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Abstract

Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of

diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function

as downstream effectors of the Ras oncoprotein, and the RalGEF-Ral signaling network comprises

the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral

GTPases as well as their effectors are being explored as possible therapeutic targets in the

treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of

downstream effectors and have been found to play key and distinct roles in both normal and

neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion,

tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral

biochemistry and biology, and we highlight recent discoveries.
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1. Introduction

Identified initially as Ras-like (Ral) proteins, the Ral small GTPases are members of the Ras

branch of the Ras superfamily of small GTPases [1]. RALA was identified initially using

oligonucleotide probes to identify RAS-related genes in a cDNA library established from

immortalized simian B-lymphocytes [2]. Three years later, using the simian RALA cDNA as

a probe, human RALA and a related RALB gene were identified from a human
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pheochromocytoma cDNA library [3]. Subsequently, single RAL orthologs were identified

in C. elegans (RAL-1) [4] and Drosophila (RalA) [5] (Fig. 1). Interestingly, although there

are well-conserved RAS orthologs in yeast, no RAL orthologs are present in S. cerevisiae or

S. pombe.

The three human RAS genes (HRAS, KRAS and NRAS) comprise one of the most frequently

mutated gene families in human cancers [6]. Consequently, they have been the subject of

intense research scrutiny and cancer drug discovery. Initially, the discovery of Ral proteins

simply added to a rapidly growing roster of proteins that now comprise a large superfamily

of >150 Ras-related small GTPases [1]. However, with discoveries that Ral GTPases are key

regulators of vesicular trafficking and are effectors of Ras oncoprotein-driven growth

transformation, Ral proteins stepped into the spotlight in 2003 to bask in their “15 minutes

of fame” [7]. Since those initial findings, more discoveries on the role of Ral in normal and

cancer cell physiology have ensured that their “fame” will last considerably more than 15

minutes. In this review, we summarize our current knowledge on Ral GTPases and we

highlight recent findings in Ral function.

2. Ral proteins

2.1. Ral protein structure

The highly related human RalA and RalB isoforms share 82% overall amino acid sequence

identity (Fig. 1A) and are members of the Ras branch of the Ras superfamily (Fig. 1B). They

share 46-51% sequence identity and domain architecture with Ras proteins [8]. However,

Ral proteins contain an N-terminal 11 amino acid extension not found in Ras, accounting for

the 11 residue shift in numbering compared with Ras residue numbering (Fig. 1C). This is

followed by the G domain, involved in GTP binding and hydrolysis, and the C-terminal

membrane targeting sequence. The majority of sequence divergence occurs within the C-

terminal hypervariable regions (50% shared identity) (Fig. 1C).

Like Ras, Ral proteins cycle between inactive GDP-bound and active GTP-bound states

(Fig. 2A). RalA and RalB share complete sequence identity in the switch I (SI) and II (SII)

sequences that change conformation during GDP-GTP cycling [8] (Fig. 2B). As described

below, SI and SII are involved in recognition by both regulators and effectors. The

conservation of SI and SII sequences in Drosophila and C. elegans Ral proteins support their

interaction with conserved regulators and effectors.

Similar to Ras, the intrinsic GDP-GTP exchange and GTP hydrolysis activities of Ral

GTPases are very weak, with each activity accelerated by Ral-selective guanine nucleotide

exchange factors (RalGEFs) and GTPase activating proteins (RalGAPs), respectively (Fig.

2A). RalGEFs stimulate guanine nucleotide exchange. With intracellular levels of GTP

approximately 10-fold higher than GDP, RalGEF stimulation favors formation of Ral-GTP.

Ral GTPase-activating proteins (RalGAPs) catalyze the hydrolysis of the bound GTP,

returning Ral to an inactive conformation. When bound to GTP, RalA and RalB can interact

with the same array of downstream effector proteins and mediate numerous cellular

processes.
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2.2. RalGEFs

The first RalGEF identified, Ral guanine nucleotide dissociation stimulator (RalGDS) (Fig.

2B), was found by yeast two-hybrid screens performed in the early 1990s to identify Ras

effectors [9-11]. RalGDS was found to catalyze nucleotide exchange on both RalA and RalB

but not on other small GTPases including members of the Ras, Rho, and Rab families.

Subsequent yeast two-hybrid library screening studies using H-Ras, R-Ras, TC21/R-Ras2,

and Rit as baits identified three additional RalGEF proteins that were named Rgl (RalGDS-

like), Rgl2/Rlf, and Rgl3 [12-14] [15]. These RalGEFs contain a common domain

architecture including an N-terminal Ras exchanger motif (REM) domain followed by a

CDC25 homology domain (RasGEF) and a C-terminal Ras-association (RA) domain (Fig.

2A) [16]. The CDC25 homology domain shares sequence identity with the catalytic domains

of RasGEFs [17]. In addition to the three Ras isoforms, other Ras family small GTPases can

also bind and activate the RA domain-containing RalGEFs [18].

RalGPS1 and RalGPS2 (Ral GEF with PH domain and SH3-binding motif) comprise a

second distinct family of RalGEFs [19-21] (Fig. 2A). These two related proteins (63%

identity) contain an N-terminal CDC25 homology RasGEF but lack a REM and RA domain.

Instead, they contain a C-terminal pleckstrin homology (PH) domain. Additionally, they

possess is a central proline-rich sequence with PxxP motifs recognized by Src homology 3

(SH3) domain-containing proteins.

The absence of an RA domain uncouples these RalGEFs from direct association with Ras

family small GTPases. Instead, the PH domain has been shown to be sufficient for

membrane targeting and necessary for Ral activation [19]. The regulation of these RalGEFs

is poorly understood, but some evidence suggests that RalGPS2 plays a role in regulating the

actin cytoskeleton [21]. Interestingly, members of both RalGEF subclasses have been

implicated in cytokinesis [22].

Another RalGEF, now designated RGL4, was identified originally as a RalGDS-related

(Rgr) oncogene in a DMBA (7,12-dimethylbenz[α]anthracene)-induced rabbit squamous

cell carcinoma [23]. However, while RGL4 does contain a CDC25 homology domain, it

lacks a well-defined RA or PH domain (Fig. 2B). Furthermore, while the other RalGEFs

described above are highly selective activators of Ral, RGR has also been described to

activate other Ras family small GTPases [24].

2.3. RalGAPs

Although the existence of RalGAPs was first reported in 1991 [25], only recently has the

molecular identification of RalGAPs been achieved (Fig. 2C). Work done by Feig and

colleagues in the early 1990s detected and characterized RalGAP activity in brain and testes

cytosolic extracts, and the putative RalGAP activity was distinct in size from Ras or Rho

GAPs [25]. Subsequently, using a GTPase-deficient, persistently GTP-bound mutant of

RalA for affinity chromatography, two distinct RalGAP complexes were identified in brain

cytosol [26]. Each heterodimeric complex consists of a shared regulatory RalGAPβ subunit

and one of two related catalytic RalGAPα1 and α2 subunits (53% overall sequence identity)

(Figs. 2A,C). Independently, Saltiel and colleagues used a similar RalA affinity purification
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approach and identified RalGAPα2 (RGC2) and RalGAPβ (RGC1) as components of a Ral-

selective GAP [27].

