
Core tip: Dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI) has shown great potentials 
not only in diagnosis, but also in therapy. DCE-MRI is 
a promising technique for assessing breast cancer ra-
diation treatment due to its inherent sensitivity to the 
microvascular environment changes. Correlative studies 
have demonstrated proof concepts of DCE-MRI param-
eters as potential biomarkers. This article reviews the 
basic principles of breast DCE-MRI and recent studies 
using DCE-MRI in breast treatment assessment. Future 
clinical trials and research works are needed to develop 
standardized DCE-MRI assessment methods, towards 
the goal of individualized radiation therapy.
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INTRODUCTION
Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is an advanced MRI technique that can 
be used to acquire tissue functional information nonin-
vasively. Following the administration of  low molecular 
weight contrast agent (CA), DCE-MRI is sensitive to 
microvessel density and vascular permeability differences 
that can be associated with tumor angiogenesis. Because 
of  this merit, DCE-MRI has been investigated in vari-
ous oncologic tasks including early diagnosis[1-5], tumor 
staging[6,7], treatment planning[8,9], and treatment response 
assessment[10-14]. To assess treatment response, the acqui-
sition of  pre-treatment DCE-MRI and post-treatment 
DCE-MRI scans are required to measure treatment in-
duced changes[14,15]. The change could be quantitatively 
characterized by a few parameters, which can be derived 
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Abstract
As a noninvasive functional imaging technique, dynamic 
contrast-enhanced magnetic resonance imaging (DCE-
MRI) is being used in oncology to measure properties 
of tumor microvascular structure and permeability. 
Studies have shown that parameters derived from cer-
tain pharmacokinetic models can be used as imaging 
biomarkers for tumor treatment response. The use of 
DCE-MRI for quantitative and objective assessment 
of radiation therapy has been explored in a variety of 
methods and tumor types. However, due to the com-
plexity in imaging technology and divergent outcomes 
from different pharmacokinetic approaches, the method 
of using DCE-MRI in treatment assessment has yet to 
be standardized, especially for breast cancer. This ar-
ticle reviews the basic principles of breast DCE-MRI and 
recent studies using DCE-MRI in treatment assessment. 
Technical and clinical considerations are emphasized 
with specific attention to assessment of radiation treat-
ment response.
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in the analysis of  the DCE-MRI data. For intuitive com-
parison, simple semi-quantitative information can be ob-
tained from the features of  CA concentration evolution 
curve[16]. The quantitative functional information, such as 
micro-vascularity permeability, tissue perfusion and cel-
lular density, must be obtained through the application of  
an appropriate pharmacokinetic model.

As a potential treatment assessment tool, DCE-
MRI’s application in breast cancer radiation treatment is 
of  our particular interest. Currently, breast cancer is one 
of  leading incidences in women. Earlier statistics shows 
one out of  eight (12.5%) women will eventually be af-
fected by breast cancer during her lifetime[17]. Since 1990, 
the death rate of  breast cancer have steadily decreased in 
the United States due to earlier detection and improved 
treatment[18], and radiation therapy (RT) has become an 
important technique in breast cancer treatment. Currently, 
conserving treatment consisting of  lumpectomy followed 
by 6 wk of  daily external beam RT has become one of  
the common treatment regimes in United States. At the 
same time, some advanced radiation treatment techniques 
have been proposed to neutralize complexities in breast 
cancer treatment[19-21]. With its intrinsic superiority in soft 
tissue contrast and added ability of  vascularity measure-
ment, DCE-MRI is a particularly attractive technique in 
early assessment of  breast cancer radiation treatment. 
The value of  using DCE-MRI as a tool for breast cancer 
radiation treatment assessment relies on the accuracy of  
quantitative DCE-MRI parameters derived by modeling 
injected CA pharmacokinetics. However, this is far from 
straightforward[15]. Some DCE-MRI technical factors will 
potentially affect the consistency of  measured parameters 
accuracy. For example, differences in pharmacokinetic 
parameters were observed using different temporal reso-
lution and spatial resolution during image acquisition, and 
the effect of  this tradeoff  has yet to be clarified[22]. For 
clinical consideration, different pharmacokinetic models 
as well as the interpretation may lead to biased results[23]. 
Thus, optimizing and standardizing DCE-MRI measure-
ment methods in breast cancer radiation treatment assess-
ment presents as a prerequisite for its clinical application.

In this article, we outline the basic principles in breast 
DCE-MRI methodology and highlight some relevant 
techniques and theories in DCE-MRI application. We 
then present the current findings to date and discuss fu-
ture directions for DCE-MRI in breast cancer radiation 
treatment assessment.

DCE-MRI MEASUREMENT AND
ANALYSIS METHOD
Basic principles
DCE-MRI involves a sequential acquisition of  mag-
netic resonance images of  tissue before and after the 
intravenous injection of  CA. The CA is usually a small 
molecular weight compound such as gadopentetate dime-
glumine. T2

* weighted MRI can be used right after the 
administration of  CA in a few seconds to observe CA 

first-pass effect which contains perfusion information. 
Since the first-pass T2

* effect is transient, the rapid imag-
ing method performed over a single slice through tissue-
of-interest (TOI) is necessary. This is of  limited value 
in breast study because of  the necessary larger volume 
coverage for comprehensive disease morphology assess-
ment[24]. In contrast, T1-weighted DCE-MRI technique is 
more commonly used in breast cancer research.

