolation between k = 2 and k = 3 is sufficient, or happens to run them

in parallel at the first step of the analysis. With the multiresolution sampler, it is not as

crucial to know or guess the “correct” resolution (or combination of resolution levels) in

advance, as higher resolution levels can be sampled incrementally at a substantially lower

cost.

We next give M = 200, 000 iterations to each step of the parallelized multiresolution sampler

– M iterations for k = {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3} – to compare to the 200,000

iterations of the single Gibbs sampler at k = 4. Both samplers require about the same amount

of computation as discussed in the previous paragraph. Ratios of MSEs comparing the single

Gibbs sampler to the multiresolution sampler with extrapolation are computed in Table 4. In

this case, the multiresolution approach is five to twenty times more efficient than a single

Gibbs sampler.

6 Conclusion

We have proposed a multiresolution Bayesian inference approach for estimating the

parameter posterior of diffusion models. The method calls for samples to be drawn not just

from one but multiple Euler-Maruyama approximations that communicate with each other.

The fast but rough approximations help speed up the fine ones using cross-resolution moves.

Moreover, combining the samples using multiresolution extrapolation can improve accuracy

by an order or more, allowing the overall discretization level to be much lower than if a

single chain had been used.

In our illustrations of the multiresolution sampler, we used the Gibbs-type move for local

updating. In practice, any strategy that increases the sampling efficiency at a fixed resolution

can be incorporated into the multiresolution sampler as well. This includes, for example, the

block-update strategy of Elerian, Chib, and Shephard (2001) or the group-update strategy of

Liu and Sabatti (2000). Our multiresolution approach thus complements these existing

methods by allowing them to be accelerated by cross-resolution moves.

Another practical advantage of the multiresolution method is how the precision of its

estimates can be improved incrementally. Rarely does one know ahead of time what the

correct value of (2k − 1) – the number of missing data values between observations – will
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actually be. The idea of running a computationaly intensive sampler at some level k only to

find out that an even higher level approximation must be started from scratch is certainly

unappealing. In contrast, the additional computation time for each level of the

multiresolution sampler is considerably smaller. Proceeding incrementally allows the

appropriate level k to be naturally determined over the course of the analysis.

We have implemented the multiresolution approach in one- and two-dimensional settings.

The same methodology can be applied to general multidimensional diffusions, and even to

jump diffusions (for example, Kou, 2002), and infinite-activity processes such as the

variance-gamma process (Madan, Carr, and Chang, 1998) as well. It is likely that in these

more complicated settings, a fully parallel version of the multiresolution sampler as in

Section 5.3 will be most desirable. This version of the sampler is referred to as an

interacting MCMC algorithm by Fort, Moulines, and Priouret (2011), evoking the one-way

relation between the “target” chain at level k+1 and the “auxiliary” chain at level k. While

convergence results therein and elsewhere (Hua and Kou, 2011) have been established for a

similar implementation of the equi-energy sampler, the main theorems of Fort et al. hold

under more general conditions. It would be very interesting to see whether they apply to the

multiresolution sampler as well. More complicated inferential settings may also call for

more creative cross-resolution missing data proposals Tk+1. With the absence of a variance-

stabilizing transformation in multiple dimensions, the multiresolution sampler could

potentially be combined with dynamic importance weighting (Wong and Liang, 1997) in

order to achieve higher cross-resolution acceptance rates. Further investigation of these

ideas is currently under way.
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A Appendix: The expansion order of posterior estimates

In this section, we show that the posterior mean, quantiles, and kernel density estimates of

parameters under the Euler-Maruyama discretization scheme have exponent m = 1 in the

expansion (4.1). Let us restate the general form of the SDE as:

We assume the discrete observations Y = Y(0) occur at times t = {t0, …, tn}. For notational

ease, we rewrite Y as y = (y0, …, yn), and denote Y(t) = {Y(t1), …, Y(tn)}.

Without loss of generality, let us assume t0 = 0. Then the Euler approximation Y(k)(t), with

time discretization Δt = ΔT/2k, is given by

where j = 0, 1, 2, …. Using the notation established in Section 2, p(θ) is the prior

distribution of θ, f is the density function of Y, and fk is the density function of the Euler-

Maruyama approximation Y(k). We assume Y(k)(0) and Y(0) are drawn from the same

distribution.