RalGAPα1 (GARNL1/TULIP1) and RalGAPα2 (AS250; Akt substrate of 250 kDa) were

identified previously as proteins with sequence identity with the GAP catalytic domain of

TSC2 (also known as tuberin) [28, 29] (Fig. 2B) and distinct from the RasGAP catalytic

domain [17]. RalGAPα2 was also identified to form a complex with RalGAPβ (KIAA1219).

TSC2 is the catalytic subunit of a GAP selective for the Rheb small GTPases, another

member of the Ras branch of the Ras superfamily [1]. However, TSC2 alone is not sufficient

for RhebGAP activity and requires heterodimer formation with TSC1 (also known as

hamartin). Hence, the active RalGAPα/β complexes share both sequence and structural

similarities with the heterodimeric tuberous-sclerosis (TSC) complex [30]. Although

RalGAPβ lacks sequence similarity with Tsc1, it serves an analogous role in stabilizing

RalGAPα and is required for RalGAP activity. RalGAPβ is expressed ubiquitously, whereas

more variable expression profiles are seen for the two RalGAPα subunits. RalGAPs are

conserved in evolution, with orthologs of both subunits found in C. elegans and Drosophila

(Fig. 2B) [26, 31]. The RalGAPα GAP catalytic domains of C. elegans (HGAP-1) and

Drosophila (CG5521) share 37-39% and 58-59% sequence identity, respectively, with the

GAP catalytic domains of their human counterparts.

RalGAP accelerates the GTPase activity of both RalA and RalB but not for other small

GTPases tested (H-Ras, Rap1, Rheb, RhoA, Ran and Rab27) [26, 27, 31]. The RalGAPα

subunits share 53% overall sequence identity and 83% sequence identity in their GAP

domains (Figs. 2C,D). Additionally, RalGAPα2 is subject to insulin-stimulated

phosphorylation by the AKT serine/threonine kinase, analogous to a similar mechanism of

AKT regulation of TSC2 [32]. As with TSC2, AKT phosphorylation of RalGAPα2 impaired

the ability of the RalGAP complex to catalyze RalA GTP hydrolysis. This is not due to

altered intrinsic GAP activity but to a reduced RalA interaction with RalGAPα2.

3. Ral effectors

Like Ras and other small GTPases, Ral interacts with a number of effector proteins when

bound to GTP (Fig. 3). However, unlike with Ras, the Ral binding domains (RBD) lack

primary sequence identity. The best characterized Ral effectors are RalBP1/RLIP76 and the

Sec5 and Exo84 subunits of the octameric exocyst complex. The evolutionarily conserved

exocyst complex mediates the tethering of post-Golgi secretory vesicles to the plasma

membrane prior to exocytic fusion [33]. The exocyst subunits may also exist as monomers

or subcomplexes, and can possess non-exocyst functions. Ral interaction with each subunit

occurs in distinct subcellular locations, interacting with Sec5 at the plasma membrane and

with Exo84 with intracellular vesicles [34, 35]. Although RalA and RalB can interact with

the same set of effectors in vitro, as described below, the distinct biological functions of

RalA and RalB are mediated by differences in subcellular localization, leading to their

interaction with distinct subsets of effectors.

The structures of Ral in complex with the RBDs of these three effectors have been

determined. Whereas the Sec5 RBD interacts with SI alone [36], Exo84 [37] and RalBP1
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[38] RBD interaction involves both SI and SII [39]. Consistent with 100% conservation of

SI and SII residues, and residues involved with effector binding, where studied, RalA and

RalB interact with the same set of effectors in vitro.

3.1. RalBP1/RLIP76

The first Ral effector described, RalBP1 (Ral binding protein 1; also called RLIP76 or

RIP1), was identified in screens for proteins that bound preferentially to activated RalA

[40-42]. RalBP1 orthologs are found in Drosophila and C. elegans. RalBP1 contains a

RhoGAP catalytic domain that has activity for the Cdc42 and Rac small GTPases, members

of the Rho branch of the Ras superfamily [1]. Cdc42 stimulates filopodia formation whereas

Rac stimulates lamellipodia formation. Thus, RalBP1 provides a link between Ral and

modulation of the actin cytoskeleton changes that drive these cellular activities [40].

In additional to its RhoGAP domain, RalBP1 has additional functions (Fig. 3). Two ATP

binding motifs have been identified in RalBP1 and shown to be important for transport

function involving glutathione conjugates of electrophilic compounds [43, 44]. This

transport function may facilitate the cellular export of chemotherapeutic drugs and radiation-

induced oxidative damage byproducts [45]. RalBP1 overexpression has been found in a

spectrum of human cancers, and suppression of RalBP1 expression can impair tumorigenic

growth in vivo [46]. However, phenotypes attributed to RalBP1 do not necessarily implicate

their role in Ral signaling [47].

RalBP1 also functions as a scaffold and interacts with a spectrum of functionally distinct

proteins that regulate endocytosis and signal transduction (Fig. 3). The AP2 adaptor

complex, a regulator of clathrin-mediated endocytosis from the plasma membrane,

associates with the N-terminal region of RalBP1 [48]. The Eps homology (EH) domain-

containing proteins Reps1 and Reps2 (POB1) were identified as proteins that interacted with

the C-terminus of RalBP1 [49, 50]. These proteins are known to be important for receptor

tyrosine kinase-regulated endocytosis, with Reps1 interacting with Rab11-FIP2 and Reps2

binding Epsin and Eps15 [51, 52].

Another protein that associates with the RalBP1 C-terminus is cyclin B1 [53]. In turn, the

RalBP1-bound cyclin B1 complexes with Cdk1, with Cdk1 phosphorylation of Epsin

preventing endocytosis during mitosis. This activity was shown to be mediated by RalA

activation.

RalBP1 has been implicated as a key effector for several Ral-driven processes. In these

studies, the typical approach has been the utilization of mutants of Ral that are selectively

impaired in effector interaction. The D49N substitution impairs RalBP1 but not Sec5 or

Exo84 effector binding, whereas the D49E mutation has the opposite consequence [40, 54,

55]. For example, shRNA silencing analyses determined that RalB but not RalA was

required for invadopodia formation in pancreatic cancer cell lines [56]. RalB D49E but not

D49N could rescue loss of endogenous RalB and restore invadopodia formation, indicating

that RalBP1 was a critical effector for this RalB activity. This RalBP1 function was GAP-

independent but abolished by mutation of the ATP binding motifs [56].
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RalA was shown to utilize RalBP1 to regulate mitochondrial fission at mitosis [57].

