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Abstract
Background: The detection of small yet statistically significant differences in gene expression in
spotted DNA microarray studies is an ongoing challenge. Meeting this challenge requires careful
examination of the performance of a range of statistical models, as well as empirical examination
of the effect of replication on the power to resolve these differences.

Results: New models are derived and software is developed for the analysis of microarray ratio
data. These models incorporate multiplicative small error terms, and error standard deviations that
are proportional to expression level. The fastest and most powerful method incorporates additive
small error terms and error standard deviations proportional to expression level. Data from four
studies are profiled for the degree to which they reveal statistically significant differences in gene
expression. The gene expression level at which there is an empirical 50% probability of a significant
call is presented as a summary statistic for the power to detect small differences in gene expression.

Conclusions: Understanding the resolution of difference in gene expression that is detectable as
significant is a vital component of experimental design and evaluation. These small differences in
gene expression level are readily detected with a Bayesian analysis of gene expression level that has
additive error terms and constrains samples to have a common error coefficient of variation. The
power to detect small differences in a study may then be determined by logistic regression.

Background
Spotted DNA microarrays can be used to measure
genome-wide gene expression levels in cells of different
genotypes, in different developmental states, or within
different environments. The precision and accuracy of
these measurements depend on the technical perform-
ance of the microarray, the degree of replication of the
experiment, and the suitability of the model used to ana-
lyze the data. A number of models have been advanced for
the statistical analysis of experimental designs involving
two samples [1-4]. Two methods, a classical ANOVA

method [5-7] and a Bayesian method [8], have been
designed for the analysis of experimental designs involv-
ing multiple nodes of expression such as genotypes, envi-
ronments, and developmental states. These analyses yield
quantitative results on the expression level of a gene, eval-
uating data from direct hybridizations as well as data from
hybridizations that are informative through transitive
inference [9].

Optimal statistical inference depends upon the choice of
model used for analysis. Townsend and Hartl [8] derived
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a core model that has been widely used for the estimation
of gene expression levels and statistical significance in
multifactorial experiments (e.g. [9-15]). This model
assumed additive small error terms and either estimated
error variances for each genotype, environment, or devel-
opmental state or estimated a single variance for all geno-
types, environments, or developmental states. The
ANOVA models of Kerr et al. [5] and Wolfinger et al. [7]
have also been widely used, and assume multiplicative
small error terms. Accordingly, Bayesian models are con-
sidered here that incorporate multiplicative error terms. A
number of other studies have correlated error variance to
raw expression level [2,16-18]. To evaluate the potential
effect of this correlation on ratio measurements, models
are developed here that constrain the relationship
between the error variances and the expression levels to a
constant coefficient of variation. Nested error models for
spotted DNA microarrays are compared using the Baye-
sian information criterion for model choice [19].

The power to detect differences in gene expression using
these models is evaluated, and the relationship between
the estimated expression level, the number of replicate
hybridizations, and the ability to determine the statistical
significance of small differences in gene expression is
explored both for simulated and empirical data. A sum-
mary statistic for determining the fold-resolution detecta-
ble as significant in empirical microarray studies is
presented.

Implementation
Models
Model with small additive error effects
The intensity of hybridization of a DNA spot on a micro-
array is often used as measure of gene expression, but the
raw intensity is subject to a number of confounding error
terms, such as DNA concentration in a spot and sequence
hybridization efficiency. As foreseen by the pioneers of
DNA microarray technology, these confounding effects
(regardless of their multiplicative or additive nature) are
eliminated by consideration of the ratio of hybridization
of two samples [20]. The remaining small error terms may
be modeled either additively or multiplicatively.

Townsend and Hartl [8] modeled them additively, deriv-
ing a density function for the observed ratio of gene
expression in the ith and jth condition, zij, as

where µi is the expression level in condition i and σ2
i is the

variance in condition i. If n conditions or genotypes are
under study, direct use of this likelihood function requires

estimation of 2n - 1 parameters (n - 1 expression levels
plus n variances) for each gene.

