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Abstract

Although human and animal behaviors are largely shaped by reinforcement and punishment,

choices in social settings are also influenced by information about the knowledge and experience

of other decision-makers. During competitive games, monkeys increased their payoffs by

systematically deviating from a simple heuristic learning algorithm and thereby countering the

predictable exploitation by their computer opponent. Neurons in the dorsomedial prefrontal cortex

(dmPFC) signaled the animal’s recent choice and reward history that reflected the computer’s

exploitative strategy. The strength of switching signals in the dmPFC also correlated with the

animal’s tendency to deviate from the heuristic learning algorithm. Therefore, the dmPFC might

provide control signals for overriding simple heuristic learning algorithms based on the inferred

strategies of the opponent.

Learning algorithms suffer from the curse of dimensionality, as the amount of data

necessary for statistically robust learning increases with the complexity of the task (1).

Simple heuristic learning algorithms can thus be more effective, even for complex tasks (2).

A broad range of animal and human behaviors follows model-free reinforcement learning

algorithms operating with a small number of discrete states (3–5). Nevertheless, more

complex learning models can be advantageous when sufficient knowledge of the decision

maker’s environment is available. In particular, inferences about the likely behaviors of

other decision makers often complement simple learning algorithms in social settings (6–

11). However, the nature of control signals resulting from complex strategic inferences and

how they are incorporated into the process of action selection remain unknown.
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To investigate the nature of neural signals responsible for disengaging the animals from

simple heuristic learning, we trained three rhesus monkeys to perform a token-based

oculomotor decision-making task modeled after a biased matching pennies game against a

computer opponent (Fig. 1A) (12). The outcome in each trial was jointly determined by the

choices of the animal and the computer opponent according to the payoff matrix of the game

(Fig. 1B), and the number of tokens shown on the computer screen was adjusted after each

trial accordingly. The animal gained a token whenever it chose the same target as the

computer. When the animal and computer chose different targets, the outcome was neutral

for one target (referred to as safe) and loss for the other target (referred to as risky). The

animal received juice reward whenever it accumulated 6 tokens. The optimal strategy

(known as Nash equilibrium (13)) for the animal was to choose the risky target with a

probability of 1/3. If the animal chose the risky or safe target more frequently than predicted

by the optimal strategy, this was exploited by the computer (14). The locations of risky and

safe targets were fixed in a block of trials (mean = 47.6 ± 7.6 trials) and reversed between

blocks. The computer used only the history of the animal’s choices and outcomes in the

current block to exploit the animal’s biases.

The animals were more likely to choose the same target after receiving a token and to switch

to the other target after losing a token, compared to when the outcome of their previous

choice was neutral. The effects of gains and losses on subsequent choices decayed gradually

(Fig. 1C). This is consistent with a model-free reinforcement learning algorithm in which the

value functions for the two options are continually adjusted according to the outcome of the

animal’s choice (3–5). Such a simple learning algorithm during a competitive game might

be disadvantageous because it leads to predictable choices. However, animals performed

significantly better than the best-fitting model-free reinforcement learning algorithm and

achieved payoffs indistinguishable from that of the Nash-equilibrium player (Fig. S1). This

suggests that the animals might have complemented a model-free reinforcement learning

algorithm with more flexible strategies, potentially counter-exploiting the computer’s

algorithm.

The animal’s choices systematically deviated from the predictions from a model-free

reinforcement learning algorithm. For some animals (monkeys H and J), this was manifest

as the attenuation in the immediate effect of losing a token on the animal’s behaviors (Fig.

1C, arrows). More generally, the animal’s choices and their outcomes in the previous two

trials reliably predicted whether the animal would choose the safe or risky target more

frequently than predicted by a model-free reinforcement learning algorithm (Fig. 2), and this

relationship was consistent across sessions within each animal, as well as across animals

(Fig. S2). The computer opponent largely exploited the sequences of animal’s choices and

outcomes expected from simple reinforcement learning (Fig. S3A). The animals tended to

choose the safe target much more frequently than predicted by the reinforcement learning

algorithm, following the same sequence of outcomes that strongly biased the computer to

predict the opposite (Fig. S3B). The computer’s prediction for the animal’s next choice was

frequently exploited by the animals when it was based on simple patterns, such as the win-

stay-lose-switch strategy (Fig. S3C). This increased the animal’s expected payoff beyond the

level predicted for the Nash-equilibrium strategy (Fig. 2).
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We analyzed single-neuron activity recorded from the dorsolateral prefrontal cortex

(dlPFC), dorsomedial prefrontal cortex (dmPFC), and dorsal anterior cingulate cortex

(ACCd), as well as the dorsal (caudate nucleus, CD) and ventral striatum (VS; Fig. S4).

Signals related to the animal’s previous choices and their outcomes have been found in all of

these areas, and can contribute to reinforcement learning (15–23). Because the animals

tended to deviate from the model-free reinforcement learning frequently after specific

sequences of choices and outcomes, we assumed that neurons involved in over-riding the

use of simple reinforcement learning algorithm might encode high-order conjunctive signals

related to the animal’s choices and their outcomes in multiple trials. Neurons encoding such

high-order conjunctions were common in the dmPFC. During the 0.5-s delay period, 48.7%

of the neurons in the dmPFC significantly modulated their activity according to such

conjunctions (14), and this was significantly higher than in all other areas tested in this study

(χ2-test, p < 0.001; Fig. 3).

