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Abstract

Genetic testing has had limited impact on routine clinical care. Widespread adoption of electronic

health records presents a promising means of disseminating genetic testing into diverse care

settings. Practical challenges to integration of genomic data into electronic health records include

size and complexity of genetic test results, inadequate use of standards for clinical and genetic

data, and limitations in electronic health record capacity to store and analyze genetic data. Related

challenges include uncertainty in the interpretation of regulatory requirements for return of results,

and privacy concerns specific to genetic testing. Successful integration of genomic data may

require significant redesign of existing electronic health record systems.
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Following the trend of most other industries, health care is transitioning to digital records.

Over the past several years, the use of electronic health records (EHRs) has more than

doubled nationwide, with little likelihood of a return to paper records.1 With widespread use

of EHRs comes the promise of “big data” and innovative applications to dramatically

measure, change, and improve the way healthcare is delivered and measured.2

In particular, the advent of lower cost genetic sequencing technology has greatly increased

the availability of genomic data.3 Initiatives such as the Electronic Medical Records and
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Genomics (eMERGE) consortium have focused not only on when results potentially should

be returned, but also on exploring how genomic data can be integrated into EHRs to

influence patient care.4,5

In this article, we describe the current state of data capture and storage in EHRs, and identify

practical challenges to the integration of genetic and genomic data into EHRs, using

examples from our eMERGE experience.

EHRs: STRUCTURE AND STANDARDS

Much of the early published experience in EHR implementations and discovery derived

from so-called home-grown EHRs, tailored over the years by early adopters to fit the

workflow and needs of particular institutions.6–8 By contrast, the rapid adoption of EHRs,

encouraged by recent government incentives, necessarily involves a wide range of

commercial products. Successful implementations still require the same lessons from those

early sites: attention to workflow, involvement of a physician champion, and responsive

support.9–11

Most current EHRs share common data categories, often reflecting a common provider

workflow or need to document billing, clinical observations, or clinician actions. The stage 1

Meaningful Use standard outlines both the most common data categories and the

expectations around appropriate documentation to enable improvement in care processes

and outcomes in later stages.3 These subsequent stages of Meaningful Use outline the

widely accepted data standards that should be used to ensure the consistency of data

concepts.12,13 Achieving the Meaningful Use standard may improve the quality of data for

research applications and identification of specific phenotypes from EHRs.14

Data in EHRs can be structured or unstructured (free text). Structured data are often a

requirement to enable current EHR systems to readily generate reports or trigger clinical

decision support tools, such as computerized reminders, because they are in a format that

may be processed unambiguously by the computer. The use of free-text clinical notes

supplements structured data by using the richness of language to describe a patient’s clinical

condition. Up to 80% of the value in data may be locked up in free text, requiring so-called

natural language processing (NLP) to derive structured data elements from clinician

notes.2,15 Table 1 outlines the common data categories in EHRs, most common data format

(structured versus unstructured versus mixed) and commonly applied data standards. Each

of these concepts, structured versus unstructured data, use of widely accepted data standards,

and attention to work-flow, have parallels in the storage and use of genetic data, and it is at

this interface that much recent work in the eMERGE network focuses.

Certain categories of data already collected within the EHR have particular relevance to the

integration of genetic data. Demographics, such as self-reported race and ethnicity, may be

important factors in selecting an appropriate genetic testing platform, or may modify risk

probabilities based on genetic test results. Family history captures the clinical or phenotypic

presentation of disease within related family members and, as an indirect measure of related

factors such as environmental exposures and disease penetrance, may provide a
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complementary or even superior risk measure to genetic tests.16,17 However, family history

may be infrequently or incompletely captured in EHRs.18,19

Medication lists and orders document one of the more common clinical interventions.