In examining weak convergence, we are interested in determining how the posterior

expectation E(g(θ)|Y(k)(t) = y) under the Euler-Maruyama discretization approximates the

true posterior expectation E(g(θ)|Y(t) = y) as a function of k. In real applications, however,

owing to measurement, equipment, and rounding errors, as well as numerical precision, the

realistic posterior expectation accessible to us is best stated as E(g(θ)|Y(t) ∈ (y − ε, y + ε)),

where ε is a small number corresponding to the precision level. This posterior expectation

involves many step functions 1[yi−ε,yi+ε](z) which are not mathematically convenient. Thus,

we replace the step function by a smooth kernel w and focus instead on how Eε,w(g(θ)|Y(k)(t)
≃ y), our shorthand notation for

where w is a smooth (four times continuously differentiable) density function, approximates
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Theorem A.1

Suppose the following three conditions hold for an SDE:

i. μ(x, t, θ) and σ2(x, t, θ) have linear growth; i.e., μ2(x, t, θ) + σ2(x, t, θ) ≤ K(θ)(1 +

x2) for every θ

ii. μ(x, t, θ) and σ2(x, t, θ) are twice continuously differentiable with bounded

derivatives for every θ; i.e.,

, and

 are all bounded by N(θ);

iii. σ2(x, t, θ) is bounded from below for every θ; i.e., σ2(x, t, θ) ≥ λ(θ) > 0.

Then, for any integrable function g,

where Cg is a constant which does not depend on k.

Proof

We note

(A.1)

Denote , and

. Then, we have the recursion

from the Markov property. By Theorem 14.1.5 of Kloeden and Platen (1992), for any

smooth (fourth continuously) differentiable function q,
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where the constant Aq does not depend on k, y, or l. It follows that if we assume vl+1(y, θ) −

ul+1(y, θ) = Bl+1/2k + o(2−k), then

Therefore, using backward induction, we obtain that v0(x, θ) − u0(x, θ) = B0/2k + o(2−k),

which, combined with the assumption that Y(k)(t0) and Y(t0) have the same distribution,

implies that

for some constant C(θ) depending on θ. Taking this result back to (A.1), we obtain

We make explicit use of this theorem by noting the following corollary on the posterior cdf

and quantiles:

Corollary A.2

The posterior cdf  of the jth parameter θj satisfies

If the posterior cdf  has non-zero derivative, then the quantile  of θj satisfies
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for fixed 0 < α < 1.

Proof

Taking g(θ) of Theorem A.1 to be the indicator function 1(θj ≤ z) immediately yields the

first equation. The assumption that  has non-zero derivative enable us to invert it to

obtain the second equation.

We can make the connection between Corollary A.2 and equation (4.1) explicit by noting h

= ΔT/2k. Therefore, to apply extrapolation to the quantiles of a parameter posterior, we

should use the exponent m = 1.

Similarly, suppose that we wish to estimate the density f(θj) of parameter j at a specific value

θj = x. Suppose that a kernel density estimate f̂(x) is of the form

where K is a (symmetric) kernel, h is a bandwidth parameter and  is a

collection of M samples from f(θj). In this case, for fixed h, f̂(x) can be seen as a sample

estimate of

such that g(θ) = K((x − θj)/h)/h. As long as the kernel K is integrable, Theorem A.1 also

applies. Moreover, if the kernel density estimate f̂(x) at each resolution level is normalized,

then so is the density estimate obtained by extrapolation.
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Figure 1.
Euler-Maruyama approximation of the posterior of σ and γ in the OU process. Posteriors are

based on 200 points of simulated data with ΔT = 0.5, μ = 0, and σ = γ = 1. The prior is p (μ,

γ, σ) ∝ γ/σ. The third panel is a contour plot showing the joint parameter space.
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Figure 2.
Autocorrelation of the posterior samples of σ and γ of the OU process from a Gibbs sampler

output. Convergence slows as k increases.
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Figure 3.
Posterior distributions of σ and γ in the Feller process based on Euler-Maruyama

approximations. Posteriors are based on 200 points of simulated data with ΔT = 0.5, and μ =

σ = γ = 1. p (μ, γ, σ) ∝ γ/σ.
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Figure 4.
Autocorrelation of Feller process posterior samples σ and γ from the output of a Gibbs

sampler. Convergence slows as k increases.
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Figure 5.
Graphic depicting three Euler-Maruyama approximations. Shaded circles represent observed

data, while empty circles represent missing data. The arrows show how a draw from one

approximation can be partially used as a proposal in the next.
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Figure 6.
Autocorrelation of OU process parameters σ and γ from the output of a multiresolution

sampler. Convergence improves as k increases.
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Figure 7.
Autocorrelation of variance-stabilized Feller process parameters σ and γ from the output of a

multiresolution sampler. Convergence improves as k increases.
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Figure 8.
Posterior distribution estimates of σ and γ for different diffusions. Posterior estimates are

created by combining two or more Euler-Maruyama estimates of the posterior quantiles and

reconstructing the estimate of the distribution.
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Figure 9.
Example of simulated data from a double-well potential model. β = 0.1725, c = 0.0259, γ=

5000, and σ = 3.
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Figure 10.
Sixteen years of monthly 3-month U.S. Treasury Bill rate data, as compiled by the Federal

Reserve Board.
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Figure 11.
Weekly observations of 3-month U.S. Treasury Bill rates.