The T1-weighted DCE-MRI is usually used over a 
longer time course in several minutes to measure the ac-
cumulation of  low molecular T1-shortening paramagnetic 
CA in the tissue. When CA enters into the tissue-of-
interest, the tissue T1 value decreases to an extent which 
is determined by the CA concentration. A CA concen-
tration evolution curve as a function of  time can be ac-
quired from sequentially sampled T1-weighted magnetic 
resonance images signal intensity at the TOI[25]. The CA 
concentration at each time point after the administration, 
C(t), is calculated from longitudinal relaxation rate R1(t) 
[i.e., the inverse of  T1(t)] and the longitudinal relaxation 
rate R10 before the CA administration with assumed lin-
ear dependence[26]:

                             R1(t) = rC(t) + R10                                          (1)

r is the longitudinal relaxivity of  the CA at certain mag-
netic field strength. The conventional T1 measurement 
methods are usually based on inversion recovery spin 
echo technique. This theory follows a spin inversion and 
waits for an inversion time TI before the data acquisi-
tion. Sometimes, multiple TIs are necessary to accurately 
estimate a wide range of  T1 values[27,28], which is the 
major contribution of  long scan time. To reduce the 
scan time with uncompromised image quality, many T1 
scanning methods have been proposed in brain research 
domain[29-32]. Another T1 mapping approach is to use mul-
tiple flip angles scans. To reduce imaging time, T1 value 
can be obtained by simple dual flip angles technique[33]. In 
this method, the ratio of  signals of  two T1-weighted MR 
scans with different flip angle φ and ψ is expressed as Ρ. 
With the general assumption about echo time TE < T2

*, 
T1 value can be calculated by equation (2):

                      f(r ) = 
rsinjcosy  - cosjsiny

rsinj  - siny 
                                   T1 = TR/ln[f(r )]                          (2)

TR is denoted as repetition time. equation (2) is used 
for both R1(t) and R10 calculation. To get R10 informa-
tion, two additional T1-weighted MR scans must be 
performed prior to DCE-MRI scan to get T1 baseline 
information. These two scans with different flip angles 
are also called T1-calibrations. The following DCE-MRI 
scans are then acquired with flip angle j  (or y ), and R1(t) 
is derived using the DCE-MRI signal at time point t and 
the T1-calibration with flip angle y  (or j ) in equation (2). 
After applying longitudinal relaxation information into 
equation (1), the CA concentration evolution curve then 
can be expressed in pixel-by-pixel pattern or volume-of-
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interest pattern.
For image acquisition, fast T1-weighted sequence is 

usually adopted for clinical studies. To cover the large 
breast imaging volume, the imaging time for each frame 
is relatively longer. Currently, the typical temporal resolu-
tion is about 1 min covering the whole breast with three-
dimensional fast (3D) spoiled gradient echo (SPGR) 
dynamic sequence[34,35]. A recent feasibility study dem-
onstrated that the temporal resolution could potentially 
be enhanced when compressed sensing theory was em-
ployed to reconstruct undersamped acquisitions[36].

Semi-quantitative analysis
Semi-quantitative analysis is usually performed on MR 
signal intensity-time curves or CA concentration evolu-
tion curves. In 1998, Daniel et al[37] proposed a patient 
classification scheme based on visually inspection on MR 
signal intensity-time curve shape. This scheme defines 
5 types of  curves. A change in the curve shape type to 
a higher number is considered as a transformation to a 
more aggressive type. For a more quantitative approach, 
the enhancement ratio (ER), which is the percent increase 
of  MR signal intensity at the first acquirement after 
CA administration (also known as early contrast uptake 
ECU), is reported as a prediction of  tissue physiological 
environment for routine clinical applications[38]. At the 
same time, some other quantities, such as initial wash-in 
rate, the wash-out rate, the maximum point, and extrapo-
lation point were associated as important parameters for 
the description of  curve shape. In the analysis of  CA 
concentration evolution curve, the most frequently used 
parameter is the initial Area Under the Curve (iAUCt). 
iAUCt  denotes the integration of  CA concentration evo-
lution curve from injection point (t = 0) to a certain time 
point (t = t ), and it parameterizes the initial rise of  the 
evolution curve. The concept of  onset time represent-
ing time lag between CA injection and the appearance of  
contrast in the tissue is also a commonly used biomarker. 
Similarly, the gradients of  CA uptake and washout as well 
as the maximum concentration have been investigated 
in some studies[39,40]. Rigorous mathematic models were 
also introduced to describe the CA kinetic curve. For 
example, Fan et al[41] developed an empirical mathematical 
model (EMM) to parameterize the mathematical behav-
ior of  CA concentration evolution curve in transplanted 
rodent prostate tumors:

                          C(t) = A(1-e-at)q . e-βt . 
1+e-rt

2
                  (3)

A is the upper limit of  CA concentration, α is the 
rate constant of  CA uptake, β is the overall rate of  CA 
washout, g  is the initial rate of  CA washout, and q is the 
related to the radius of  curvature of  C(t) at the transition 
from first-pass to initial washout. Results showed fitted 
parameters from EMM demonstrated the significant dif-
ference between metastatic tumors and nonmetastatic 
tumors. The same model was also demonstrated to be 
effective in differentiation of  benign lesions from malig-
nant lesions in a human breast study[42].