Increasing understanding of how genetic variation predicts response to medications has led

some institutions to initiate genomic medicine pilots with pharmacogenetic applications.20,21

Incorporating genetic data into an EHR and using them in clinical practice reflect processes

most similar to the handling and use of laboratory data. For many laboratory tests, including

DNA tests, a healthcare provider places an order and a sample of blood or biological matter

is collected and sent to the laboratory for testing. All laboratories performing tests used to

guide clinical treatment require compliance with federal Clinical Laboratory Improvements

Amendments (CLIA) certification as administered by the Centers for Medicare and

Medicaid Services. CLIA creates a quality standard to ensure the accuracy, reliability and

timeliness of patient test results no matter where the test is performed.22 Genetic tests

conducted in a non-CLIA–certified laboratory may be used for research purposes but should

not be used to guide clinical care unless results are subsequently confirmed through a CLIA-

certified laboratory. This has important implications for whether and how genetic test results

are recorded within an EHR. It is worth noting that many research-driven laboratory tests,

such as those pertaining to electrolytes, are routinely performed in CLIA-certified

laboratories and can be included in EHRs without special handling. Many of the newer

genetic tests are performed by research laboratories and are not routinely available from

CLIA-certified sources. Genetic test results performed through a non-CLIA–certified

laboratory should either be stored in a separate research database, or, if stored within the

EHR, clearly flagged as for research or nonclinical decision purposes.

More traditional laboratory results are currently represented in a variety of data formats,

which may or may not need further interpretation prior to use in clinical practice. In most

cases, data from the laboratory instrument are captured in the laboratory information system,

and then transferred to the EHR through an electronic interface. Results with more direct

numeric or binary indicators—such as total, low-density, and high-density cholesterol values

—may be returned immediately. Other results, such as microbiology tests and cultures,

require further processing or interpretation prior to use in the clinical environment. To

further describe and interpret the laboratory result, other reference information—such as the

reference populations, instrumentation and value high and low ranges (similar to the

reference information required to interpret genetic results)—is associated with the result.

The clinically relevant laboratory result may be coded using standardized terminologies such

as Systematized Nomenclature of Medicine–Clinical Terms (SNOMED-CT) so it can be

easily retrieved and made available to clinicians via a variety of interfaces including

graphical and tabular displays, accessed through decision support systems (e.g. medication

prescribing alerts), or integrated with application-specific information for viewing. Other

tests may require human interpretation, for example, a pathologist’s microscopic review of a

blood smear, or a genetic laboratory interpretation of karyotype. These results may be

presented as a text report for review by the ordering clinician; however, these text reports

may not be readily used to generate trend reports or to trigger decision support rules.
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Understanding whether genetic test results can be integrated as structured data within the

EHR requires a parallel understanding of the scope and nature of genomic data.

GENETIC DATA: ORIGINS, STRUCTURE, AND STANDARDS

Genetic data range in both the purpose for which they were collected and in the size and

scope of the data themselves. The scope of genetic testing data can range from testing for a

single base pair change in a single individual to the entire genomic sequence of multiple if

not hundreds or even thousands of individuals. Genetic data can be collected as part of a

research study, ordered directly by clinicians for interpreting the underlying cause of the

patient’s phenotypic presentation or to determine a patient’s disease risk or response to

medications, and even conducted as a matter of personal interest through direct-toconsumer

genetic testing options such as 23andMe. Most DTC options are specifically noted as not

CLIA certified and therefore should not be used directly for clinical decision making

(although they may indicate that a follow-up test is warranted).

Research-derived genetic data are typically generated in multiple individuals at a time

depending on the purpose of the study and its design. The two primary population-based

approaches to genetic studies are linkage and association. Another potential source for

genetic data from research studies are smaller diagnostic tests that focus on a limited number

individuals, often related to one another. Linkage studies genotype genetic markers

intermittently spaced throughout the genome in sets of family members to assess the co-

segregation of alleles at any of these polymorphic markers with the disease or phenotype of

interest. By contrast, association studies genotype markers in sets of cases and controls for a

given disease or phenotype and assess the association between allele counts and case/control

status—typically through allelic χ2 tests or logistic regression if adjusting for covariates is

important. Alternatively, the phenotype may be a quantitative trait, and linear regression is

used to assess the evidence for association between counts of a given allele and the

quantitative trait. Association studies may focus on a small region of the genome (i.e., a

candidate gene) in which the case/control cohorts are on the order of a few hundred of

individuals. The number of markers examined depends on the size of the region examined

and the patterns of linkage disequilibrium (correlation between the alleles of the

polymorphisms examined), and typically number in the tens. Alternatively, association

studies can be performed genome-wide (genomewide association studies), and the number

of genetic markers examined can be in the hundreds of thousands; such studies typically

involve cohorts of multiple thousands of individuals in order to accommodate the need to

correct for multiple testing across such a large number of markers. Similarly, sequence data

can be used for linkage and association studies and can span a few hundred nucleotides in a

candidate gene region to all of the exons in the genome, the “exome,” which encodes all of

the proteins found in the genome sequence, to the near complete (>99%) genome sequence.

