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Heme Oxygenase in Neonatal Lung Injury and Repair
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Abstract

Significance: Premature and sick neonates are often exposed to high concentrations of oxygen, which results in
lung injury and long-term adverse consequences. Nevertheless, neonates are more tolerant to hyperoxia than are
adults. This may be, in part, explained by the high lung content of heme oxygenase-1 (HO-1), the rate-limiting
enzyme in the degradation of heme and an important stress protein. The abundance of HO-1 dictates its
cytoprotective and deleterious effects. Interestingly, in response to hyperoxia, lung HO-1 mRNA is not further
up-regulated in neonates, suggesting that lung HO-1 gene expression is tightly regulated so as to optimize
cytoprotection when faced with an oxidative stress such as hyperoxia. Recent Advances: In addition to the lack
of induction of HO-1 mRNA, neonatal lung HO-1 protein is observed in the nucleus in neonatal mice exposed
to hyperoxia but not in adults, which is further evidence for the developmental regulation of HO-1. Nuclear
HO-1 had unique properties independent of its enzymatic activity. In addition, there has been increasing
evidence that nuclear HO-1 contributes to cellular proliferation and malignant transformation in several human
cancers. Critical Issues: Since HO-1 has dual effects in cytoprotection and cellular proliferation, the titration of
HO-1 effects is critical to ensure beneficial actions against oxidative stress. Future Directions: Much more has
to be understood about the specific roles of HO-1 so as to manipulate its abundance and/or nuclear migration
to maximize the therapeutic benefit of this pleiotropic protein in the neonatal lung. Antioxid. Redox Signal.
21, 1881–1892.

Introduction

S ick and premature newborns are often exposed to high
concentrations of oxygen, which leads to arrested alveo-

lar and vascular development as seen in bronchopulmonary
dysplasia (BPD) (6, 44, 45, 102), This has long-term impli-
cations for lung function in adolescence and adulthood, and it
also impacts neurodevelopmental outcomes (26, 27, 34, 111,
112). The lung injury observed in BPD results, in part, from
reactive oxygen species (ROS), which damage DNA and
other molecules (7, 12, 14). Fortunately, antioxidant re-
sponses have evolved and protect against ROS, including
heme oxygenase (HO), a stress protein that degrades heme to
biliverdin. There are two forms of HO that have different
roles: different regulation and different post-translational
modifications (85). HO-1 is highly inducible in inflammation
and hyperoxia among other stressors and has multiple tran-
scriptional factor binding sites that regulate its induction with
oxidative stresses (3, 56). Although HO is an integral protein
of the smooth endoplasm reticulum, it can localize to other

compartments, including caveolae (43, 47, 50), mitochondria
(9, 19), and the nucleus, where it can mediate signaling
functions (61).

This review will focus on how HO-1, through its pleio-
tropic effects, modulates lung injury and repair, and will
describe how the regulation and expression of HO-1 is unique
in the neonatal lung.

Oxidative Stress and Neonatal Lung Injury

The lung continues to develop in complexity and size
throughout the postnatal period and into early childhood. At
birth, the transition to air breathing and away from the low
oxygen tension provided by the placental circulation repre-
sents an oxidative stress. In preterm human neonates, expo-
sure to hyperoxia, inflammation, and ventilation at this
critical time in development results in disruption of the nor-
mal developmental process in the vasculature, mesenchyme,
and alveolar structure of the lung. This leads to a disruption of
angiogenesis, increased fibroblast proliferation, and arrested
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alveolar development, resulting in abnormal lung architec-
ture with decreased ventilation/perfusion matching and im-
paired pulmonary compliance characteristic of BPD. In the
mouse, high concentrations of oxygen alone can result
in decreased cell proliferation, decreased pulmonary com-
pliance, and altered architecture (109) as in BPD. ROS
produced during hyperoxia cause DNA strand breaks and
other chromosomal aberrations (7, 12, 14), which stimulate
the expression of the genes involved in inhibiting cell cycle-
progression (95). The majority of strand breaks occur in small
airway epithelial (Type II) cells (84, 116). This can result in
the simplification of alveoli as seen in BPD. In addition, the
DNA strand breaks from hyperoxia lead to activation of the
ataxia telangiectasia mutant (ATM)-related protein kinase-
dependent p53 phosphorylation (53), which can result in ei-
ther arrest or induction of transcription, induction of signal
transduction pathways such as the serine threonine kinase
AKT and phospho-Extracellular signal-regulated kinase
(p-ERK), replication errors, and genomic instability, all of
which are seen in carcinogenesis (1, 46) (Fig. 1).