One alternative is to constrain the variance so that it is
common and equal among nodes of an experimental
design [8], thus reducing the number of parameters
requiring estimation to n (i.e. n - 1 expression levels plus
one variance). Another alternative is to constrain the vari-
ances such that they have a consistent relationship to the
expression levels in each node. For example, conditions or
genotypes can have a common coefficient of variation
(CV) for each gene, ν = σi / µi for all i. This alternative also
requires the estimation of n parameters (n - 1 expression
levels and one CV). It is intuitively motivated by the con-
sideration that larger means for a population are accom-
panied by larger variances across many phenomena in the
sciences [21]. In order to implement a model in which all
nodes of an experimental design have a common error CV
for each gene, equation 1 may be rewritten, substituting
ν2µi 

2 for σi
2:

Equation 2 can then be used with a prior to construct a
Markov chain whose stationary distribution is the poste-
rior distribution of the parameters given the data [22,23],
in all other ways following the algorithm of Townsend
and Hartl [8]. The formulation in Equation 2 has addi-
tional appeal over Equation 1 when used (as it will be
below) within a Markov Chain Monte Carlo (MCMC)
analysis. Because values of µ and ν tend to scale similarly
across the real line compared to µ and σ2, less tuning of
the MCMC jump size may be necessary to achieve a satis-
factorily mixed chain.

Model with small multiplicative error effects
An alternative to additively modeled error is to model
error multiplicatively, such that the post-normalization
intensity in one fluorescence channel at a reporter spot is

where µ is the absolute quantity of mRNA per cell, the cm
are spot-associated terms of arbitrary distribution for any
a multiplicatively confounding factors, the cl are spot-
associated terms of arbitrary distribution for any q-t line-
arly confounding factors, and ε is a term for small random
errors not associated with the spot. The observed ratios of
intensities after normalization, yij, would then be
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Taking the log of both sides,

The formulation in Equation 4 has some evident similar-
ities to formulations in ANOVA models of gene expres-
sion measurement error, where the confounding terms c
correspond to the array spot effects identified by Kerr et al.
[5] and Wolfinger et al. [7], except that the derivation pre-
sented here does not assume that these terms are lognor-
mally distributed. Note that these confounding terms are
generally not of biological interest and can immediately
cancel in equations 3 or 4. Assuming that error terms log
εi and log εj are composed of many small, unbiased effects,
and scaling them so that they are distributed with vari-
ances specific to each node, σi

2 and σj
2, it follows from

equation 3 that the ratio data, zij, are drawn from a ratio
of two lognormal distributions. The numerator is drawn
from a lognormal distribution with parameters µi and σi

2,
and the denominator is drawn from a lognormal distribu-
tion with parameters µj and σj

2. Just as the difference of
two Gaussians is itself Gaussian, the ratio of two lognor-
mals is lognormal, thus the probability density function is

Following in all other ways the algorithm of Townsend
and Hartl [8], Equation 5 can then be used with a prior to
construct a Markov chain, the stationary distribution of
which is the posterior distribution of the parameters given
the data. Furthermore, just as with equation 2, all vari-
ances for each node may be constrained to be equal or
each may be constrained to be linearly proportional to its
respective expression level by a single CV. In the latter
case, with ν = σi / µi = σj / µj for all i and all j,

Model abbreviations and relations
Models used will be abbreviated with a two-letter acro-
nym. The first letter indicates (A)dditive or (M)ultiplica-
tive error, and the second letter indicates a general
(U)nconstrained variance model, a constrained (V)ari-

ance model, or a constrained (C)oefficient of variation
model. Thus, the AV and AC models are nested within the
AU model, while the MV and MC models are nested
within the MU model. With n nodes in the experimental
design, the AU and MU models both have 2n - 1 parame-
ters (n - 1 expression levels plus n variances), and the AV,
AC, MV, and MC models all have n parameters (n-1
expression levels, plus 1 variance or CV).

Algorithm
The three-dimensional matrix of ratio results from DNA
microarray comparisons, Z, may be constructed, with
dimensions i denoting the sample labeled with one fluor-
ophore, j denoting the sample labeled with another, and
k denoting the replicate ordinate of that particular dye-
labeled comparison. Then, for any continuous structure of
comparisons among the nodes of interest, the likelihood
density for the parameters µl and νl, 1 ≤ l ≤ n, is, by Bayes'
rule,

where g(µi, νi, µj, νi) is the prior distribution of the param-
eters, and where the probability f(zijk) of empty elements
in the data matrix Z is properly evaluated as one.

Appropriate informative priors for the variance of micro-
array data are under investigation [2,4,24]. In this paper,
a noninformative prior distribution, uniform across posi-
tive real numbers, has been used for both the expression
levels and for their variances and CVs. The range has been
nominally constrained between zero 100, though that
upper constraint makes no difference for the datasets
examined here. The uniform prior gives the microarray
data itself the greatest impact on the inferred expression
levels and variances, and implies that credible intervals
around parameter estimates (the Bayesian equivalents of
classical confidence intervals) are close to those that
would be found by maximum likelihood.