Genetic data (Table 2) generated for research purposes are often stored in a pedigree and

map file format (see http://watson.hgen.pitt.edu/docs/mega2_html/mega2.html for

examples). The pedigree specifies the relationships of the individuals in the study as well as

the genotype of each individual, along with a map file that identifies the polymorphisms

included in the genotype file as well as their location in the genome.
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The reported result for a clinical genetic test typically presents the summary of the findings

rather than the raw data themselves, although the raw data may be included as well

depending on the specific test. As with research-generated data, this can range from a single

marker to whole-genome sequencing. Clinical tests can determine the presence or absence of

a single mutation (e.g., the G6V mutation changing HbA to HbS, resulting in sickle cell

anemia), multiple mutations (e.g., C282Y and H63D in the HFE gene, leading to hereditary

hemochromatosis), or panels of mutations (e.g., the tens to hundreds of known mutations

found in the CFTR gene resulting in cystic fibrosis or at a minimum impacting the cystic

fibrosis phenotype and its presentation) that may be clinically relevant. These tests could

result from sequencing the entire gene rather than genotyping specific polymorphic sites, yet

only the specific variants might be presented in structured data fields. Potentially, the raw

sequence could be determined from elsewhere in the report. This is further compounded if

the test examines multiple genes, exome sequencing, or whole-genome sequencing. The

single-nucleotide polymorphism arrays commonly used for genome-wide association studies

in research studies can be used on single individuals in a clinical test setting to examine

single polymorphisms if the mutation of interest is on the array, but more importantly they

can be used to detect insertions, deletions, and copy-number variants of various sizes and

copy number. Finally, karyotypes are another form of commonly ordered genetic test,

reporting the presence of large-scale genomic rearrangements affecting partial chromosomes

(e.g., translocations, large deletions) to full chromosomes (e.g., unisomies and trisomies).

Given the methods and detection limits of karyotyping, there is no way to directly convert

the report to raw nucleotide-level data and it therefore can better be thought of as qualitative

data in narrative form, similar to pathology reports. The American College of Medical

Genetics and Genomics has previously published recommended standards and guidelines for

reporting genetic tests in a clinical setting (http://www.acmg.net/Pages/ACMG_Activities/

stds-2002/stdsmenu-n.htm).

USE AND LIMITATIONS IN THE CLINICAL SETTING

The diversity of potential genetic test results creates novel opportunities to influence clinical

care, but application may be limited by current EHR designs. Currently, genetic tests from

the prenatal setting through a patient’s life offer insight into the risk or potential for

acquiring a condition, or serve as an explanation for the presence of a disease (and inform

risk for the heritability to offspring). In some settings, genetic test results may be

accompanied by a consultation with a genetic counselor that focuses on patient education

and the collection of additional information (such as a detailed family history) to aid in

assessing risk. With the wider availability of genetic testing outstripping the availability of

trained genetic counselors, and limited understanding by many clinicians of the appropriate

interpretation of genetic results, the potential to leverage technology such as clinical

decision support systems within EHRs may be more relevant than ever.23

Results returned to physicians are most often in a textual format, regardless of whether they

are returned directly to the physician by a diagnostic laboratory or are the result of an

interpretation by a genetic counselor. The modality of the result may vary—from a scan of a

faxed report to the integration of a textual narrative incorporated with other laboratory

results in an EHR. A common limitation is not only a lack of structured data that could be
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used for clinical decision support but also the focus on reporting of variants as opposed to all

observations made.24

As noted by Hoffman,25 even if structured information were available, there remains

uncertainty in how best to represent genetic tests and results within existing clinical

vocabularies. For example, although Logical Observation Identifiers Names and Codes

represents a widely accepted vocabulary to represent specific tests and reporting styles,

proliferation of genetic tests presents a logistical challenge. Should a new Logical

Observation Identifiers Names and Codes code be generated for each test of a specific

genetic variant? And should each result be assigned a Systematized Nomenclature of

Medicine code? Although unresolved, work to address these challenges is underway within

the standards community (D. J. Vreeman, personal communication, 11 July 2013).