Mitochondria exist as dynamic interconnected networks that are maintained through a

balance of fusion and fission. Fission facilitates equal distribution of mitochondria to

daughter cells during mitosis. Fission is controlled by the GTPase DRP1 on the outer

mitochondrial membrane. RalA was found to recruit RalBP1 to mitochondria, where

RalBP1 acts as a scaffold to facilitate cyclin B/Cdk1 phosphorylation of Drp1 to promote

mitochondrial fission. Suppression of either RalA or RalBP1 expression caused a loss of

mitochondrial fission at mitosis.

Recently, RalBP1 was shown to be necessary and sufficient for RalA-driven mislocalization

of the cyclin-dependent kinase inhibitor p27 KIP1, leading to inhibition of TGF-β–mediated

growth arrest in epithelial cells [58]. This function appeared to require an intact RhoGAP

domain.

3.2. The Sec5 and Exo84 subunits of the exocyst

The best-characterized Ral effectors are two components of the exocyst complex, Sec5 and

Exo84 [54, 55, 59]. The association of Ral with both Sec5 and Exo84 has been found to be

important in exocytosis. Ral regulates the subcellular localization of the exocyst through

mediating Sec5-paxillin association and the assembly of the octameric exocyst complex by

interacting with Sec5 and Exo84 [55, 60]. Ral interaction with Sec5 may also regulate

exocyst-independent functions.

Recent evidence suggests that Ral engages exocyst subunits to perform a variety of cellular

processes independent of their roles in exocytosis. White and colleagues found that the

association of RalB with Sec5 is critical in the innate immune response [61]. RalB binding

to Sec5 leads to an interaction of Sec5 with TBK1, a protein kinase known to regulate NF-

κB signaling. Intriguingly, TBK1 has recently been identified in siRNA screens as a

synthetic lethal partner of activated K-Ras [62], although a subsequent study failed to

support this relationship [63].

Recently, a mechanism where the integrin αvβ3 recruited a K-Ras-RalB complex to the

plasma membrane to activate TBK1 and NF-κB signaling was identified (Fig. 3) [64]. This

signaling mechanism regulated tumor initiation and growth.

The association of RalB with the exocyst has also been shown to regulate macroautophagy

[34]. When cells are grown in nutrient-rich conditions, RalB engages Sec5. Upon nutrient

starvation, RalB then engages Exo84 and the exocyst, leading to an upregulation of

autophagosome formation. This process is mediated through the assembly of the ULK1

serine/threonine kinase and Beclin1-VPS34 complexes on the exocyst. Autophagy has

emerged as a key component of Ras-driven transformation in a variety of cell types, perhaps

highlighting an underlying importance of Ras-RalGEF signaling in tumor cell autophagy.

3.3. Other effectors

One lesser-characterized Ral effector is phospholipase D1 (PLD1) [65, 66]. However, unlike

other effectors, the association with Ral is not GTP-dependent and instead the association is

with the N-terminal 11 amino acid extension (Fig. 1D). PLD1 is best known for its role in
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converting phosphotidylcholine to phosphatidic acid and choline in response to G-protein

coupled receptor (GPCR) stimulation. Recent evidence shows that RalA is necessary for the

PLD1-mediated stimulation of mTORC1 signaling [67]. Furthermore, the RalA-PLD1

interaction has been shown to promote proper p27 localization, thus allowing for proper

TGF-β signaling [58]. The interaction of both RalA and RalB with PLD1 has been shown to

be critical for HeLa cell cytokinesis [22].

Filamin is an important component of the actin cytoskeleton and is involved in actin

crosslinking and lamellipodia formation. The association of RalA with filamin was found to

be important for filopodia formation in Swiss-3T3 cells [68]. Additionally, RalA did not

induce filopodia in a human melanoma cell line that lacks expression of filamin.

Lastly, active RalA has been shown to engage the transcription factor ZONAB (zonula

occludens 1-associated nucleic acid binding protein) in a cell density dependent manner in

MDCK cells [69]. At high cell densities, RalA engages ZONAB, unlocking the transcription

of ZONAB targets, but it is unclear which genes are turned on [69]. While a direct role for

Ral association with these lesser-studied effectors has not been found in Ral-driven cancers,

their important roles in mitosis, motility, and gene regulation make them intriguing targets

as Ral studies progress.

4. Post-translational modification and regulation of Ral function

RalA and RalB exhibit the most significant sequence divergence in their C-terminal

membrane targeting sequences (50% identity) (Fig. 1C). This sequence divergence results in

their distinct subcellular localization that contributes to the functional differences described

for RalA and RalB by regulating effector utilization in vivo [56, 70-73]. Both isoforms can

be found at the plasma membrane as well as in endomembranes, with cell type differences

seen. In this section we summarize the role of posttranslational modifications that regulate

Ral subcellular localization.

4.1. CAAX modifications

Like the majority of Ras family small GTPases, RalA and RalB terminate in a CAAX (C =

cysteine, A = aliphatic amino acid; X = terminal amino acid) tetrapeptide motif (Fig. 4). The

CAAX motif signals for a series of posttranslational modifications that increase

hydrophobicity and promote membrane anchoring, where the terminal X residue determines

protein prenyltransferase specificity [74]. When X = S, A, Q, and M, the protein is

preferentially recognized by farnesyltransferase (FTase)-catalyzed addition of a C15

farnesyl isoprenoid lipid; when X = L or I, it signals for geranylgeranyltransferase type I

(GGTase-I)-catalyzed addition of a C20 geranylgeranyl isoprenoid.

For Ral, the initial step is catalyzed by covalent addition of geranylgeranyl to the cysteine

residue of the CAAX motif by cytosolic GGTase-I [75]. This is followed by endoproteolytic

removal of the AAX residues, catalyzed by endoplasmic reticulum-associated Ras

converting enzyme 1 (RCE1), and subsequent carboxymethylation of the now terminal

prenylated cysteine residue, catalyzed by isoprenylcysteine carboxyl methyltransferase

(ICMT).
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The CAAX-signaled modifications are critical for both RalA and RalB function. Mutation of

the cysteine residue to prevent all CAAX-signaled modifications disrupts Ral membrane

association and function [75]. Similarly, treatment with a pharmacologic inhibitor of

GGTase-I also disrupted Ral membrane association and signaling. Since inhibition of the

GGTase-I modification prevents all subsequent modifications, the role of the Rce1 and

ICMT catalyzed modifications in Ral function remain to be addressed.