Fortunately, we may use the constant denominator of the
Bayes' rule formulation (Equation 5) to assert that
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Equation 8 may be used to construct a Markov Chain
whose stationary distribution is the posterior distribution

of the parameters given the data. A vector  of initial error
coefficients of variation is chosen arbitrarily, and a vector

 of initial expression levels is chosen such that

 at step t = 0. Subsequent values in the chain

are determined iteratively by choosing successive pro-
posed values according to an acceptance rule.

Our proposed values are constructed in two separate
steps. First, two of the n gene expression level parameters

from  are chosen at random. A step size is drawn at ran-

dom from a triangular distribution centered at zero with
range [-∆µ, +∆µ]. The first of the two chosen parameters is
incremented by the chosen step size, and the second is

decremented by the same quantity, so that  is

maintained, where the apostrophe indicates a proposed
parameter value. In the next iteration, each of the CV

parameters in  is separately incremented by an amount
drawn at random from a triangular distribution with

range [-∆ν, +∆ν] to form . The conjecture is accepted for
the next state of the Markov chain if

Otherwise the original state is retained for the next itera-
tion of the Markov Chain.

These steps are repeated over many generations in order to
"burn in" the chain, so that it converges from the initial
parameter settings to a stationary distribution. Subse-
quently, states are sampled from the chain at regular inter-
vals to build a posterior distribution for each parameter,
integrated across the probable states of all other parame-
ters. All analyses in this paper were performed with
20,000 generations of burn-in, followed by 200,000 gen-
erations during which the chain was sampled every 20
generations to construct the posterior distribution. Runs

using multiple starting vectors  and  were performed
and always converged to the same, unimodal posteriors.

Results reported here were the outcomes of Markov chains

started with the elements of  all equal to one, and

started with the elements of  equal to 0.2. Step sizes, ∆µ

and ∆ν, were tuned for each gene so that acceptance ratios
for each parameter update were in the efficient and well-
mixed range, (0.15, 0.50) [25]. If acceptance ratios for
either parameter jump were less than 0.15 or greater than
0.5, the chain was run again with a better-tuned jump size,
until acceptable ratios for both parameters were obtained.
In this way, there is no alteration of the jump size during
any run. There is only the evaluation of pilot Markov
chains to optimize jump size.

Output
This implementation of these models can accommodate
complex experimental designs, where a number of geno-
types, environments, and developmental time points are
examined. Within this framework, missing data (e.g.
excluded single spots, or even missing hybridizations) do
not require special consideration or a change in method-
ology; credible intervals and P values reflect accurately the
degree to which the data informs each estimate. This soft-
ware allows the quantitative information on gene expres-
sion levels from microarrays to be thoroughly analyzed
and carefully considered in assessing the biological effects
of genetic or environmental differences of cellular state.

Output from the software implementation is in the form
of a tab-delimited text file with one header row. Each row
thereafter displays the results for a single gene, including
columns with: the estimate of expression level for each
node (the median of the posterior distribution); the addi-
tions and subtractions to make 95% upper and lower
bounds on that estimate; the stationary acceptance rates
for the Monte Carlo steps for that gene; and the posterior
probabilities (P values) for whether the expression level of
a gene in each expression node is greater, or lesser, than
the expression level of that gene in each other expression
node.

Evaluation
Nested model choice
The common variance (AV, MV) and common CV (AC,
MC) models are both nested within their respective gen-
eral unconstrained variance model (AU, MU). The same
number of parameters is estimated in both of the nested
models. They differ only in how the estimated variances
are constrained with relation to the estimated expression
levels. Whether the nested models are appropriate com-
pared to the general model may be assessed using the
Bayesian Information Criterion [19], which is to choose
the model m that maximizes
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where Mm is the maximum likelihood of model m, hm is
the number of parameters estimated in the model, and n
is the number of observations.