Furthermore, the availability of these results is a double-edged sword—the amount of

information may be overwhelming, and/or not immediately clinically actionable in its raw

form. Clinicians may not feel adequately informed or may not have the time to adequately

counsel patients on genetic test results.26 It is a combination of structured data that can be

synthesized by the EHR to actionable results via clinical decision support that provides the

greatest benefit, including links to more interpretable reports and reference sources.27

Current EHR design may require significant modification to incorporate genetic test results

in a meaningful and actionable format.2

TECHNICAL CHALLENGES IN INTEGRATING GENETIC DATA WITHIN

CURRENT EHRs

The current eMERGE consortium consists of 10 centers, including 3 children’s hospitals,

and is focused on expanding the original eMERGE consortium’s library of EHR-based

phenotypes, and developing the means to integrate genotypic results back into the EHR.

While exploring approaches to integrating genomic results into the EHR, it became apparent

that solutions are needed not only to integrate genomic data into current-generation EHRs

but also to plan for how next-generation EHRs could be better equipped for this type of

information.

As described by Starren et al.,4 the differences in genetic and genomic data do not fit within

current EHRs, given the increased data requirements to store such data, and the need to

reprocess the data as new knowledge is made available.2 In addition, the existing types of

data typically stored in an electronic health record do not directly translate to a genetic

counterpart. Considering laboratory results, as previously described a cholesterol

measurement contains not only the actual measurement, but also additional supporting

information such as the reference range for that measurement. For genomic data, there is a

challenge as to how best represent several hundred or thousand measurements (summarized

in Table 3).

One approach is to place each measured single-nucleotide polymorphism into the EHR as a

laboratory result. This is a straightforward approach, but it introduces significant storage

requirements for multiple tests looking at a wide range of polymorphisms, and may cause

the EHR to run more slowly. In addition, the significant amount of information introduced
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into the laboratory results by this approach may make finding other laboratory results

increasingly difficult for physicians. Furthermore, to act on this information to provide

decision support, the EHR would need to wade through a large amount of information each

time to make a final determination, and would also require the maintenance of more

complex rules as new clinical recommendations are made.28

Another approach is to look at the interpretation of the genomic information at a single point

in time and store a higher-level determination. For example, instead of storing several

polymorphisms, their values would be converted to a single observation that is then stored as

a laboratory result. This approach accepts a degree of information loss, such that when new

knowledge is made available regarding how these genetic variants are interpreted, the

polymorphisms would need to be measured again to create the new interpretation.

Yet another approach follows the lead of picture archiving and communication systems, in

which the original data are stored external to the EHR, but a link is established.2

Warehousing genetic data external to the EHR enables great flexibility for accommodating

large volumes of data, or storage with loss-less data compression methods; given current

limitations in EHR technology, this may be a particularly promising approach.29 However,

this approach requires not only attention to technical details but also development and

maintenance of a robust interface back to the EHR to support data interpretation and

decision support. If not well integrated with the EHR and the workflow of the clinician, it

may find little use by a busy clinician.

For second-generation sequencing, these issues are magnified further. Although sequencing

offers superior resolution of rare genetic variants as compared with single-nucleotide

polymorphism arrays used for genome-wide association studies, this comes at the (literal)

expense of a heavy burden on data management. The current cost of sequencing a human

genome is ~$3,500; the time required is several days (for a reasonable coverage of more

than ×50); and the outlay required in terms of data storage and analysis is considerable.

Whole-exome sequencing (WES), which can be accomplished for less than $1,000 and can

yield results in <24 hours, is currently more widespread. For WES to achieve ×70 to ×100

coverage, several terabytes of raw sequence data are typically produced. However, such data

are rarely stored, and 700–800 GB of stored data may be generated per whole-exome

sequencing run. A run can be reliably accomplished by pooling ~80 samples, which further

reduces the total amount of data generated to ~10 GB per sample. Such strategies can also

be employed for whole-genome sequencing runs, which yield on average 12 times more data

(i.e., ~120 GB of data for pooled samples). Data-management solutions similar to those

discussed above can similarly be adopted to facilitate second-generation sequencing

integration but would require significantly increased data storage and processing capacity.