Quantitative analysis
In quantitative analysis, biological parameters depicting 
vascular permeability, tissue perfusion and extracellular 
volume fraction can be derived from CA concentration 
evolution curves by fitting into an appropriate pharma-
cokinetic model. For breast tissue, the most widely used 
pharmacokinetic model is the one proposed by Tofts et al[43] 
in 1991. This two-compartment model describes the bi-
directional transendothelial movement of  CA between 
blood plasma and the extravascular-extracellular space 
(EES) through capillary walls (Figure 1). There are three 
functional parameters in this model: Ktrans, the transport 
rate of  CA from blood plasma to EES; kep, the transport 
rate describing the return of  CA from EES to blood 
plasma, and ve, the volume fraction of  EES in tissue. The 
three parameters are related by the equation kep = Ktrans/ve; 
as a result, Ktrans and ve were reported in most breast DCE-
MRI studies. The measured CA concentration C(t) con-
sists of  two components:

                             C(t) = CEES(t) + vpCp(t)                     (4)

In equation (4), CEES(t) is the CA concentration in EES, 
Cp(t) is the CA concentration in blood plasma, and vp is 
the plasma volume fraction in the tissue[44]. The CEES(t) 
term can also be expressed by the Kety Rate Law as the 
convolution of  Cp(t) with an exponential term[45]:

           CEES(t) = Ktrans t

0
Cp(t’) exp[- 

Ktrans

ve
 (t-t’)]dt’       (5)

Ktrans is the CA extravasation rate, and ve is the EES 
volume fraction. Tofts argued that plasma volume frac-
tion vp was very small for many TOIs including breast, so 
the contribution from Cp(t) in equation (4) is neglected. 
Then equation (5) can be rewritten as equation (6), which 
is referred as Standard Tofts Model:

                C(t) = Ktrans t

0
Cp(t’) exp[- 

Ktrans

ve
 (t-t’)]dt’       (6)

The knowledge of  Cp(t) is acquired separately from 
pharmacokinetic model and will be discussed later.

Though the Standard Tofts Model is acceptable in 
tumors with no large increase in blood volume, the as-
sumption is likely to be invalid in some contexts as blood 
volume can increase markedly. As a result, some inves-
tigators incorporated the effects of  possible significant 
vascular signals[46,47], and equation (6) is added by an ad-
ditional vascular term: 

     C(t) = vpCp(t) + Ktrans t

0
Cp(t’) exp[- 

Ktrans

ve
 (t-t’)]dt’    (7)

The above equation is frequently called Extended 
Tofts Model. It was argued that Extended Tofts Model 
could be reliable in the region with higher vascular signal 
(abdomen, vp up to 0.3) than the region with lower cor-
responding signal (brain, vp up to 0.005)[48].

It has to be pointed out that both standard tofts 
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mor was modeled by 4 compartments and three of  them 
were accessible to the CA from the central compartment 
(blood plasma). In addition, a peripheral compartment 
was introduced to distinguish normal tissues from the 
tumor[53]. Although the tumor heterogeneity was consid-
ered in this model, the in-tumor exchange pattern was 
still vague. As a nature of  the multi-compartment model, 
the mathematic complexity limits the model’s capacity in 
breast DCE-MRI study.

Aside from the conventional compartmental models, 
distributed-parameter (DP) models are seen as another 
category of  DCE-MRI pharmacokinetic model. While 
the conventional compartmental models have been wide-
ly used for more than two decades, they may not possess 
sufficient realism CA concentration gradients within 
compartments are assumed to be zero; consequently, 
CA is assumed to distribute the compartments on arrival 
instantaneously[54]. On the contrary, DP models describe 
concentration gradients in vascular compartment as a 
function of  both space and time. Several DP models have 
been proposed[55,56], but the application in breast clinical 
study is far from prevalent.

In all pharmacokinetic models mentioned above, 
the information of  CA concentration in blood plasma 
at each time point Cp(t), which is also known as Arterial 
Input Function (AIF), must be known prior to the model 
fitting. This knowledge can be achieved by imaging the 
major blood pool inside the field of  view of  images dur-
ing DCE-MRI scan. For example, the study performed 
by Rijpkema et al[57] automatically extracted AIF data from 
DCE-MRI data in head-and-neck region tumor, pros-
tate tumor and brain tumor cases. Unfortunately, such 
measurement is not feasible for clinical breast cancer 
studies because no large vasculature is qualified for MR 
sampling in breast tissue. Though Port et al[58] was able to 
acquire individual AIF through the visualization of  aorta 
in the breast tumor study, the special procedure was not 
standardized in clinical protocols. Another approach is to 
use a population based AIF as an approximation of  indi-
vidual AIF[59,60]. A commonly used model is expressed by 
a bi-exponential decay [25]: 

            Cp(t) = D[a1 exp(-m1t) + a2 exp(-m2t)]           (10)

D is the CA administration dose as per unit of  body-
weight. The two terms in this curve correspond to the 
fast dynamic equilibrium of  CA between blood plasma 
and EES (represented by a1 and m1) and the slow renal 
removal of  CA (represented by a2 and m2). Several groups 
of  parameter values were reported[44,61].