Recently, the Ral CAAX motifs were identified as members of a distinct subset of CA1A2X

motifs where the A1 residue is a second cysteine residue (CCAX). CCAX motifs can

undergo an alternative modification pathway (Fig. 4). As shown for a Rho family small

GTPase (Cdc42), this motif can signal for dual lipid modification: prenylation followed by

covalent addition of a palmitate fatty acid [76]. For Cdc42, after the initial GGTase-I

catalyzed prenylation step, a Golgi-associated protein acetyltransferase (PAT) catalyzes

covalent addition of palmitate to the adjacent cysteine residue rather than the conventional

modification by Rce1 and ICMT. For Cdc42, this alternative modification prevented its

recognition by RhoGDI, a protein that masks the prenyl lipid and disrupts membrane

association, resulting in a cytosolic pool of Cdc42. Since there is no known RalGDI, the

consequences of this palmitate modification on Ral subcellular localization and membrane

association, and function, have not been determined.

4.2. Phosphorylation regulation of subcellular localization and effector interaction

An emerging theme in the regulation of small GTPases is reversible post-translational

modifications that dynamically regulate subcellular localization, thereby influencing effector

interaction and biological activity [77]. In particular, recent studies have highlighted protein

kinase-mediated phosphorylation of small GTPases in their C-terminal membrane-targeting

regions. For example, K-Ras4B phosphorylation by protein kinase C (PKC) on S181 in its

C-terminal membrane targeting sequence altered K-Ras4B subcellular localization [78].

Nonphosphorylated K-Ras4B was plasma membrane associated, whereas S181

phosphorylation K-Ras4B caused translocation to mitochondrial and endoplasmic reticulum

(ER) membranes. S181 is positioned within a polybasic amino acid stretch in K-Ras4B that

serves as a second signal that together with the CAAX modifications promote full plasma

membrane association. The negative charge caused by phosphorylation reduces the positive

charge of the polybasic stretch. The ER-associated K-Ras4B then associated with inositol

trisphosphate receptors (InsP3) on the ER in a Bcl-xL-dependent fashion, blocking the

ability of Bcl-xL to potentiate the InsP3 regulated flux of calcium from ER to mitochondria

that is required for respiration, inhibition of autophagy, and cell survival [79].

The Ral proteins are also regulated by similar mechanisms, with distinct protein kinases

phosphorylating serine residues distinct for the C-termini of RalA and RalB (Fig. 4).

Aurora-A kinase and protein kinase A (PKA) have been found to phosphorylate RalA on

S194 [80, 81] and protein phosphatase 2A dephosphorylates RalA at S194 as well as S183

[82]. Counter and colleagues showed that phosphorylation of RalA on S194 was critical for

RalA to promote the anchorage-independent growth in vitro and tumorigenic growth in nude

mice of pancreatic ductal adenocarcinoma (PDAC) cell lines [71]. This phosphorylation

event dramatically altered RalA subcellular localization from the plasma membrane to
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internal membranes, where it had an enhanced interaction with RalBP1. More recently,

Aurora-A phosphorylation of RalA has been found to promote RalA translocation to the

outer face of mitochondria, where it then recruits RalBP1 to stimulate mitochondrial fission

[57].

Studies by our lab and others have found that RalB is similarly regulated by PKCα

phosphorylation of S198 in the C-terminal membrane targeting sequence [72, 81]. In one

study, it was found that S198 phosphorylation caused RalB translocation from the plasma

membrane to endocytic vesicles [72]. Associated with this change in subcellular localization

was a switch in effector utilization. Whereas unphosphorylated RalA preferentially

associated with Sec5, S198 phosphorylation caused preferential association with RalBP1.

Phosphorylation of RalB S198 was necessary for proper exocytic vesicle trafficking and

fusion at the plasma membrane, with delivery of surface alpha-5 integrin being regulated by

dynamic RalB phosphorylation. Independently, Theodorescu and colleagues found that

phosphorylation of RalB S198 was critical in regulating the ability of RalB to promote the

metastatic growth of bladder cancer cells in a nude mouse model [81].

4.3. Ubiquitination

In the past few years, regulation of small GTPases by ubiquitination has gained recognition

[77]. For example, monoubiquitination of K-Ras on K147 reduces GAP sensitivity, thus

allowing K-Ras to remain active and signaling in the absence of upstream input [83].

Ubiquitination of the Ral proteins has also been shown to influence their activity and

function. Regulation of the ubiquitination of RalA modulated RalA activity as well as lipid

raft exposure [84]. Furthermore, ubiquitination of RalB promoted binding to Sec5 to

regulate innate immunity, whereas deubiquitination allowed for binding to Exo84 and

subsequent induction of autophagy [85].

5. Ral function in invertebrates – lessons learned from worms and flies

The conservation of Ral GTPases, their regulators, and effectors in Drosophila melanogaster

and C. elegans has allowed genetic dissection of Ral function. Consistent with the probable

double genome duplication and subsequent winnowing of vertebrate relative to invertebrate

genomes [86], in Drosophila and C. elegans there exist single genes for most Ras and Ral

signaling components. For example, Drosophila and C. elegans each harbor single Ral

GTPase (two in mammals) and RalGEF/RalGDS (four in mammals; Drosophila but not C.

elegans encodes a RalGPS ortholog), RalGAP α and β (two and one in mammals,

respectively) genes. This trend is consistent with reduced gene complexity of other

invertebrate Ras system signaling genes, with three mammalian Ras, three Raf, and four

type I PI3K catalytic subunit encoding genes [87]. Generally, functional similarity between

an invertebrate protein and a specific vertebrate isoform is difficult to extrapolate, largely

because biological assays usually differ between invertebrates and mammals. But this

difference also highlights the benefit of invertebrate studies, since they provide unique in

vivo perspectives that complement mammalian studies. All key Ral effectors are conserved

in C. elegans and Drosophila but TBK1, which is not encoded in the C. elegans genome.

Below, we summarize findings from studies on C. elegans and Drosophila Ral signaling.
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5.1. Toggling Ras between Raf and RalGEF regulation

Since RalGEFs and other Ras effectors are widely expressed, how Ras effector utilization is

regulated has been an unresolved issue. The C. elegans vulva is patterned by epidermal

growth factor (EGF) activation of Ras (LET-60) and the Raf-MEK-ERK MAP kinase

cascade to control 1° fate, and presumptive 1° cells secrete DSL Notch ligands to induce 2°

fate in neighboring cells. Furthermore, a spatial EGF gradient, in addition to inducing 1°

fate, contributes to 2° fate via an unknown pathway. 1° and 2° cell fates are antagonistic and

mutually exclusive. Reiner and colleagues found that in addition to its canonical effector,

Raf, vulval Ras utilized RalGEF-Ral 2°-promoting activity to antagonize Ras-Raf 1°-

promoting activity, and that Ral promoter activity was excluded from presumptive 1° cells,

thus blocking inappropriate Ral activation in 1° cells [88] (Fig. 5). Consistent with its

restricted expression pattern, they found that Ras-RalGEF-Ral mediated the 2°-promoting

activity of the EGF gradient. These findings delineated a Ras effector-switching mechanism

whereby cell position within the morphogen gradient dictates that LET-60/Ras effector

usage switched from Raf to RalGEF to promote 2° instead of 1° fate. This dynamic

developmental switching in effector use may reflect diversity in tumorigenic processes that

results in heterogeneity of effector predominance in tumors [89]. Other mechanisms that

control Ras effector utilization will likely exist.