Further discussion of the challenges of dealing with sequence data in EHRs is presented in

the article by Chute et al. on big data in this same issue.30

Regardless of the approach, consideration of how to integrate family history with genetic

data in the EHR will be important given the role of family history in guiding the choice of

genetic testing, and in interpreting the results.31 In most systems, family history is captured

as a combination of free text, diagnoses codes, and semistructured definitions of family
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relationships/roles (e.g., mother, father), and it may be time-consuming.32 A number of

initiatives are underway to standardize and streamline the capture of family history in EHRs;

these will complement proposed approaches for inclusion of genetic data.33–35

Currently within eMERGE, sites are exploring alternatives and combinations to the three

potential solutions described. One early consortium pilot involves several eMERGE sites

and will develop decision support rules to identify patients with increased probability of

exposure to certain medications for focused pharmacogenetic testing on a limited number of

single-nucleotide polymorphisms associated with drug metabolism. Although many of the

eMERGE sites use the same EHR system, they may be exploring different approaches,

given technical, organizational, or regulatory restrictions at each local institution.

IMPLICATIONS OF GENETIC RESULTS STORED IN THE EHR

Once genetic data are stored or available through the EHR, additional considerations are

raised related to management of result interpretation for both patients and providers. Novel

genetic discoveries may change the clinical implications for previously stored test results.

The ability to identify patients with specific genetic results within the EHR will be important

in order to recontact potentially affected patients, similar to identifying patients prescribed a

recalled drug. Clear documentation of pre- and posttest counseling stored in the EHR should

accompany genetic test results as recommended by the American College of Medical

Genetics and Genomics statement that it is the responsibility of clinician/team to “provide

comprehensive pre- and posttest counseling to the patient.” Obviously, such resources must

be in place before initiating a genomics–EHR project. Initiatives such as Pharmacogenomics

Knowledgebase and the related Clinical Pharmacogenetics Implementation Consortium

provide guidance to clinicians interpreting genetic test results, in this instance, related to use

of particular drugs.36

For patients, excellent educational resources are available through, for example, the National

Human Genome Research Institute (http://www.genome.gov/Education/), the National

Library of Medicine (http://ghr.nlm.nih.gov/), and the Genetic Alliance (http://

www.geneticalliance.org/understanding.genetics) on genomics in general. However,

significant gaps in coverage of tests and conditions remain however. As an example, within

eMERGE, we noted few public resources that specifically addressed the projects specific to

eMERGE. To address this deficit, the eMERGE network recently announced plans to build

an educational resource (www.myresults.org) that will focus on pharmacogenomics,

relevant results, and practical issues for patients. An informal survey of 15 eMERGE

representatives found that only 13% (2 representatives) agreed that “there are already

relevant resources for communicating with patients.” Institutions intent on returning results

to patients will need to understand the educational needs and requirements of their patients

and identify available resources, where they exist.

PRIVACY CONCERNS WITH GENETIC DATA

Incorporating genetic data within the clinical EHR may present additional privacy concerns.

Clinical data releases are currently regulated under the Health Insurance Privacy and

Accountability Act. Genetic data constitute protected health information under the Health
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Insurance Privacy and Accountability Act, although they are not explicitly mentioned as one

of the 18 current identifiers specified in the act. Recent work reidentifying patients based on

genetic data linked with publicly available genetic genealogy databases underscores the risk

of re-identification presented by this loophole.37 State laws may further restrict genetic data

release above and beyond the federal Health Insurance Privacy and Accountability Act

regulations; for example, in Illinois, the Genetic Information Privacy Act (410 ILCS 513)

requires specific patient consent before any genetic data may be disclosed. Genetic data

then, if stored in the EHR, may require segregation from other clinical data to prevent

inadvertent or illegal disclosures. Although some research has explored methods of

providing access controls around genetic results,38 a technical framework to store and

manage patient consent at this level of granularity is not widely available. The Genetic

Information Nondescrimination ACT defines legal protections preventing the misuse of

genetic results but does not obviate the need for EHR design to accommodate current state

and federal privacy regulations.

The association between family history and genetic testing results raises additional concerns.

Genetic test results interpretation may be enhanced by testing of relatives identified through

a robust and accurate family history, raising additional issues around consent to approach

relatives and in whose EHR should genetic test results be stored. Because genetic test results

may have significant implications for disease risk for family members, ethical concerns may

be raised regarding duty to disclose to at-risk family members, which may conflict with duty

to ensure privacy.