As can be observed, appropriate AIF is important for 
accurate quantitative DCE-MRI analysis. However, cur-
rent approaches in AIF analysis are far from satisfactions.  
Some investigators have made a lot of  efforts in quantita-
tive DCE-MRI analysis in absence of  AIF knowledge. 
Inspired by positron emission tomography, Yankeelov 
et al[62] proposed a reference region model in 2005. This 
compartmental model compares the TOI’s CA concen-
tration evolution curve shape to that of  a reference re-

model and extended tofts model are applied to the CA 
concentration evolution curve C(t), which is oftenly ob-
tained by equation (1). However, the linear dependence 
of  CA concentration and longitudinal relaxation change 
is not always the case, because this statement is equivalent 
to assuming that interstitium behaves as a homogeneous 
solution. To use equation (1), the water exchange from 
the extravascular intracellular space (EIS) to the EES 
must be sufficiently fast; but in practice, this is not always 
guaranteed[49-51]. equation (1) is then modified by taking 
Bloch equations into account[52]:

  R1(t) = 1/2 [R1i + rC(t) + 
R10 - R1i + 1/t i

ve/fw
] - 1/2[2/t i -

       rC(t) - (
R10 - R1i + 1/t i

ve/fw
)2 + 4 

(1-ve/fw)ve/fw1/2

t i
2

]      (8)

R1i is the intracellular longitudinal relaxivity, r is the 
CA longitudinal relaxivity, Cp(t) is the CA concentration in 
blood plasma, ve is EES volume fraction, t i is the average 
intracellular water lifetime, and fw is the fraction of  water 
that is accessible to mobile CA. Since the Standard Tofts 
Model doesn’t rely on the fast water change assumption, 
the C(t) can be replaced by equation (6), leading to “Fast-
Exchange Regime” FXR Model:

   R1(t) = 1/2 [R1i + rKtrans t

0
Cp(t’) exp[- 

Ktrans

ve
 (t-t’)]dt’ + 

             
R10 - R1i + 1/t i

ve/fw
] - 1/2[2/t i - rKtrans t

0
Cp(t’) 

             exp[- 
Ktrans

ve
 (t-t’)]dt’ - ( R10 - R1i + 1/t i

ve/fw
)2 + 

            4 
(1-ve/fw)ve/fw1/2

t i
2

]                                             (9)

In practice, R1i is set to R10, and fw is assigned as a 
constant between 0 and 1. As seen in equation (9), a new 
variable t i is introduced in FXR Model. In theory, t i is 
the measurement of  cell size. Presumably, as tumor cells 
apoptose in response to effective treatment, an decrease 
of  t i would be observed. The utility of  this parameter 
has yet to be fully studied[52].

Compared to the two-compartment models, the multi-
compartment model has a potential capability of  more 
precise description of  pharmacokinetics inside human 
body. In a pilot study on mammary DCE-MRI, the tu-

Figure 1  A sketch of two-compartment model. Ktrans: Transport rate of CA 
from blood plasma to EES; kep: Transport rate of CA from EES to blood plasma; 
u e: Volume fraction of EES. The three quantities are related by kep = Ktrans/u e. 
EES: Extravascular-extracellular space.

Plasma flow

Endothelium

K trans

kep = Ktrans/u e

Blood plasma Cp, u p EES CEES, u e
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gion; as a result, the need of  AIF information is eliminat-
ed. Based on two-compartment model, CA diffuses from 
blood plasma into EES of  the reference region and the 
TOI respectively, and no exchange of  CA exists between 
the reference region and the TOI. Following equation (1), 
the longitudinal relaxation signal for TOI, R1,TOI(t), can 
be derived from reference region’s longitudinal relaxation 
signal R1,Ref.Region(t):

    R1,TOI(t) = r(R1,Ref.Region(t) - R10,Ref.Region) + r[(Ktrans,Ref.Region/

    ve,Ref.Region) - (K
trans,TOI/ve,TOI) . 

t

0
(R1,Ref.Region(t ) - R10,Ref.Region) .

    exp(-Ktrans,TOI/ve,TOI(t - t ))dt ] + R10,TOI                         (11)

As can be seen, the Ktrans,TOI and ve,TOI must be known 
in the reference region model. In the mouse tumor study, 
these values were assigned to the muscle values from 
publications. But evidently, individual variation of  Ktrans 
and ve values of  the selected reference region may result 
in errors in the values of  TOI.