5.2. Ral and innate immunity

A recent study in mammalian cells showed that RalA mediates nuclear translocation and

activation of FOXO in response to reactive oxygen species (ROS) by activating a JNK

cascade scaffolded by JIP1, and that in C. elegans RAL-1 and JIP-1 mediate DAF-16/FOXO

ROS-dependent nuclear translocation [90]. Additionally, transportin-1 mediates ROS-

dependent nuclear translocation of DAF-16/FOXO in both mammals and C. elegans [91]. C.

elegans harbors a single FOXO gene, daf-16, compared to four mammalian genes. These

observations suggest that Ral-mediated stress response to ROS is conserved across

evolution.

As noted above, mammalian RalB harnesses the TBK1 IκB kinase family member for tumor

cell survival. These results are echoed in Drosophila, where Sec5 or Ral haploinsufficiency

reduces anti-fungal response [61]. The absence of TBK1 and other IκB–related proteins in

the worm genome may reflect the absence of NF-κB in the worm genome and attendant

differences in innate immunity [92].

5.3. Fly insights into Ral signaling partners

Yeast two-hybrid interaction studies in Drosophila identified the Ral effectors Sec5 and

RalBP1/RLIP, and RalBP1/RLIP binds with known partner REPS1 [93]. Upstream of Ral,

both fly Ras and fly Rap bind RalGEF in yeast two-hybrid assays, consistent with their

identical core effector binding regions. However, in mammalian systems Ras and Rap1 are

localized to mostly non-overlapping subcellular compartments, and it is expected that they

encounter distinct sets of effectors [94, 95]. Overexpression studies with the two splice

variants of the fly RalGEF suggest that one alternative isoform, differing in N-terminal

sequence, harbors Ral-independent functions. This putative GEF-independent function of

RalGEF may correspond to putative N-terminally encoded GEF-independent functions of
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mammalian RalGDS, where RalGDS is thought to scaffold PDK and Akt, thus potentiating

Akt output in certain circumstances [96, 97]. Genetic analyses, mostly using ectopically

expressed constructs, implicates the Rap1 small GTPase, rather than Ras, as a putative

activator of RalGEF. However, these results are also consistent with Rap1 functioning in

parallel, and illustrate the potential complexities of dominant-negative mutations as

experimental tools for small GTPases, as well as the difficulties of analyzing the functions

of essential genes in vivo [98]. The Ras, Rap1 and Ral small GTPases act in multiple

developmental events during Drosophila development, so there is ample opportunity to

study their functions further.

Drosophila genetic analysis of a sensory organ apoptotic event, coupled with yeast two-

hybrid gene discovery and mammalian biochemical experiments, identified an interesting

and otherwise unidentified Ral effector cascade [99]. Ral signals through Sec5 of the

exocyst complex, which in turn interacts with the Msn MAP4 kinase in flies and humans.

Msn is thought to signal through a basket/JNK MAP kinase cascade in flies, and its ortholog

HGK signals through a JNK MAP kinase cascade in human cells. The fly Msn and human

HGK proteins are members of the CNH domain-containing MAP4 kinases, which contain

ancient Ste20-like kinase domains thought to activate JNK and p38 MAP kinases cascades.

Drosophila encodes two family members (Msn and Hpy), C. elegans encodes two family

members (MIG-15 and GCK-2), and mammals contain eight distinct genes encoding CNH

domain-containing MAP4 kinases, with four corresponding to each invertebrate subgroup

[100]. This relatively under-investigated group of kinases may represent a new and

druggable Ral signaling output.

5.4. RalGAPs connect Ral with the mTORC1 signaling network

An unexpected crosstalk between the Ral and mTOR signaling networks was identified

through the sequence relationship shared with the GAPs that control each network. mTOR

signaling regulates a spectrum of major cellular processes and is implicated in cancer and

other pathologic conditions [30]. Despite the sequence identity with TSC2 (26-27% identity

in RalGAP domains) (Fig. 2D), RalGAPs do not exhibit GAP activity for Rheb in vitro or in

vivo [31]. Nevertheless, the unexpected observation that C. elegans possesses orthologs for

the Rheb and Ral GTPases and for RalGAPα/β, but not Tsc1/2, led to the discovery of an

unexpected signaling interplay between Ral and Rheb signaling [31]. It was determined that

C. elegans RalGAP loss caused decreased lifespan, consistent with a Tsc-like function.

Additionally, RalGAP suppression in mammalian cells caused RalB-selective activation and

Sec5- and exocyst-dependent engagement of the mTORC1 complex and suppression of

autophagy (Fig. 3). Surprisingly, it was also found that Tsc1-Tsc2 loss activated RalA/B

independently of Rheb-mTOR signaling. Finally, RalGAP suppression caused mTORC1-

dependent pancreatic tumor cell invasion. These findings identify an unexpected crosstalk

and integration of the Ral and mTORC1 signaling networks.

Interestingly, as noted above mammalian RalB also activates autophagy, an activity

supported by Drosophila experiments [34]. Since TORC1 inhibits autophagy [101, 102], the

observations that RalB both promotes and inhibits autophagy are potentially contradictory.

However, RalB-TORC1 signaling occurs at the plasma membrane while RalB-
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autophagosome signaling occurs at the lysosome/autophagolysosome. The aforementioned

observations of phosphorylation-dependent subcellular trafficking and effector switching of

K-Ras [78] and RalA [82] , raise the possibility that RalB can orchestrate seemingly

antagonistic signaling outcomes under different conditions and in different cellular

compartments.

6. Ral and cancer

Since RalGEFs participate in downstream signaling from activated Ras proteins, it was

initially speculated that Ral protein activation may contribute to Ras-driven cellular

transformation. However, when explored initially in NIH 3T3 mouse fibroblasts, a critical

and significant role for Ral GTPases in Ras-driven cancer seemed unlikely [103, 104].

However, when Counter and colleagues explored the role of Ral in Ras-mediated growth

transformation of immortalized human astrocytes, fibroblast or epithelial cells, a more

significant role for Ral GTPases as effectors of Ras in human cancer was observed,

suggesting species differences in the effectors that are important in Ras oncogene function

[105].