CONCLUSION

The promise of personalized medicine has not yet been realized, despite tremendous

advances in both genomic technology, and EHR adoption. Significant work remains to

reconcile the proliferation of genetic data with an improved understanding of how to present

succinct and actionable distillates for the busy clinician. Gaps in the coverage and

application of clinical and regulatory standards, as well as current EHR design, limit

successful integration of genotypic data into clinical workflow. The potentially large volume

of genetic data, coupled with changing understanding of the implications and interpretation

of genetic results may further challenge integration with existing EHRs.

Early pilots, including some from the eMERGE consortium, point to the need for novel

EHR tools and methods. Promising and near-term goals are focused on the integration of

discrete genetic results, in structured formats, to deliver actionable recommendations

through existing clinical decision support systems. Longer-term goals will require systems

that can potentially store whole-genome scale results and support complex rules to guide

interpretation of large data. Despite these challenges, the sharing of early lessons learned,

and best practices between early adopters suggests that momentum is building toward more

widespread adoption of genetic testing in clinical care.39
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Table 1

Common data categories and how they are represented in electronic health records (EHRs)

EHR data category Structured/unstructured/mixed Common data standarda

Demographics (age, gender) Structured

Demographics (race/ethnicity) Mixed Office of management and budget categories (ref.
40)

Diagnoses Structured ICD9/10 (ref. 41) or SNOMED-CT (ref. 42)

Procedures Structured Common Procedural Terminology (CPT) (ref.
43)

Medications Mixed RxNorm (ref. 44)

Vital signs (e.g., blood pressure, heart
rate)

Structured (numeric) SNOMED-CT

Laboratory tests Structured LOINC (ref. 45)

Laboratory results/reports Mixed/unstructured SNOMED-CT

Family history Mixed Under development

Radiology images Structured DICOM (ref. 46)

Radiology reports Semistructured (unstructured text organized
into consistent sections)

SNOMED-CT or RadLex (ref. 47)

a
These are not exclusive, and there can be overlap of available standards across data categories (e.g., LOINC codes can represent radiology report

titles).

DICOM, Digital Imaging and Communications in Medicine; ICD-9/ICD-10, International Classification of Diseases, Ninth Revision/Tenth
Revision; LOINC, Logical Observation Identifiers Names and Codes; SNOMED-CT, Systematized Nomenclature of Medicine–Clinical Terms
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Table 2

Representations of genetic and genomic data

Variant type Description How coded

SNPs Single-nucleotide polymorphisms ACGT or 0/1 (presence/absence for each allele copy relative to the alleles found in
the map file)

Indels Insertions/deletions 0/1 (presence/absence) or copy number (e.g., 0/1/2, etc. of the repeat
polymorphism)

CNVs Copy-number variants Number of copies of the copy-number variants and map position boundaries of the
variants

STRs Short tandem repeats Number of copies of the repeat (integer)

WGS/WES Whole-genome/whole-exome sequences ACGT. Can be full sequence or limited to just the variant positions relative to the
reference sequence

ACGT: nucleotide base sequence such as adenine, cytosine, guanine, thymine.
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Table 3

Strategies for storing genetic and genomic test results in electronic health records (EHRs)

Storage strategy Pros Cons

Detailed results stored in EHR as a
laboratory result (e.g., each SNP,
insertion/deletion)

All information about the test result is available
directly from the EHR
Changes to how genetic variants are interpreted are
immediately actionable through decision support

Significant storage needed for EHRs
Introduces more results that must be sorted/
filtered when reviewing laboratory results
Complex decision support logic and reasoning
is required within the EHR

Point-in-time interpretation Reduced storage requirements in the EHR
Computable result may be integrated into decision
support

Loss of detailed information regarding genetic
results
Requires retesting and reinterpretation if
knowledge about affected variants changes
over time

External data warehouse linked back
to EHR

Same benefits as the point-in-time interpretation
Preserves original data, allowing review and
reinterpretation of the results as needed
Interpretation of genomic results may take advantage
of more advanced computational approaches not
available within EHRs
Allows time for best practice evaluation and
integration into the clinical workflow

Requires development and maintenance of a
robust interface to integrate back into the EHR
Investment in creation and maintenance of the
ancillary storage system

SNP, single-nucleotide polymorphism.
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