Tests of power
Simulated data sets have an advantage over real data sets,
in that true gene expression levels for simulated data are
known. Data sets were simulated to ensure that methods
introduced here yielded appropriate results when data
was derived from a number of reasonable and proposed
distributions for gene expression data. For simulated data
sets, six ratio measurements were drawn 1400 times from
each of five distributions. The simulated distributions
were sampled from by the following procedures. For the
ratio of normal distributions with a single variance term
among all nodes of the experimental design, ratios were
created by the division of a random variable drawn from
a Normal distribution by another random variable drawn
from a Normal distribution, then discarded if outside the

range . For the ratio of normal distri-

butions with a single CV term among all nodes, ratios
were created by the division of a random variable drawn
from a Normal distribution by another random variable
drawn from a Normal distribution, then discarded if out-

side the range . For the lognormal

distribution, ratios were drawn directly from log N(µ, σ2)
or log N(µ, µ2ν2). For the simulation of data from the
Gamma distribution and the Cauchy distribution, param-
eters were chosen such that the means of the distributions
were the same as the intended true expression level. Ratios
drawn from the Cauchy distribution were discarded if
they were below zero or above ten.

For each distribution, 1000 measurements of gene expres-
sion level were simulated where both samples had the
same expression level, and one hundred measurements
were simulated for ratios of expression level of 1.1, 1.25,
1.5, and 2. Variance and CV parameters for all the above
distributions simulated expression levels were set at the
average values inferred from the dataset of Townsend et al.
[10] under additive models. Note that, although parame-
ters of each distribution were generally chosen so that the
variances of the ratio output of each distribution would be
similar, no attempt was made to make higher moments
than the mean identical. Therefore, the relevant compari-
sons are between analysis methods on a given simulated

dataset, and frequencies of significance calling are not
directly comparable across simulated datasets.

Logistic regressions
Power to detect a difference in gene expression depends
critically on the true factor of fold-difference between
samples. A continuous logistic function,

describing the probability of detection of statistical signif-
icance, p, of simulated log2 factors of difference in gene
expression, x, was parameterized with an intercept, b, and
slope, m, by logistic regression. The same regression was
performed on real data by substituting estimates of the
factor of difference in gene expression level for known fac-
tors of difference, thus providing a profile of the power of
an experiment to detect differences in gene expression. A
useful metric for such an analysis is the factor of difference
in gene expression level that has a fifty percent chance of
being identified as significant. Herein, this is referred to as
the GEL50, for the Gene Expression Level at which there is
a 50 percent chance of detection of statistical significance.

Results
The general and nested models were implemented on two
independent published data sets large enough to estimate
parameters within the general model [10,26]. The Baye-
sian Information Criterion (BIC) [19] was used for model
choice. For both datasets examined, the nested models
had considerably higher BIC values than the general mod-
els, regardless of the kind of error model (Table 1), indi-
cating that the nested models, with fewer parameters, are
preferable.

Computation time for analysis of published data sets var-
ied across models (Table 1). Computation using additive
models (AV, AC, AU) was more rapid than computation
using multiplicative models. Regardless of whether small
error terms were modeled as additive or multiplicative,
constrained CV models (AC, MC) were faster than con-
strained variance (AV, MV) or general unconstrained (AU,
MU) models. Furthermore, the relative ranks of these
models in terms of speeds of computation, without excep-
tion, remained as above in all analyses of simulated
datasets.

In the analysis of data simulated as a ratio of two normal
distributions, model AC exhibited the greatest power to
detect true differences in gene expression (Figure 1).
Model AV performed nearly as well, whereas the
unconstrained model (AU) was dramatically less power-
ful across expression levels (Figure 1A,1C). Among multi-
plicative models, model MC exhibited the greatest power,
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Table 1: Analysis of general, unconstrained variance vs. nested, constrained variance models

Data Model* Genes s / gene** Mm Parameters BIC***

Townsend et al. (2003) AU 4506 5.2 33312.6 7 -11147.1
Townsend et al. (2003) AC 5759 4.1 21296.8 4 -4108.8
Townsend et al. (2003) AV 5759 4.8 21365.8 4 -4039.8
Townsend et al. (2003) MU 4506 7.0 33969.2 7 -10490.6
Townsend et al. (2003) MC 5759 5.7 21469.2 4 -3936.4
Townsend et al. (2003) MV 5759 6.2 21459.1 4 -3946.5
Sudarsanam et al. (2000) AU 4756 3.5 19874.9 5 -1053.6
Sudarsanam et al. (2000) AC 5888 3.2 16199.2 3 502.9
Sudarsanam et al. (2000) AV 5888 3.6 16200.4 3 504.1
Sudarsanam et al. (2000) MU 4756 4.4 20229.8 5 -698.7
Sudarsanam et al. (2000) MC 5888 4.1 16494.4 3 798.0
Sudarsanam et al. (2000) MV 5888 4.7 16370.7 3 674.3