Increased ROS also result in the activation of NF-E2-related
factor 2 (Nrf2)-mediated pathways, which are a hallmark of
the oxidative stress response, leading to the up-regulation of
antioxidant defenses (16, 65, 83). This activation can also
change metabolic signaling, resulting in the up-regulation of
glucose-6-phosphate dehydrogenase (G6PDH) (103), the rate-
limiting enzyme of the pentose phosphate shunt (PPS). With
the latter, glucose is oxidized and nicotinamide adenine di-
nucleotide phosphate (NADPH) is produced, which provides
reducing equivalents that detoxify ROS. In addition, the PPS
facilitates the generation of ribose for the synthesis of mac-
romolecules (Fig. 1). Although protective against oxidative
stress, this response may enable the rapid proliferation of
cancer cells even in adverse environments (10, 25).

Overall, oxidative stress in the lung affects the particularly
vulnerable endothelial cells as well as alveolar type II cells,
which are important in the recovery from lung injury. This
leads to arrested alveolar development (6, 44, 45) as well as to
the disruption of angiogenesis (102), which are characteristics
of BPD. Protective responses against all aspects of this disease
could mitigate this disease process. This article will explore the
multiple roles of the antioxidant molecule HO in this process.

Important Aspects of HO-1 Regulation
in Oxidative Stress

Induction of HO-1 is a generalized response
to oxidative stress

There are two isoforms of HO. The constitutive form, HO-2
is found in abundance in the testes and brain and can be
regulated by glucocorticoids via a glucocorticoid response
element, but it is not readily inducible during oxidative stress
(82). It plays a role in various signaling processes and neu-
rotransmission. We have shown that HO-2 null mutant mice
have increased evidence of oxidative stress after exposure to
hyperoxia and that they accumulate reactive iron in the lung
tissues, which exacerbates oxidative injury (22), proving that
in neonatal animals, HO-2 also represents an important, al-
beit noninducible oxidative defense against hyperoxia.

The inducible isoform, HO-1, responds to the most oxidant
stresses. This occurs via binding of the Nrf2/small Maf pro-
tein complex to the Maf recognition sites (multiple antioxi-
dant response element [MARE]) (2, 3) (Fig. 2). Competitive
binding between Nrf2 and heterodimer of BTB and CNC
homology 1 (Bach1) at the MARE is important in down-
regulating HO-1 expression (51, 98). Recently, transforming
growth factor (TGF)-b was seen to suppress the transcrip-
tional activation of HO-1 through Nrf2-independent mecha-
nisms. In fact, TGF-b did not affect the stabilization or

FIG. 1. Pathophysiology of bronchopulmonary dys-
plasia (BPD). In the neonatal lung, hyperoxia, ventilation
and inflammation contribute to changes in cellular function,
leading to blunted repair and persistent distortion in lung
architecture. In addition, oxidative-mediated signaling via
NF-E2-related factor 2 (Nrf2) results in activation of the
pentose phosphate shunt (PPS) with resultant conversion of
NADP to NADPH. This provides reducing equivalents to
detoxify reactive oxygen species (ROS).

FIG. 2. Activation of the Nrf2 pathway with oxidative
stress. Nrf2 is sequestered in the cytoplasm with Keap-1,
facilitating its ubiquination and subsequent degradation.
With oxidative stress, Nrf2 is released and migrates to the
nucleus, where it binds to multiple antioxidant response
elements (MARE) on heme oxygenase (HO)-1 and other
genes to mediate gene transcription. To see this illustration
in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars
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nuclear accumulation of Nrf2 but induced the expression of
Maf K and Bach1, which suppresses HO-1 transcription de-
spite the accumulation of Nrf2 in the nucleus. Knockdown of
Maf-1 and Bach1 abolished the TGF-b-dependent suppres-
sion of HO-1 through the substitution of Nrf2 for Bach1 on
the MARE of HO-1 (72). Other binding sites found on the
proximal and distal enhancer regions of the HO-1 promoter
include STAT and NF-KB, which also regulate HO-1 gene
transcription (58).

It is important to note that the Nrf2 signaling pathway not
only results in HO-1 induction but also drives the expression
of enzymes such as NAD(P)H:quinone reductase, an impor-
tant electrophile-detoxifying enzyme, and G6PDH, the rate-
limiting step in the PPS, thereby enhancing the generation of
NADPH and reducing the generation of ROS (66). Never-
theless, the same genes downstream of Nrf2 may alter cellular
metabolic fate and enable lung cancer cells to grow more
rapidly (25). This will be discussed briefly in a later section.