The aforementioned pharmacokinetic models are 
organized in a hierarchal scheme in Figure 2. To get the 
functional parameters, appropriate model fitting algo-
rithm must be applied to the DCE-MRI data. For clinical 
application, the mathematical fitting method should to 
be fast and accurate. Currently, non-linear Levenberg-
Marquart algorithm have been widely used in DCE-MRI 
studies[63]. Some other fitting methods also have been 
investigated[64,65]. In some cases, however, the conver-
gence of  the fitting algorithm is not guaranteed, thus the 
accuracy of  model fitting may be compromised. Schmid 
et al[61] raised a semi-parametric approach with which the 
AIF is convolved with a set of  B-splines to produce a 
design matrix from Bayesian penalized spline models (P-
spline). The model parameter is then obtained from the 
deconvolved response function. At a cost of  computa-
tion time, the semi-parametric technique was suggested 
to be more accurate when traditional fitting methods 
were poor during in vivo validation.

DISCUSSIONS ON DCE-MRI 
IMPLEMENTATION AND ANALYSIS IN 
RADIATION TREATMENT ASSESSMENT
Biologically optimized radiotherapy is a novel technique 

in which a treatment plan is tailored individually to em-
phasize variations of  pathological context[66]. This ap-
proach is made possible by the assessment of  treatment 
response, an indispensable tool in the evaluation of  new 
treatment techniques. As a non-invasive approach, the 
conventional medical images, including X-ray, ultrasound, 
computed tomography (CT) and MRI, have been used to 
evaluate the radiation treatment through the tumor mor-
phological assessment[67]. However, this approach may 
be of  limited value in gauging the radiation treatment ef-
ficacy because the tumor may have already developed its 
radiation resistance when the observation of  morphol-
ogy change is available[68]. In addition, the population-
based evaluation standard in patient’s follow-up care after 
the radiation treatment may not be optimal considering 
the pathological variations among individuals. The func-
tional analysis of  cancer treatment with the possible indi-
vidualized standards may be a promising approach. The 
reliability and validity of  the functional assessment has 
been proved in some pilot studies[69,70]. In the radiation 
treatment context, the non-invasive functional imaging 
during the early stage of  the fractionated therapy would 
be promising in providing early evidences in treatment 
management. The unnecessary systemic toxicity and the 
treatment delays could be avoided as treatment plans 
could be optimized based on individualized pathological 
analysis during the treatment regime[71].

The non-invasive function imaging approach is also 
valuable in the development of  advanced treatment tech-
niques. The recent progress in breast cancer radiation 
treatment allows the accurate delivery of  a high dose in 
one or several fractions. Due to the unconventional dose 
size and fraction scheme, the biological response of  the 
new techniques should be fully investigated in view of  
safety and effectiveness. One of  the factors of  radiation 
response is tumor oxygenation. Radiobiology theory 
claims that hypoxia leads to decreased radiation damage 
induced cell death with an increased level of  DNA repair 
enzymes and radial scavengers[68]. Hypoxia can also cause 
genome changes which favor the radiation resistant cell 
population, thus promoting the development of  cells 
with more aggressive phenotypes[66,72-74]. The varying 
degree of  hypoxia is characterized by microvasculature 
abnormalities, including abnormal microvessel architec-
tures and an increased permeability[75]. Due to the natural 
sensitivity of  the microvascular environment, DCE-MRI 
measurement parameters were studied in correlation with 

Pharmacokinetic 
       model

DP model[55,56]

Multi-compartment
        model[53]

Two-compartment
         model

FXR model[52]

Reference region
       model[62]

Standard/extended
Tofts model[43,46-48]

Conventional
compartment
     model

Figure 2  A hierarchical relationship diagram of the introduced pharmacokinetic models. DP: Distributed-parameter; FXR: Fast-exchange regime.
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physiological variables at the breast site. Some of  the 
results are listed in Table 1. Although histopathological 
studies have shown discrepancies in the outcome, the re-
sults suggest that DCE-MRI is suitable for RT assessment 
of  perfusion, permeability and oxygenation[66].

Conventionally, the workflow of  RT consists of  CT 
simulation, radiotherapy planning and treatment deliv-
ery. Specifically, a breast cancer patient may be scanned 

with CT simulator to obtain the CT data for treatment 
planning, as shown in Figure 3A. Based on the CT data, 
a state-of-the-art RT plan can be developed with a con-
formal dose distribution, as shown in Figure 3B and 3C. 
The conventional workflow is summarized in Figure 4A 
for an easy appreciation. The conventional workflow 
may, however, miss one critical stage of  treatment: treat-
ment assessment. Effective treatment assessment would 

Table 1  Dynamic contrast-enhanced magnetic resonance imaging parameter correlations with physiological parameters at breast 
tissue

Ref. Correlation Direction of correlation P
Physiological parameter DCE-MRI measurement

Buadu et al[76], 1996 MVD Amplitude + < 0.01
Slope maximum + < 0.01

Enhancement Maximum time - < 0.01
Tumor size .. NS

Stomper et al[77], 1996 DNA S-phase percentage Signal enhancement amplitude .. NS
Signal enhancement rate .. NS

Signal washout .. NS
Hulka et al[78], 1997 Tumor grade RSI + < 0.01
Matsubayashi et al[79], 2000 Peripheral-central MVD ratio Early rim enhancement +      0.048

Peripheral-central fibrosis ratio Early rim enhancement - < 0.01
Central-peripheral fibrosis ratio Delayed rim +      0.013

Gianfelice et al[80], 2003 Residue tumor percentage after MRIgFUS ISI + NR
MDF + NR
PEI + NR

Su et al[81], 2003 VEGF Apparent Vb .. NS
In-flux rate and distribution volume 

in interstitial space (VeK1)
.. NS

Out-flux rate (K2) .. NS

NS: Not significant; NR: Not reported; RSI: Relative signal intensity; MVD: Microvessel density; ISI: Increase in signal intensity; MDF: Maximum difference 
function; PEI: Positive enhancement interal; Vb: Vascular volume; VEGF: Vascular endothelial growth factor.