That Ral GTPases serve critical roles in human cancer cell growth gained greater traction

when White and colleagues found that RalB was critical for tumor but not normal cells for

survival, while RalA was necessary for the anchorage-independent growth of cancer cells

[106]. Importantly, this also marked the first time RalA and RalB were found to have non-

overlapping functions. Since these key studies, a major theme of Ral proteins is their

significant and often divergent roles in numerous cancer types. In the following section we

review some of the key findings made with regards to the role of the two Ral isoforms as

drivers in different human cancers. Since the RA domain-containing RalGEFs can be

activated by other Ras family small GTPases, as well as by non-Ras mechanisms, and since

some RalGEFs are regulated by non-Ras mechanisms, an involvement of Ral in cancers

where RAS mutations are not common is not surprising.

6.1. Bladder carcinoma

Evaluation of a panel of human bladder cancer cell lines found preferentially increased

levels of activated RalA and RalB in RAS-mutant [107] or invasive cell lines [108]. Using

RNAi or ectopic expression of activated Ral mutants, Theodorescu and colleagues found

that RalA and RalB played antagonistic roles in the migratory activity of the KRAS-mutant

UM-UC-3 bladder cancer cell line, with RalA suppressing and RalB enhancing motility

[109].

Activating RAS mutations occur in a low percentage (~10%) of bladder cancers. Therefore, a

Ras-RalGEF mechanism may be less relevant for Ral activation in this cancer type.

Consistent with this possibility, a recent study found RalGAPα2 expression in normal

bladder urothelium, but reduced expression associated with advanced clinical stage and poor

patient survival [108]. Furthermore, genetic depletion of Ralgapα2 in mice did not cause

any apparent abnormalities but did enhance the invasive phenotype of chemically-induced

bladder tumors. Thus, loss of RalGAP function may be an important mechanism for Ral

activation in bladder cancer.
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6.2. Colorectal carcinoma

Oncogenic KRAS and NRAS mutations occur in 45% and 8%, respectively, of colorectal

cancer (CRC) tumors. Ral signaling has been shown to be a critical regulator of the

anchorage-independent growth properties of CRC tumor cells [110]. Martin et al found that

RNAi-mediated suppression of RalA resulted in a decrease in soft agar colony growth while

loss of RalB had the opposite effect, leading to an enhancement of anchorage-independent

growth. They found that RalA and RalB modulated this phenotype by utilizing both

common and distinct effector proteins. Using Ral effector binding mutants that are

selectively uncoupled from Exo84, Sec5, or RalBP1, they showed that RalA required Exo84

and RalBP1 binding to promote the anchorage-independent growth of CRC cells.

Conversely, RalB required Sec5 and RalBP1 to suppress soft agar colony formation.

Intriguingly, loss of one Ral isoform was found to increase the activation of the other

isoform suggesting compensatory crosstalk between RalA and RalB. What specifically

mediates this crosstalk between RalA and RalB is unknown, but it could be through either

enhanced RalGEF accessibility for the remaining Ral protein or a downregulation of

RalGAP activity upon single Ral isoform depletion. Depletion of RalB has also been shown

to cause apoptosis in colorectal cancer cells [61].

6.3. Hepatocellular carcinoma

RAS mutations are rare (>2%) in hepatocellular carcinoma (HCC). RalA was found to be

significantly overactivated in hepatocellular carcinoma (HCC) cells and tissues compared to

nonmalignant samples. Suppression of RalA expression caused a significant decrease in the

viability and invasiveness of HCC cells. A role for RalB was not addressed. Finally, in a

transgenic mouse model for HCC (farnesoid X receptor–deficiency induced) elevated RalA-

GTP was detected in the liver tumors [111].

6.4. Lung adenocarcinoma

KRAS mutations are found in 30% of lung adenocarcinomas and several studies have

addressed the role of Ral in lung cancer. In one study, variable levels of RalA-GTP,

independent of KRAS mutation status, were detected in a panel of lung adenocarcinoma or

squamous carcinoma cell lines [112]. shRNA suppression of RalA expression in the KRAS

mutant A549 lung adenocarcinoma cell line reduced the proliferation and invasion in vitro.

In a second more comprehensive study, immunohistochemistry analyses of non-small cell

lung cancers (NSCLC), it was found that high RalA and RalB protein expression was

associated with poor survival. The levels of activated RalA but not RalB were higher in

KRAS-mutant NSCLC cell lines [113]. Depletion of RALA or RALB or both reduced

anchorage-dependent and –independent growth for either KRAS mutant and wild type cell

lines. Depletion of RALA, RALB, or both also impaired the tumorigenic growth of KRAS-

mutant NSCLC cells. Interesting, very limited analyses in this and another study suggested

mutation-selective involvement of Ral in NSCLC, where KRAS G12C mutant NSCLC cell

lines showed greater activation and/or dependence on Ral for growth [114].

In contrast to human lung tumor cell line studies, RalA and RalB were found to exhibit

redundant functions when assessed in mouse development and in a Kras G12D-driven

mouse model of lung adenocarcinoma [73]. Ralb deficient mice were viable with no overt
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phenotype whereas a Rala deficiency caused embryonic lethality that was further

exacerbated by a combined Ralb deficiency. Neither a Rala nor a Ralb deficiency impaired

Kras-driven lung tumor development. However, a combined loss of both Rala and Ralb

significantly reduced lung tumor development. These results suggest redundancy in RalA

and RalB function for tumor development. One possible explanation for this different

conclusion may be that the human lung tumor cell line studies addressed the role of Ral in

tumor maintenance whereas the mouse study addressed the role of Ral in tumor initiation

and progression.

6.5. Malignant peripheral nerve sheath tumors

Loss of the NF1 RasGAP, rather than RAS mutational activation, is seen in

neurofibromatosis type 1 and malignant peripheral nerve sheath tumors (MPNST) [115].

When compared with a nontransformed mouse Schwann cell line, RalA-GTP levels were

elevated in a panel of MPNST cell lines established from tumors that arose from a NF1- and

Tp53-deficient genetically-engineered mouse model. When evaluated in one cell line, RalA

suppression impaired proliferation and invasion in vitro and tumorigenic growth in vivo

[116]. RalA activation was also seen in human MPNST cell lines and tissue, and restoration

of NF1 GAP activity reduced RalA activity, indicating that this was associated with Ras

activation.

6.6. Melanoma

RAS mutations, predominantly NRAS, occur in 28% of skin cutaneous melanomas. With

BRAF mutations seen in 60% of melanomas in a non-overlapping frequency with RAS

mutations, activation of the canonical Raf-MEK-ERK mitogen-activated protein kinase

(MAPK) pathway alone may seem to be sufficient for Ras-driven melanoma growth.

However, analysis of Ral activation in a panel of human melanoma cells showed a

consistently high level of total and activated RalA, but not RalB, activation that was

independent of NRAS or BRAF mutation status [117]. Additionally, RalA and to a lesser

degree RalB are necessary for the tumorigenic growth of melanomas, also regardless of

BRAF and NRAS mutation status.