We hypothesized that dmPFC activity related to conjunctions of previous choices and

outcomes might provide the information necessary for the animal’s decision to deviate from

a model-free reinforcement learning algorithm. We decoded the animal’s choice in the

current trial from the activity of each neuron during the delay period, separately for different

sequences of choices and outcomes in the 2 preceding trials, and quantified how much the

accuracy of this decoding changed depending on whether the animal made the same choice

in the previous trial or not (i.e., stay vs. switch; Fig. 4A) (14). We then tested whether this

measure of switching activity was correlated with the frequency of deviations from model-

free reinforcement learning across different outcome sequences (Fig. 4B). Significant

correlation was found only for the dmPFC (r = 0.14, p < 0.001; Fig. 4C and 4D; Fig. S5 and

S6). Therefore, switching activity in the dmPFC might contribute to strategically deviating

from a simple reinforcement learning algorithm.

As a further independent test of this hypothesis, we applied the same methods to analyze the

activity of neurons previously recorded from 4 cortical areas (dmPFC (23), dlPFC (21),

ACC (16), and the lateral intaparietal area or LIP (22)) during an unbiased matching pennies

task. Signals related to conjunctions of previous choices and outcomes were observed more

frequently in the dmPFC than in other areas (χ2-test, p < 10−4; Fig. S7). Switching activity

was also significantly correlated across different outcome sequences with the deviations

from model-free reinforcement learning only for the dmPFC (r = 0.13, p < 10−6; Fig. 4D;

Fig. S8). These results suggest that activity in the dmPFC might be involved in multiple

levels of switching, not only for switching between different motor responses (24–26), but

also for switching between actions favored by simple reinforcement learning and more

abstract strategic inferences.

For learning agents, the complexity of the optimal internal model for action selection not

only depends on the complexity of the environment, but also increases with the amount of

experience. Accordingly, animals learning in real time must apply multiple learning

algorithms in parallel (4, 27–29). Real or simulated social interactions provide an ideal

platform to investigate the dynamics and neural mechanisms for arbitrating between

multiple learning algorithms. We found that monkeys can complement the use of a simple

reinforcement learning algorithm with strategic high-order reasoning to improve their choice
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outcomes during virtual competitive interaction. We also identified a neural signature of

switching between different learning algorithms in the medial frontal cortex. Inabilities to

choose appropriate learning algorithms are thought to underlie a number of psychiatric

disorders, and might arise from the disruption in the neural circuits investigated in the

present study (30, 31).
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Fig. 1. Behavioral task and performance
Biased matching pennies (A) and its payoff matrix (B). R, risky target; S, safe target. (C)

Behavioral effects of gains and losses. Average regression coefficients (ordinate) quantified

the tendency for the animal to choose the same target that produced a particular outcome in

each of the last 10 trials. Arrows indicate the attenuation in the immediate effect of loss.

Error bars, SEM.
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Fig. 2. Systematic deviations from reinforcement learning was beneficial
The color of each box in the decision trees (top) and the position of each circle in the scatter

plots (bottom) indicate how much the probability of choosing the safe target deviated from

the prediction of the best fitting reinforcement learning model (abscissa in the bottom scatter

plot) according to the choices and outcomes in the last two trials, and how this increased or

decreased the probability of token compared to the Nash-equilibrium strategy (ordinate in

the scatter plot). Numbers indicate different sequences of choices and outcomes in the two

preceding trials. Solid boxes correspond to the sequences included in the best hybrid

reinforcement learning model (14). R−, and R+ denote loss and gain from the risky target,

respectively, whereas S0 and S+ neutral outcome and gain from the safe target.
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Fig. 3. Cortical activity related to the conjunctions of choices and outcomes
(A) Fraction of neurons in each brain region that significantly modulated their activity

during the delay period according to high-order conjunctions of choices and outcomes (14).

(B) The time course of signals plotted in (A), using the same color code used to indicate

different brain areas. (C) Spike density functions of an example dmPFC neuron sorted by the

animal’s choices (R, risky; S, safe) and outcomes (+, 0, and − for gain, neutral and loss) as

well as the positions of the chosen target in the current (t) and last (t−1) trials. Colored disks

indicate different sequences of previous choices and outcomes, and asterisks indicate the

activity re-plotted in Fig. 4.
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Fig. 4. Cortical signals for deviation from simple reinforcement learning
(A) Spike density functions from a dmPFC neuron (shown in Fig. 3C) sorted by the animal’s

choices in the current and previous trials for 3 different sequences of outcomes in the last

two trials (indicated by the text label and color defined in Fig. 3C). Δ denotes the difference

in the accuracy of decoding the animal’s choice in switch vs. stay trials. (B) The difference

in the decoding accuracy, ΔDA(switch), plotted as a function of how much more often the

animal switched its choices compared to the prediction from the simple RL algorithm. (C)

The same results shown in (B) for the entire population of dmPFC neurons (left) and

averaged for each outcome sequence (identified by colors defined in Fig. 3C; right). Lines

correspond to the best-fitting regression models. (D) The correlation coefficient between

ΔDA and the deviation from reinforcement learning model for two different data sets (BMP,

biased matching pennies; MP, matching pennies).

Seo et al. Page 9

Science. Author manuscript; available in PMC 2015 April 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