Figure 3  Radiation treatment planning. A: A com-
puted tomography simulation image for a selected 
patient breast stereotactic body radiosurgery (SBRT) 
treatment plan; B: 3D planned beams view for the 
selected patient’s SBRT plan; C: Calculated conformal 
dose distribution of the selected patient’s SBRT plan.

A B

C
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not only potentially help optimize the radiation treatment 
strategy, but also could provide valuable insights on the 
future development of  RT. As shown in Figure 4B, the 
proposed workflow of  RT consists of  four critical com-
ponents: CT simulation, radiotherapy planning, treatment 
delivery and treatment assessment. To assess treatment 
response using DCE-MRI, one DCE-MRI scan must be 
obtained before the treatment for baseline data. In ad-
dition to standard CT image, the pre-treatment DCE-
MRI scan can also be used in target delineation during 
treatment planning. After radiation treatment, at least one 

post-treatment DCE-MRI scan must be acquired, and the 
DCE-MRI parameters derived by the semi-quantitative 
analysis and/or the quantitative analysis will be compared 
to the corresponding baseline values. Multiple post-
treatment scans allow the longitudinal study of  biological 
response through the parameter dynamic change. Fig-
ure 5 illustrates an example of  pre-treatment and post-
treatment DCE-MRI image comparison from a selected 
patient. Table 2 lists some studies of  the DCE-MRI ap-
plication in breast cancer radiation treatment assessment. 
Currently, limited studies have been done in this specific 
area; further study focusing on breast radiation response 
assessment is desirable and urgent. In addition to the ra-
diation treatment assessment studies, some representative 
breast non-radiation treatment studies are also included 
to provide valuable references and insights on the DCE-
MRI application in radiation treatment assessment.

Although DCE-MRI is a promising and a powerful 
tool for assessing treatment response, there are several 
technical factors to be considered during its clinical im-
plementation, which are crucial to the precise meaning of  
the derived results. Some key points in DCE-MRI analy-
sis will be briefly discussed below to provide some valu-
able references for the future work with specific interest 
on DCE-MRI radiation treatment assessment.

T1 measurement uncertainty
Of  all available fast T1 measurement techniques, SPGR 
imaging with dual flip angles has the superiority in noise 
efficiency compared with others[30,87]. For high precision 
T1 measurement which is often necessary in brain studies, 
multiple flip angle pairs can be adopted to minimize the 
statistical uncertainty of  measured values. In the breast 
region, acceptable accuracy in T1 value can be achieved 
if  the optimized flip angle pair is found. These two opti-
mal angles are obtained by minimizing T1 variance which 
comes from the manipulation of  the error propagation 
theory on equation (2) above[33]. In another pilot study of  
Deoni et al[30], it was argued that optimization of  T1 accu-
racy can be achieved when the product of  normalized dy-
namic range and the fractional signal is maximized. Both 
methods yield similar optimal flip angle pairs for a certain 

Treatment
simulation

Treatment
planning

Image-guided
treatment

Figure 4  Conventional radiation treatment workflow. The proposed work-
flow (A) with treatment assessment component (B). Radiation treatment as-
sessment can be used in plan optimization based on understanding towards 
biological response.

A

B

Treatment
simulation

Treatment
planning

Image-guided
treatment

Treatment
assessment

Figure 5  A comparison between pre-treatment dynamic contrast-enhanced 
magnetic resonance imaging image (A) and post-treatment dynamic con-
trast-enhanced magnetic resonance imaging image (B).

A B
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TR and T1 range. In a simulation study of  breast pharma-
cokinetic parameter estimation[88], both Ktrans and ve were 
proved to be overestimated if  tissue T1 is underestimated; 
on the contrary, if  the T1 is overestimated, Ktrans and ve 

were less severely underestimated. Specifically, when the 
ductal native tissue T1 value is underestimated by 65%, 
Ktrans would be potentially overestimated by 531%. With 
the same T1 underestimation, ve hit its ceiling threshold 
with any combination of  true Ktrans and ve. As can be seen, 
optimization of  T1 measurement in the DCE-MRI imag-
ing protocol is crucial for accurate quantitative pharma-
cokinetic analysis. 