Studies using tumor suppressor Arf-deficient immortalized mouse melanocytes to

investigate the contributions of Ras downstream signaling to melanomagenesis also

indicated a role for Ral signaling [118]. Ectopic expression of the RalGEF Rgl2 engineered

to contain a membrane localization sequence (to mimic Ras activation of RalGEF) was

sufficient to promote the anchorage-independent growth and Matrigel invasion of these

melanocytes similar to that caused by oncogenic N-Ras. Surprisingly, in contrast, activated

BRAF V600E did not enhance proliferation or invasion. Finally, ectopic expression of a

dominant negative mutant of RalB that blocks RalGEF function partially impaired the

growth of NRAS-transformed melanocytes. Thus, together with the findings of Zipfel et al.

[117], Ral GTPases can act as drivers of melanoma cancer growth in both RAS wild type and

mutant cancer cells.
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6.7. Ovarian carcinoma

One study has now revealed that Ral signaling has a role in ovarian cancer. Specifically,

higher levels of RalA activity was found in human tumor samples compared to benign

samples. Furthermore, depletion of RalA decreased proliferation and invasion of ovarian

cancer cell line OVCAR-5 in vitro and decreased tumor genesis [119].

6.8. Pancreatic ductal adenocarcinoma

A significant requirement for activated Ral signaling in pancreatic adenocarcinoma (PDAC)

cell line tumorigenic and invasive growth has been established. Human PDAC has a high

frequency or activating KRAS mutations and Ral activation is seen in both human tissue

samples and tumor cell lines [120-122]. Interestingly, activation of RalA was found at a

higher frequency than the activation of either ERK or AKT in PDAC cells, suggesting a

critical role for the RalGEF-Ral pathway downstream of oncogenic K-Ras.

Depletion of RalA and RalB via RNAi has elucidated roles for RalA in anchorage-

independent and tumorigenic growth and RalB in invasive and metastatic growth of PDAC

cells [122]. PDAC cells with stable RNAi depletion of RalA results in reduced subcutaneous

tumor formation upon injection into immune compromised mice. These same cells

expressing RalB RNAi do not form lung metastases post-injection into the tail-vein of nude

mice. In addition to playing a role in tumor initiation, RalA has also been shown to be

necessary for PDAC tumor maintenance. The use of inducible RNAi to stably deplete RalA

from established primary tumors resulted in regression of the tumor, indicating a necessity

for persistent RalA signaling in established PDAC tumors.

There is also recent evidence that active K-Ras signaling to RalB but not RalA plays a

critical role in the formation of invadopodia in PDAC cells [56]. Invadopodia are actin-rich

membrane protrusions that are known to be involved in the secretion of matrix

metalloproteases (MMP) during tumor cell invasion. RalB requires the ability to interact

with RalBP1 to mediate this process and RalBP1 itself is necessary for the formation of

invadopodia in PDAC cells. Surprisingly, the RhoGAP activity of RalBP1 is not necessary

for invadopodia formation while the ATPase activity is required. Why the ATPase activity is

necessary for RalBP1 to mediate invadopodia formation is unclear.

RalGEFs have also been found to play a role in PDAC. Rgl2 is overexpressed in PDAC

patient tumors and has been shown to be necessary for both the anchorage-independent and

invasive growth of PDAC tumor cells [123]. RNAi-mediated depletion of Rgl2 results in a

significant decrease in both RalA and RalB activation. Interestingly, expression of

constitutively active RalA could not rescue soft agar growth after the loss of Rgl2 indicating

that Rgl2 may have non-Ral regulatory functions or that the RalA interaction with Rgl2 is

critically important for the regulation of anchorage-independent growth. Rgl2 was found to

be co-localized with RalB but not RalA at the leading edge of migrating CFPac-1 PDAC

cells. Loss of Rgl2 results in a loss of RalB from the leading edge, perhaps giving insight

into how the migratory and invasive activity of PDAC cells relies on Rgl2/RalB signaling.
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6.9. Prostate carcinoma

Increased RalA-GTP levels were observed in the RAS wild type human prostate carcinoma

cell line PC3. Suppression of RalA did not impair tumor formation but did abolish bone

metastasis [124]. In contrast, suppression of RalB expression did not impair metastasis.

6.10. quamous cell carcinoma

Squamous cell carcinoma is the second most common type of skin cancer. Using an in vitro

model of Ras-induced human squamous cell carcinoma (SCC) of the skin, it was found that

RalA suppressed rather than promoted progression [125]. Suppression of RalA but not RalB

stimulated the progression of HRAS-transformed human keratinocytes to a more invasive

state.

In contrast to the in vitro observations, different roles for Ral were observed in a mouse

model of carcinogen-induced SCC [73]. Single application of the mutagen DMBA, followed

by repeated applications of phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA)

causes Hras mutation and the development of benign papillomas, with a subset progressing

to SCC. Neither a Rala nor a Ralb deficiency impaired papilloma development. As

described above for Kras-driven lung adenocarcinoma formation, only combined loss of

both Rala and Ralb significantly reduced papilloma development. Genetic ablation of

Ralgds in this same carcinogenesis model also significantly reduced tumor incidence, size,

and progression [126].

7. Conclusions and Future Prospects

Ral GTPase signaling has emerged as being critically important in both normal and

neoplastic cell physiology. Over the last two and a half decades we have learned a great deal

about how Ral proteins regulate many biological processes. From these studies one of the

most striking observations has been the very distinct functions observed for RalA and RalB

despite similar structural and biochemical properties and shared effector utilization. Do

these distinct functions simply reflect to spatially distinct interactions with the same set of

effectors or are their Ral isoform selective effectors that remain to be discovered. Only

recently have RalGAPs been discovered and much more remains to be learned regarding

their roles in regulation of Ral activity and signaling. With increasing evidence for key roles

for Ral GTPases as drivers in cancer growth, it will be important to identify pharmacologic

approaches for targeting aberrant Ral function for cancer treatment. Like Ras, Ral proteins

are not tractable therapeutic targets, although recent progress in the identification of direct

Ras binders suggests that small GTPases may yet be targeted directly. If not, indirect

approaches need to be explored. With kinases implicated as downstream effectors or key

regulators of Ral GTPases, can these be exploited for anti-Ral drug development? In

summary, with more still to be learned regarding Ral function, it is quite certain that there

will be more than 15 minutes remaining in their fame.
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Abbreviations

CAAX cysteine-aliphatic-aliphatic-terminal amino acid

DMBA 7,12-dimethylbenz[α]anthracene

EGF epidermal growth factor

EH Eps homology

ER endoplasmic reticulum

GAP GTPase activating protein

GEF guanine nucleotide exchange factor

ICMT isoprenylcysteine carboxyl methyltransferase

NSCLC non-small cell lung cancer

PDAC pancreatic ductal adenocarcinoma

PH pleckstrin homology domain

PKA protein kinase A

PKC protein kinase C

RA Ras-association domain

RBD Ral-binding domain

RCE1 Ras converting enzyme 1

REM Ras exchanger motif

SI/II SwitchI/II

SCC squamous cell carcinoma

SH3 Src homology 3 domain
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Highlights

• Ral proteins are members of the Ras superfamily of small GTPases

• Ral functions as GTP-GDP regulated binary on-off switch in signaling

• Ral proteins are key downstream effectors of Ras oncoprotein-mediated

oncogenesis

• Ral regulates vesicular transport and actin organization
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Fig. 1.
Evolutionary conservation of Ral small GTPases. A. Human and invertebrate Ral orthologs

exhibit strong sequence identity. The RalA and RalB isoforms are found in all vertebrate

species [17]. There is one Ral ortholog in C. elegans (Ce) and D. melanogaster (Dm).