Kou et al. Page 36

J Am Stat Assoc. Author manuscript; available in PMC 2014 October 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 12.
Densities and autocorrelations for Heston’s model parameters σ and ρ.
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Table 1

Ratios of MSE. Estimates of posterior quantiles from a Gibbs sampler versus those from the multiresolution

method for the double-well potential model over the same amount of computer time.

γ MSE Ratio

Q0.05 2.4 ± 0.65

Q0.25 2.3 ± 0.64

Q0.5 2.2 ± 0.59

Q0.75 2.1 ± 0.54

Q0.95 1.8 ± 0.45

c MSE Ratio

Q0.05 1.6 ± 0.34

Q0.25 2.2 ± 0.45

Q0.5 3.1 ± 0.66

Q0.75 3.0 ± 0.59

Q0.95 2.8 ± 0.59
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Table 2

Ratios of MSE. Estimates of posterior quantiles from a Gibbs sampler versus those from the multiresolution

method for the gCIR process over the same amount of computer time.

σ MSE Ratio

Q0.05 32 ± 6.2

Q0.25 17 ± 3.8

Q0.5 11 ± 2.0

Q0.75 11 ± 1.8

Q0.95 18 ± 2.4

ψ MSE Ratio

Q0.05 13 ± 2.0

Q0.25 10 ± 1.7

Q0.5 10 ± 1.5

Q0.75 16 ± 2.7

Q0.95 38 ± 6.0
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Table 3

Ratio of MSEs for extrapolated Gibbs samplers (k = 2, 3) to multiresolution sampler.

α MSE Ratio

Q0.05 9.6 ± 2.3

Q0.25 1.4 ± 0.39

Q0.5 1.1 ± 0.34

Q0.75 1.6 ± 0.5

Q0.95 9.6 ± 2.9

γ MSE Ratio

Q0.05 10 ± 2.8

Q0.25 7.4 ± 1.8

Q0.5 5.1 ± 1.1

Q0.75 4.2 ± 0.85

Q0.95 3.3 ± 0.4

β MSE Ratio

Q0.05 12 ± 3.4

Q0.25 6.6 ± 1.6

Q0.5 4.6 ±1

Q0.75 3.9 ± 0.85

Q0.95 2.6 ± 0.4

σ MSE Ratio

Q0.05 11 ± 2.8

Q0.25 5.6 ± 1.2

Q0.5 3.9 ± 0.75

Q0.75 3.3 ± 0.6

Q0.95 2.2 ± 0.3
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ρ MSE Ratio

Q0.05 18 ± 2.5

Q0.25 14 ± 2.2

Q0.5 10 ± 1.5

Q0.75 8.3 ± 1.3

Q0.95 7.9 ± 1.2
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Table 4

Ratio of MSEs for single Gibbs sampler (k = 4) to multiresolution sampler.

α MSE Ratio

Q0.05 120 ± 26

Q0.25 22 ± 5

Q0.5 8.8 ± 2.2

Q0.75 9.1 ± 2.3

Q0.95 87 ± 19

γ MSE Ratio

Q0.05 17 ± 4.4

Q0.25 5.8 ± 1.4

Q0.5 5.4 ± 1.2

Q0.75 6 ± 1.2

Q0.95 8.5 ± 1.6

β MSE Ratio

Q0.05 17 ± 4.6

Q0.25 4.2 ± 1.2

Q0.5 4.8 ± 1.2

Q0.75 7.2 ± 1.6

Q0.95 27 ± 4

σ MSE Ratio

Q0.05 26 ± 7

Q0.25 6.3 ± 1.3

Q0.5 3.2 ± 0.65

Q0.75 2.9 ± 0.55

Q0.95 3.3 ± 0.6
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ρ MSE Ratio

Q0.05 60 ± 10

Q0.25 41 ± 8

Q0.5 21 ± 5

Q0.75 16 ± 3.8

Q0.95 14 ± 2.8
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