B1 inhomogeneity effect 
The error in the optimization of  the nominal flip 

angle is a consequence of  B1 inhomogeneity which be-
comes more prominent at higher magnetic field strength. 
Kuhl et al[89] proved that for the same breast lesion, the 
enhancement rate obtained at 3.0 T magnetic field was 
lower than the respective rate at 1.5 T magnetic field. In 
the further study[90], B1 field across the bilateral breast 
MRI field at 3.0 T showed substantial variation, and the 
variation was independent of  coil type. The actual pulse 
angle varied between 22° and 12.5° over the field of  
view. Similarly, up to 55% error of  nominal flip angle was 
observed from the healthy volunteer’s B1 maps at 3.0 
T[91]. In a breast DCE-MRI study at 3.0 T[92], the median 
measured B1 field at the right side of  breast (in prone 
position) was reduced by nearly 40% of  the expected 
value. Experiment and simulation showed that a reduced 
B1 field decreased the ER of  dynamic signal curve, and 
this trend became more prominent when CA uptake was 
higher. The pharmacokinetic parameters were also affect-
ed by B1 inhomogeneity through the varying flip angle[88]. 
Simulation results showed when the flip angle was under-
estimated by 55% of  its nominal value, Ktrans measurement 

dropped by 66%, and 55% overestimation of  flip angle 
led to 61% increase of  Ktrans. As ve increased, Ktrans sensi-
tivity to the varying flip angle was strengthened. On the 
other hand, ve showed similar changing pattern except the 
sensitivity to varying flip angle was independent of  Ktrans 
value. In contrast to 3.0 T, the B1inhomogeneity is less 
prominent at 1.5 T and is less studied.

Temporal resolution
The temporal resolution in DCE-MRI is directly depen-
dent on the imaging volume. In a clinically feasible scan 
which is a part of  treatment planning imaging, the frame 
time covering the whole breast is about 1 min[52]. Theo-
retically, the reduced temporal resolution would affect the 
precision of  pharmacokinetic analysis by changing the 
CA concentration evolution curve. In an animal study 
with 4.7 T magnetic field strength[93], DCE-MRI data was 
first acquired with 5 s temporal resolution. The data was 
then downsampled to temporal resolutions ranging from 
15 to 85 s. The CA concentration curve showed large 
discrepancies during the earlier phase. Quantitatively, as 
temporal resolution decreased, Ktrans was progressively un-
derestimated from 4% to 25%, and ve was overestimated 
from 1% to 10%. In another simulation study[88], as tem-
poral resolution reduced, Ktrans underestimation was more 
pronounced at higher nominal values, while ve displayed a 
2% minor variation.

One simple way to increase the temporal resolution 
is to image the lesion only. For radiation treatment as-
sessment purpose, the planning target volume (PTV) is a 
good candidate, but the knowledge of  the TOI must be 
known prior to scan. As an alternative strategy, unders-
ampling the image with intensive mathematic operation 
can also increase the temporal resolution[36]. However, 
since there is no gold standard of  true values for phar-
macokinetic parameters, the benefit of  high temporal 

Table 2  Dynamic contrast-enhanced magnetic resonance imaging studies in breast cancer treatment assessment

Ref. Treatment method DCE-MRI measurement Major results

Dao et al[82] 1993 Conserving radiation 
therapy

Signal intensity The signal intensity over time in localized fibrosis showed a different pattern 
from the one in tumor recurrence; early increased signal intensity of the 
lesion within 3 min after CA administration were observed in recurrent 
tumors

Drew et al[83] 2001 Neoadjuvant 
chemoradiotherapy

DCE-MRI image DCE-MRI detected the presence of residual disease with 100% accuracy

Hayes et al[16] 2002 Neoadjuvant 
chemotherapy

Ktrans The absolute change in the Ktrans values correlated negatively with the 
pretreatment values. The trend is more obvious for responding patients

Martincich et al[38] 2004 Primary chemotherapy ECU ECU reduction was associated with a MHR (OR = 2.50, 95%CI: 0.263-23.775); 
no statistical significance was observed (P = 0.42)

Overmoyer et al[84] 2004 Antiangiogenic drug Kep Correlative studies suggested a reduction of tumor Kep and tumor MVD
Wedam et al[85] 2006 Antiangiogenic drug Ktrans and ve Ktrans decreased by 34.4% (P = 0.003), and ve was decreased by 14.3% (P = 0.002) 

after the treatment using bevacizumab
Yankeelov et al[52] 2007 Neoadjuvant 

chemotherapy
Ktrans, ve, and t i (average 

intracellular water 
lifetime)

Significant (P < 0.05) changes were seen in Ktrans and ve; Ktrans in voxels with 
values in 0.2-0.5 min-1 before treatment were found decreased (P < 0.035)

Chang et al[86] 2013 SBRT iAUC5min The mean iAUC5min in GTV increased from 1.93 ± 0.20 mmol-min to 2.31 ± 0.16 
mmol-min, about 16% (P = 0.012) after treatment

Highlighted studies were related to radiation treatment. DCE-MRI: Dynamic contrast-enhanced magnetic resonance imaging; ECU: Early contrast uptake; 
MHR: Major histopathological response; GTV: Gross tumor volume; SBRT: Stereotactic body radiotherapy.

53 June 26, 2014|Volume 4|Issue 2|WJM|www.wjgnet.com

Wang CH et al . Breast radiation therapy assessment using DCE-MRI



resolution imaging is limited. Nevertheless, improvement 
of  high temporal resolution in DCE-MRI will be a con-
tinuing interest for researchers.