How the enzymatic functions of HO-1 influence
oxidative stress

HO enables the cleavage of heme specifically at the alpha-
methene bridge of the molecule, in a multistep manner. Iron
is then reduced to its ferric state through the action of cyto-
chrome cP450 reductase. Carbon monoxide (CO) is released
by elimination of the alpha methylene bridge of the porphyrin
ring (Fig. 3). Each byproduct of HO is considered as having a
significant signaling or cytoprotective function. Heme is a
pro-oxidant molecule that can participate in the formation of
oxidative radicals, leading to oxidative injury. Therefore, the
sequestration of heme and the subsequent degradation by HO
has antioxidant benefits. CO has important biological roles,
including neurotransmission, vasodilation, and signal trans-
duction. This product is unique to the HO reaction. Currently,
the use of CO-releasing molecules (CORM) is being inves-
tigated as a cytoprotective strategy in several clinical models
(37, 41, 52, 55). Biliverdin is an important antioxidant that
can prevent lipid peroxidation (110). This compound does
not accumulate endogenously and is rapidly converted to

bilirubin by biliverdin reductase. Bilirubin is documented to
decrease lipid peroxidation even better than vitamin E (97).
Overall, by sequestering heme and forming antioxidant and
bioreactive molecules, HO and bilirubin can lead to cyto-
protection against oxidative injury. Despite the antioxidant
benefits of HO-1 byproducts, there are examples where even
an inactive form of HO-1 is cytoprotective (38). The exact
mechanisms for this effect are not yet well characterized.

Subcellular localization of HO-1 and implications
for oxidative stress

Although HO-1 is predominantly found in the smooth
endoplasmic reticulum, where it is anchored at its c-terminus,
it has been identified in the nuclear compartment and the
nuclear envelope (33, 61, 73, 86) as well as in the mito-
chondria (19, 93) and caveolae (43, 47, 50).

In the mitochondria, a 27 kD HO-1 immunoreactive frag-
ment was increased in a model of hepatotoxicity. The induc-
tion of mitochondrial HO-1 improved respiration and
prevented a further drop in ATP levels (70). In cultured A549
cells as well as in primary small airway and epithelial cell
cultures, mitochondrial localization was observed. In addition,
in vivo, after exposure to cigarette smoke, this phenomenon
occurred. The over-expression of HO-1 inhibited cigarette
smoke-induced cell death and preserved cellular ATP levels
(93). Therefore, the compartmentalization of HO-1 in the
mitochondria may help protect against cigarette smoke-
induced cell death. This form of HO-1 increases mitochondrial
heme turnover, preserves liver ATP levels and energy me-
tabolism (19). The mechanism by which HO-1 migrates to the
mitochondria is not known, and no mitochondrial targeting
sequence has been found on the HO-1 protein. The process
may involve deletion of the C-terminus (93).

When HO-1 was over-expressed, it could be recovered in a
detergent-resistant fraction containing caveolin-1 and was
found in plasma membrane, cytosol, and isolated caveolae.
Caveolin-1 physically interacted with HO-1, and HO activity
increased in cells expressing caveolin-1 antisense transcripts,
suggesting a negative regulatory role for caveolin-1 in the
expression of HO-1 (50). Others also confirmed the binding of
HO-1 protein to caveolin-1 using immuno-precipitation ex-
periments (43, 47). In addition, HO-1 activity can be inhibited
by caveolin-1. This binding occurred in the caveolin scaf-
folding domain, which plays an essential role in caveolin-
related protein–protein interactions. The inhibition of HO
activity by caveolin was correlated inversely to hemin con-
centration, suggesting that caveolin and hemin share a common
binding site on the HO-1 protein (100). The proper distribution
of HO-1 to caveolae appears to be required for normal toll-like
receptor (TLR) signaling in response to inflammation (117).

With exposure to hypoxia and to hemin, we observed a
faster migrating HO-1 immunoreactive band, which was en-
riched in nuclear extracts, suggesting that HO-1 could
be cleaved to enables nuclear entry (61). The absence of
HO-1 immunoreactive signal with an antibody against the
C-terminus confirmed this as did the absence of a C-terminal
sequence by gas chromatography/mass spectrometry. Fur-
thermore, nuclear entry could be prevented by preincuba-
tion with a cysteine protease inhibitor, demonstrating the
necessity for protease-mediated C-terminal cleavage for the
nuclear transport of HO-1 (61). Nuclear localization was also