* (A)dditive or (M)ultiplicative error, with (U)nconstrained variances, a common (C)oefficient of variation, or a common (V)ariance. ** seconds of 
processor time on a dual 1 GHz PowerPC G4 *** Bayesian Information Criterion

Detection of gene expression differences from ratio data that are truncated-ratio-of-normals distributedFigure 1
Detection of gene expression differences from ratio data that are truncated-ratio-of-normals distributed. Frequencies of 
affirmative significance calls with six analytical models are plotted against the factor of gene expression difference. Symbols rep-
resent the analysis model used: AC(+), AV( ), AU(O), MC(×), MV(�), and MU(�). Diagrams correspond to data simulated 
with A) and B) equal variance in the two nodes of the experimental design, and C) and D) standard deviations proportional to 
expression level in each node.
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followed by models MV and MU, which were barely dis-
tinguishable (Figure 1B,1C). Regardless of whether data
was simulated with equal error variances in each sample
(Figure 1A,1B) or error standard deviations proportional
to the expression level in each sample (Figure 1C,1D),
assuming the constrained coefficient of variance model
yielded the greatest power to detect differences in gene
expression level.

In the analysis of data simulated as a ratio of two lognor-
mal distributions, model AC again exhibited the greatest
power to detect true differences in gene expression (Figure
2). Model AV performed nearly as well, whereas the
unconstrained model (AU) was considerably less power-
ful across expression levels (Figure 2A,2C). Among multi-
plicative models, model MC exhibited the greatest power,
followed by models MV and MU, which were indistin-

guishable (Figure 2B,2C). Regardless of whether data was
simulated with equal variances in each node (Figure
2A,2B) or standard deviations proportional to the expres-
sion level in each node, assuming the constrained coeffi-
cient of variance model yielded the greatest power to
detect differences in gene expression level.

In the analysis of ratio data simulated from Cauchy and
Gamma distributions, model AC again was found to
exhibit the greatest power to detect true differences in
gene expression (Figure 3). Model AV performed slightly
less well, whereas the unconstrained model (AU) was con-
siderably less powerful across expression levels (Figure
2A,2C). Multiplicative models all demonstrated similar
power. Model MC exhibited the greatest power, followed
by models MV and MU, which were indistinguishable
(Figure 2B,2C). Regardless of the distribution of ratio

Detection of gene expression differences from ratio data that are lognormally distributedFigure 2
Detection of gene expression differences from ratio data that are lognormally distributed. Frequencies of affirmative signifi-
cance calls with six analytical models are plotted against the factor of gene expression difference. Symbols represent the analy-
sis model used: AC(+), AV( ), AU(O), MC(×), MV(�), and MU(�). Diagrams correspond to ratio data simulated with A) and 
B) equal variance in the two nodes of the experimental design, and C) and D) standard deviations proportional to expression 
level in each node.
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measurements, assuming the constrained coefficient of
variance model yielded the greatest power to detect differ-
ences in gene expression level.

Higher power to detect true differences, although impor-
tant in practice for the purpose of choice of model in an
experimental study, does not indicate a better fit to the
data. This is made clear by comparing Figure 1A with Fig-
ure 1C, and by comparing Figure 2B with Figure 2D. If the
increased power to detect true differences in gene expres-
sion were solely due to a better fit to the data, then analy-
sis via model AV would outperform analysis via model AC
in Figure 1A, and analysis via model MV would outper-
form analysis via model MC in Figure 2B. Thus, constrain-
ing the nodes of the experimental design to a single error
CV yields greater power than constraining the nodes to
single error variance, regardless of which analysis model
fits the data better.

The power to detect differences in gene expression as a
continuous function of the log2 factor of difference in
gene expression for the simulated data shown in Figure 1C
that was analyzed by model AC is plotted in Figure 4A.
The smaller the true difference in gene expression, the less
likely it is to be identified as significantly different
between two nodes in an experimental design. The lack of
resolution for detection of small differences with any
given experimental design is a characteristic of experimen-
tal measurement, whether the variances or coefficients of
variation are constrained or unconstrained. It persists
across all models examined.