Importance of AIF
Ideally, the AIF should be measured from DCE-MRI 
data for each case, as it varies between individuals in re-
flection of  cardiac output, vascular tone and renal func-
tion[15]. Unfortunately, as discussed above, the measure-
ment is not practical in clinical routine imaging because 
no larger vascularity is within field of  view. Besides, the 
measurement demands high temporal resolution which is 
not achievable in whole breast imaging[22,59,94,95]. The ideal-
ized mathematical model functions are commonly used, 
though the used functions make no attempt to reflect 
the true blood supply to the volume of  interest[22]. Some 
other quantitative methods require no AIF informa-
tion[62,96], but further studies must be done focusing on 
human breast tissue. In conclusion, one should be aware 
that AIF methodology leads to potential inaccuracy of  
pharmacokinetic parameters.

Pharmacokinetic model
There is no uniform standard of  choosing a pharma-
cokinetic model in quantitative DCE-MRI analysis. The 
current consensus is that simple models describing the 
CA transfer rate from the blood plasma to the EES (Ktrans) 
and the EES volume fraction (ve) should be used for the 
assessment of  vascularity change[15]. The Standard Tofts 
model and the Extended Tofts model have been widely 
used due to their simplicity. Despite the limitation of  de-
scribing the biological picture of  CA transport, the two 
simple models have been proved to be very useful with 
limited temporal resolution and without accurate AIF 
information[94]. However, these two models are not iden-
tical: in a comparative study into the robustness of  com-
partmental modeling on abdominal tumors and gliomas, 
the Ktrans calculated by Extended Tofts Model was consid-
erably lower than the value from Standard Tofts Model, 
while ve maintained similar range in both methods[48].

In pursuit of  a more realistic biological mechanism, 
other models have been evaluated the aspect of  accurate 
parameter reproducibility. For example, initial application 
of  the FXR Model suggested that Ktrans and ve were un-
derestimated by values up to 300% in the assumption of  
a linear relationship between CA concentration and lon-
gitudinal relaxivity change[50,51]. The FXR model was also 
reported as with the most complete statistical description 
of  DCE-MRI time courses for the patients selected in 
the study[97]. As a DP model, adiabatic approximation of  
the tissue homogeneity model (ATH) was proved to be 
more effective in CA dynamic curve fitting than Tofts 
models for Time-resolved angiography With Stochastic 
Trajectories data[98]. However, these comparisons cannot 
be seen as the evidence of  superiority in biological reality. 
The pharmacokinetic parameter, for example, Ktrans, does 
not absolutely measure capillary permeability in any mod-
el, though it is often assumed to do so; the exact meaning 

depends on the specific model used for analysis. For in-
stance, the reduction of  Ktrans can be interpred as a reduc-
tion of  blood permeability in ATH model, or a reduction 
of  both blood flow and permeability in Tofts models. 
As a result, the choice of  model reflects the tradeoff  be-
tween parameters that are either simple in math but lack 
biological specificity or more physiologically congruent 
but less stable in math.

Region of interest and statistical analysis
Radiation treatment has certain regions of  interest in-
cluding Gross Tumor Volume, Clinical Target Volume 
and PTV. Data analysis performed over the TOI using 
the average CA concentration or average signal intensity 
generates the regional parameters. Though this method 
is faster, it ignores heterogeneity within the volume of  
interest. Alternatively, the parameters can be extracted 
in a pixel-by-pixel pattern within the TOI. The statistics 
summary such as the mean or median value and standard 
deviation can be used for assessment[52,90,100]; this method 
can describe the parameter distributions and limited in-
formation about microvessel heterogeneity[15]. In practice, 
the second method may be too slow for clinical applica-
tion depending on voxel number and mathematic com-
plexity of  model fitting. The challenge can be neutralized 
by selecting meaningful voxels through certain simple 
metric[101], or using the advanced GPU acceleration to re-
duce analysis time[102-105].

CONCLUSION
DCE-MRI is a promising technique for assessing breast 
cancer radiation treatment due to its inherent sensitiv-
ity to change in the microvessel environment. Correla-
tive studies have demonstrated proof  concept of  DCE-
MRI parameters as potential biomarkers. Presently, an 
insufficient number of  clinical studies have been done in 
breast cancer radiation treatment. Currently, progress has 
been achieved in pharmacokinetic model development 
in pursuit of  precise physiology description; however, 
these methodologies have yet to be fully studied in cor-
relation with clinical outcome in breast cancer radiation 
treatment. For future work, the study of  new pharma-
cokinetic model with special interests on breast tumor 
pathology will help improve the interpretation of  the 
DCE-MRI parameter. Advancement in DCE-MRI image 
acquisition with high spatial and temporal resolution will 
contribute to the utility of  DCE-MRI application in ra-
diation treatment assessment. On the perspective clinical 
trials are needed with primary aim designed to test stan-
dardized DCE-MRI assessment methods for both image 
acquisition and quantitative biomarker derivation. This is 
a crucial step towards the goal of  individualized radiation 
treatment planning.
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