Overall sequence identity was determined by CLUSTALW multiple sequence alignment. B.

Ral GTPases are members of the Ras branch of the Ras superfamily. Shown here is a

comparison with the four Ras proteins and representative members of the Ras family. The

dendrogram was generated by CLUSTALW multiple sequence alignment. C. Dendrogram

showing sequence relationship of human and invertebrate Ral proteins. D. Ral domain

structure. Human RalA and RalB G domains (12-176) shares 88% sequence identity and

contain the SI and SII domains that change in conformation during GDP-GTP cycling and

are involved in interaction with regulators and effectors. The switch regions are conserved

between human Ral proteins and Drosophila Ral and differ by a single residue in each

switch in C. elegans Ral (identical residues indicated in blue text). The hypervariable (HV)

C-terminus (50% identity) consists of the membrane targeting region and contains key post-

translational phosphorylation sites that regulate Ral subcellular localization and effector

interaction. Multiple sequence alignment was done by ClustalW analyses and domain

topology by SMART analyses. Numbers correspond to the human Ral amino acid

sequences.
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Fig. 2.
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Regulators of the Ral GDP-GTP cycle. A. Regulation of Ral GDP-GTP cycling. Ral-

selective GEFs and GAPs accelerate the low intrinsic exchange and GTP hydrolysis

activities to promote formation of active GTP-bound and inactive GDP-bound Ral. B. The

RalGEFs are highly conserved across species. All RalGEFs contain a CDC25 homology

domain, which is responsible for catalytic activity. There are four human isoforms of

RalGEF that contain Ras association (RA) domain. These isoforms also contain a Ras

exchanger motif (REM) that likely stabilizes the CDC25 homology domain and is essential

for RalGEF catalytic activity. There is one homolog in C. elegans and two in Drosophila.

The RalGEF homolog in C. elegans is most similar to RalGDS. The RalGPS RalGEFs lack

a REM domain and do not associate with Ras, but instead contain a pleckstrin homology

(PH) domain. RGL4 contains a CDC25 homology domain, but lacks a REM, RA or PH

domain. C. The RalGAPs are heterodimeric complexes formed by either a RalGAPα1 or

RalGAPα2 catalytic subunit with the regulatory RalGAPβ subunit. The RalGAPβ subunit

serves to regulate the catalytic activity of the RalGAPα subunits, similar to TSC1 regulation

of TSC2. Percentages indicate sequence identity with the RalGAPα1 catalytic domain.

Orthologs of the human RalGAPα and RalGAPβ subunits are present in C. elegans and

Drosophila. Multiple sequence alignment and sequence identity was determined by

ClustalW analyses and domain topology by SMART analyses.
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Fig. 3.
Ral effectors and effector functions. Active Ral can bind to a variety of downstream

effectors and modulate numerous cellular activities. RalBP1 acts as a RhoGAP as well as a

scaffold for other proteins that regulate endocytosis and other cellular processes. Ral

association with Sec5 or Exo84 can regulate exocyst-dependent and –independent processes.

Other effector processes include regulation of cell cycle progression through PLD1-

dependent cytokinesis and cytoskeletal changes through filamin A, IP3 signaling through

PLCδ1, and gene transcription through ZONAB. Ral activation also stimulates signaling

pathways that lead to the activation of various transcription factors (TF), stimulating gene

expression.
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Fig. 4.
Regulation of Ral subcellular localization and membrane association. CAAX motif-signaled

posttranslational modifications. Ral is geranylgeranylated by GGTase-1 on the first cysteine

residue of the CAAX (RalA: CCIL; RalB: CCLL). By the canonical CAAX processing

pathway, Ral is then modified at the endoplasmic reticulum (ER) by Ras converting enzyme

(Rce1) which cleaves between the two cysteine residues. Isoprenyl cysteine carboxyl

methyltransferase (ICMT) then catalyzes methylation of the isoprenylated free cysteine

residue, facilitating recruitment to the plasma membrane. A second non-canonical pathway

has been described by which Ral is palmitoylated at the cysteine residue at the A1 position

by Golgi-associated protein acetyltransferase (PAT) after geranylgeranylation. Palmitate

addition is reversible and depalmitoylation is catalyzed by acylprotein thioesterase (APT).

Whether this double lipid modified form is associated with a different membrane

compartment has not been determined. Ral subcellular localization is also regulated by a

dynamic and reversible protein kinase (PK)-mediated phosphorylation and protein

phosphatase (PP)-mediated dephosphorylation cycle. RalA and RalB possess distinct C-

terminal phosphorylation sites for different protein kinases (PK). Phosphorylation causes

dissociation from the plasma membrane and translocation to specific endomembrane

compartments, resulting in a switch in effector (E) interaction.
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Fig. 5.
EGFR signaling toggles C. elegans developmental output by effector switching. The C.

elegans Ras ortholog (LET-60) can interact with orthologs of human Raf (LIN-45) and

RalGEF (RGL-1). The nearby anchor cell (AC) secretes EGF/LIN-3, creating a

concentration gradient, inducing vulval precursor cell (VPC) development. This

concentration gradient, in combination with sequential induction, patterns vulval cell fates.

Active pro-1° signaling is shown in blue, with active pro-2° signaling shown in red, and

quenched signaling is in gray. In presumptive 1° cells, typically P6.p, EGF activates Ras to

utilize Raf to promote 1° cell fate. Pro-2° signaling through Notch is quenched.

RGL-1→RAL-1 pro-2° quenching is based on RAL-1 exclusion from presumptive 1° cells.

Additionally, presumptive 1° cells express and secrete notch ligand (DSL; Delta/Serrate/

LAG-2) that then induces neighboring vulval precursor cells via the Notch/LIN-12 receptor

to assume a 2° fate. In presumptive 2° cells, Notch induces expression of an ERK MAPK

phosphatase, and other 2°-specific proteins to quench the Raf pro-1° signal. EGF activates

Ras to utilize the RGL-1 RalGEF effector to promote 2° fate.
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