In comparison to performing logistic regression of the fre-
quency of positive calls versus true differences in gene
expression level, a logistic regression of the frequency of
positive calls versus the estimates of gene expression level
derived from analysis of the simulated data may be per-

Detection of gene expression differences from ratio data that are gamma or truncated-Cauchy distributedFigure 3
Detection of gene expression differences from ratio data that are gamma or truncated-Cauchy distributed. Frequencies of 
affirmative significance calls with six analytical models are plotted against the factor of gene expression difference. Symbols rep-
resent the analysis model used: AC(+), AV( ), AU(O), MC(×), MV(�), and MU(�). Diagrams correspond to data simulated 
from A) and B) a gamma distribution of ratios, and C) and D) a truncated Cauchy distribution of ratios.
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formed (Figure 4B). Stochasticity in the estimation due to
small sample size causes dispersion of the values along
the abscissa. Nevertheless, this regression on estimates of
gene expression level shows the same decreasing probabil-
ity of significant call with decreasing gene expression dif-
ference between nodes of an experimental design.

Fortunately, the regression in Figure 4B may be performed
not just on simulated data, but also on data from experi-
mental studies. The power to detect differences in gene
expression of various magnitudes between nodes of exper-

imental designs is plotted for four published studies in
Figure 5. A useful summary of the power is the factor of
gene expression level at which there is a 50% frequency of
a significant call (GEL50). Alexandre et al. [27] compared
yeast at log-phase growth with and without 30 minutes of
exposure to ethanol. The experimental design
incorporated two nodes and three hybridizations. The
GEL50 for their study was 2.8-fold (Figure 5A). Lyons et al.
[28] studied zinc regulation in yeast. Their experimental
design included nine reported hybridizations on six
nodes. The comparison of gene expression levels between

Logistic regressions of the probability of detection of gene expression differences from simulated dataFigure 4
Logistic regressions of the probability of detection of gene expression differences from simulated data. Logistic regressions of 
the frequency of affirmative significance call over log2 factor of difference in gene expression. The logistic model plotted is that 
loge(p/(1 - p)) = mx + b, where x is the log2 factor of difference in gene expression. Cross symbols represent actual data points. 
Each is placed at its estimated expression level, either at the top of the plot. When identified as significant (S), or at the bottom 
when identified as not significant(NS). Logistic regressions are of statistical significance calls A) on the "true" factors of fold 
change from which data was simulated. The model has a highly significant fit (χ2 = 884.5, P < 0.0001). The estimated intercept 
for the log odds, b, of an affirmative significance call is -16.4 (significant, P < 0.0001). This corresponds to a probability of a pos-
itive call of 0.02, which is the observed average false-positive rate. The estimated slope with log2 factor of difference in gene 
expression, m, is 12.5 (significant, P < 0.0001). B) on the factors of difference estimated from the simulated data. The model has 
a highly significant fit (χ2 = 890.5, P < 0.0001). The estimated intercept for the log odds, b, of a significant call versus no signifi-
cant call is -3.9 (significant, P < 0.0001), and the estimated slope with log2 factor of difference in gene expression, m, is 10.7 
(significant, P < 0.0001).

1

0.5

0

43210

F
re

q
u

e
n

c
y

o
f

S
ig

n
if
ic

a
n

t
C

a
ll

Estimated Log2 Fold-change

B

S

NS

F
re

q
u

e
n

c
y

o
f

S
ig

n
if
ic

a
n

t
C

a
ll

43210

A

1

0.5

0

1

0.8

0.6

0.4

0.2

0

43210

S

NS

Actual Log2 Fold-change
Page 9 of 13
(page number not for citation purposes)



BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/54
Logistic regressions of the probability of detection of gene expression differences from experimental dataFigure 5
Logistic regressions of the probability of detection of gene expression differences from experimental data. Logistic regressions 
of the frequency of affirmative significance call on the estimated log2 factor of difference in gene expression for five datasets 
from four published studies that publicly reported replicated ratio results for each hybridization. The logistic model plotted is 
that loge(p/(1 - p)) = mx + b, where p is the probability of an affirmative significance call, and x is the log2 factor of difference in 
gene expression. Cross symbols (+) are plotted at the estimated expression level of each gene, either at the top of the plot 
when identified as significant (S), or at the bottom when identified as not significant (NS). See Townsend and Hartl [8] and 
Townsend et al. [10] for diagrams of the experimental designs for these studies. Logistic regressions of significance call on the 
factor of difference are computed from the data of A) Alexandre et al. [27], comparing yeast in log-phase growth with yeast in 
log-phase growth after 30 minutes of exposure to high ethanol. The model has a highly significant fit (χ2 = 2126.4, P < 0.00001). 
The estimated intercept for the log odds, b, of an affirmative significance call is -6.0 (significant, P < 0.0001), and the estimated 
slope with log2 factor of difference in gene expression, m, is 4.0 (significant, P < 0.0001). Three microarray comparisons were 
performed on two samples. The factor of gene expression at which 50% of estimated differences were identified as significant 
(GEL50) was 2.8-fold. B) Lyons et al. [28], comparing expression in yeast in wild type and zap1 strains at log-phase growth in 
low zinc media. The model has a highly significant fit (χ2 = 2844.0, P < 0.00001). The estimated intercept for the log odds, b, of 
a significant call is -4.2 (significant, P < 0.00001), and the estimated slope with log2 factor of difference in gene expression, m, is 
5.8 (significant, P < 0.0001). Nine microarray comparisons were reported on six samples, and GEL50 = 1.65-fold. C) Sudar-
sanam et al. [26], comparing expression in yeast between wild type and snf2 strains at log-phase growth in rich and minimal 
media. Cross symbols representing the data are plotted only for the left-hand curve, which regresses data from the compari-
son in minimal media. The model has a highly significant fit (χ2 = 2429.3, P < 0.00001). The estimated intercept for the log odds, 
b, of a significant call is -3.9 (significant, P < 0.00001), and the estimated slope with log2 factor of difference in gene expression, 
m, is 6.7 (significant, P < 0.0001). Six microarray hybridizations were performed between three samples, and GEL50 = 1.49-fold. 
The right-hand curve is from an experiment on rich media. The model has a highly significant fit (χ2 = 1458.7, P < 0.0001). The 
estimated intercept for the log odds, b, of a affirmative significance call is -4.0 (significant, P < 0.00001), and the estimated slope 
with log2 factor of difference in gene expression, m, is 4.3 (significant, P < 0.0001). The data were restricted to five microarray 
hybridizations among three samples, and GEL50 = 1.91-fold. D) Townsend et al. [10], comparing expression in two natural iso-
lates of yeast at log-phase growth. The model has a highly significant fit (χ2 = 925.5, P < 0.0001). The estimated intercept for the 
log odds, b, of an affirmative significance call is -2.9 (significant, P < 0.0001), and the estimated slope, m, is 4.5 (significant, P < 
0.0001). Ten microarray comparisons were performed among four samples, and GEL50 = 1.56-fold.
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wild type and zap1 strains at log-phase growth in low zinc
media is plotted here. The GEL50 for this comparison was
1.65-fold (Figure 5B). A study by Sudarsanam et al. [26]
comprised two data sets examining the effects of swi1 and
snf2 mutations in rich media and in minimal media on
gene expression. The regressions for comparisons of wild
type and snf2 strains at log-phase growth in the two media
are plotted in Figure 5C. The right-hand curve is drawn
from analysis of the experiment in rich media, which was
restricted to just five hybridizations among three nodes.
The GEL50 for this comparison was 1.91-fold. The left-
hand curve is drawn from analysis of the experiment in
minimal medium. Six microarray hybridizations were
performed between the three nodes, and GEL50 = 1.49-
fold. This is a direct demonstration of the increased reso-
lution achieved with increased replication. Townsend et
al. [10] examined gene expression levels in natural iso-
lates of wine yeast at log-phase growth. Ten microarray
hybridizations were performed among four nodes. The
GEL50 for the comparison of two of these isolates, M1-2
and M2-8, was 1.56-fold. Across all of these experiments,
increased replication yielded greater resolution of the sta-
tistical significance of small differences in gene
expression.

Discussion
Distinguishing the optimal models to use for the analysis
of replicated spotted DNA microarray data is important.
Optimized models will yield qualitatively more accurate
lists of significantly differently expressed genes, and quan-
titatively more precise resolution of smaller differences in
gene expression. The Bayesian Information Criterion for
model selection can be used to choose between models
that invoke distinct error variances or coefficients of
variation for each node as characterized by genotype,
environment, and developmental state, and the nested
models that invoke a single variance or CV for all nodes.
The values of the BIC for the relatively small studies exam-
ined here (Table 1) clearly support analysis with the
nested models that invoke a single variance or CV.

In addition to direct assessment of the fit of the model to
the data, power to detect known differences may guide
model choice. Generally, the ranking of the power of
models was consistent regardless of the distribution used
to simulate the data (Figures 1, 2, and 3). For
unconstrained models that estimate a variance or CV term
for each node, the analysis model incorporating an
assumption of small multiplicative error terms (model
MU) had greater power to detect differences than the anal-
ysis model incorporating an assumption of small additive
error terms (model AU). Nested models that invoke a sin-
gle variance or CV had higher power to detect known dif-
ferences when the analysis model incorporated an
assumption of small additive error terms (Equation 1, i.e.

models AC and AV had higher power than model AU.)
Among analysis models incorporating an assumption of
small multiplicative error terms (Equation 2), only one of
the two nested models, model MC, had consistently
higher power than the unconstrained model. Overall, a
model incorporated an assumption of small additive error
terms and a single error CV for all nodes (model AC) had
the greatest power to detect differences in gene expression
level. In practice, model AC was also the fastest computa-
tionally (Table 1), perceptibly requiring fewer tuning
steps to find an appropriate jump size for the generation
of posterior distributions by Markov Chain Monte Carlo.

If variances are generally proportional to their expression
levels, then the constrained CV models (AC and MC) per-
tain. A linear regression of the estimated coefficients of
variation to their respective expression levels should have
positive slope. Specifically, regressions on the datasets
here typically have positive slope (y = ~ 0.4x + c) and are
highly statistically significant, although the data exhibit
considerable scatter and thus poor correlation (r2 ~ 0.04).
These data sets are barely large enough to estimate error
variances in a gene-by-gene manner using the general
model. Future experimental data with greater replication,
analyzed by the general model, will yield higher precision
estimates of the error variances and thus better resolution
of this question.

When the nominal false positive rate α = 0.05, all models
have an actual false positive rate that is moderately to
considerably less than 0.05, averaging 0.02 (Figures 1, 2,
and 3). These false positive rates are close enough to zero
that precise estimation of the frequency requires extensive
computation, but generally, the false positive rate was
slightly higher with the more powerful models. The
slightly lower than nominal false-positive rate is due to
the flat prior on the error variance or error CV, that is
slightly too permissive of large estimates of the variance
and of the CV. Further investigation into the use of a more
informative prior distribution (such as the gamma distri-
bution, e.g. [24]), is called for, requiring larger studies
with greater replication.

Prediction of the number of replicates required for statis-
tical significance testing of microarray data is theoretically
possible [29,30], by making specific assumptions about
the error variances and the level of gene expression differ-
ence of interest. Here, empirical examination of the power
to detect significant differences at different gene expres-
sion levels in different studies (Figure 5) has the potential
to simply and rapidly convey vital evaluative feedback
about the design, replication, and technical performance
of a set of hybridizations. All three of these factors contrib-
ute to the ability of a microarray study to resolve small fac-
tors of difference in gene expression between nodes in an
Page 11 of 13
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experimental design. This ability to resolve differences can
be summarized by a single, intuitive parameter: the gene
expression level at which there is a 50% frequency of sig-
nificant calls (GEL50). Note, however, that the regressions
in Figure 5, like the volcano plots of Wolfinger et al. [7],
show genes with a broad range of estimated expression
levels that are significant, and genes with a broad range of
estimated expression levels that are not significant.
Therefore, analyses that invoke a fold-change threshold as
an indication of significance should be avoided.

From the datasets analyzed here, it is clear that increased
replication leads to greater resolution of small differences
in gene expression (Figure 5). This small number of stud-
ies, of varying technical quality, does not warrant a strictly
quantitative empirical formula for the GEL50 based on the
number of nodes in the experimental design and the
number of replicate hybridizations. However, a very crude
rule of thumb based upon examination of the quality and
resolution of these and other datasets is that the GEL50 res-

olution of a study is of the form , where n is the
number of nodes in the design and r is the total number
of hybridizations performed. The studies examined here
all contained replicated comparisons, and, in accord with
MIAME standards [31], reported ratio results from each
hybridization. Future analyses of a range of additional
studies that also report results of each hybridization for
each gene will have the potential to reveal a more accurate
and precise prediction of power using more sources of
information about the quality of the microarray hybridi-
zations and about the optimal design of multifactorial
experiments [9].

Increased power to detect differences in gene expression,
consequent to better analysis, better replication, or better
technical performance, identifies more significant differ-
ences in gene expression of genes with smaller and smaller
true expression differences. These small differences in
gene expression are not only present [10,32], they are rel-
evant to the evolution of gene regulation [10] and to
organismal function and phenotype [32,33]. Transcrip-
tion factors, for instance, may have enormous impact on
cellular function with minimal changes in expression
level [34,35]. The detection of the differential expression
of transcription factors is often a major goal of many
microarray studies. Therefore, understanding the resolu-
tion of difference in gene expression that is detectable as
significant is a vital component of experimental design
and evaluation.
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