FIG. 3. Catalytic reaction of HO. Heme is degraded in
an energy requiring process to biliverdin. This is then con-
verted to bilirubin by the nonrate limiting biliverdin reductase.
Iron (Fe) and carbon monoxide (CO) are released in equimolar
amounts. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars
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associated with a reduction of HO activity (61). We also
demonstrated that nuclear HO-1 regulates the activation of
various transcription factors, including AP-1, an important
mediator of the antioxidant response (61). In preliminary
work, we document the activation of Nrf2 by HO-1 protein and
the lack of ARE activation in HO-1 null mutant mouse em-
bryonic fibroblast (MEF) cells transfected with an ARE-driven
luciferase reporter, further indicating that not only does Nrf2
regulate HO-1 but also HO-1, in turn, regulates Nrf2 (Biswas,
unpublished observations, 2013). Interestingly, despite re-
duced activity, nuclear HO-1 protected cells against hydrogen
peroxide-mediated toxicity and prevented oxidative DNA
damage in HO-1 null mutant MEF cells stably infected with
nuclear HO-1 that were exposed to hyperoxia (61). The effects
of nuclear HO-1 appear to be cell specific. After exposure to
hyperoxia, cultured tracheal smooth muscle cells that were
recovered from aborted human fetuses showed nuclear distri-
bution of HO-1 only when they were not proliferating (73) Our
studies reveal that neonatal mice do not induce HO-1 but have
increased nuclear HO-1 in response to hyperoxia in the acute
phase of hyperoxic exposure, but this nuclear expression does
not persist during room air recovery (Yang, unpublished ob-
servations). This pattern of over-expression may be beneficial,
because adults that induce lung HO-1 and do not demonstrate
nuclear localization are more susceptible to oxidative stress.
Corroborating this, mouse HO-1 null mutant MEFs with stable
over-expression of nuclear HO-1 show decreased cellular
proliferation and are relatively tolerant to 24 h of hyperoxia
compared with MEFs expressing cytoplasmic HO-1 or empty
vector controls (Fernando, unpublished observations). In-
triguingly, transgenic mice over-expressing nuclear HO-1 in
type II cells initially showed improved alveolarization with (3
days) hyperoxic exposure but had increased oxidative DNA
damage and abnormal lung histology and pulmonary function
tests as adults (69), raising the possibility that the duration of
nuclear HO-1 protein signaling is key to cytoprotective re-
sponses to injury and repair.

Overall, these observations suggest that the level, locali-
zation, and duration of expression of HO-1 may be extremely
important in determining its cytoprotective and proliferative
effects.

Physiologic Effects of HO-1 That Influence
Oxidative Lung Injury

To mitigate neonatal lung injury and enhance repair, HO
would need to prevent the key pathologic aspects of BPD,
namely increased oxidative stress, increased inflammation,
disrupted vascular development, and disrupted alveolariza-
tion. All of these roles have been documented for HO-1, in
particular. In addition, maladaptive consequences of the
proliferative actions of HO-1 have been observed

HO-1 abundance and localization alters cellular
differentiation and proliferation

Although cell proliferation is disrupted by hyperoxia, others
have suggested that decreased cell proliferation may be ben-
eficial in acute hyperoxic injury (57, 71). Nevertheless, long-
term suppression of cell proliferation could lead to arrested
lung development. In vivo, disruption of HO-1 in the neonatal
mice had little effect at 3 days or exposure (23), but when the
animals were allowed to recover in air for 11 days, they had

significant dysregulation of cell-cycle gene expression com-
pared with similarly exposed wild-type (WT) (115). In vitro,
tracheal smooth muscle cells from human fetuses exposed to
hyperoxia showed nuclear distribution of HO-1 only when
they were in a nonproliferative state (73). These results are in
agreement with several other publications showing that HO-1
is anti-proliferative in smooth muscle cells (59, 75). In con-
trast, in epithelial cells, HO activity is associated with pro-
proliferative effects (18) and, in endothelial cells, knockdown
of HO-1 suppressed proliferation (118). HO-1 also influences
naive T-cell homeostatic proliferation (13) and in the differ-
entiation of induced pluripotent stem cells in response to
oxidative stress (60), as well as Wnt signaling-mediated
differentiation of preadipocytes to adipocytes. (106).

To maximize the cytoprotective effects HO-1, one should
account for the specific effects of its subcellular localization
and expression levels. To this effect, lung (Type II cell)-
specific transgenic mice expressing high or low levels of full-
length HO-1 (cytoplasmic) or C-terminally truncated HO-1
(nuclear) were generated (69). Mice were exposed to hyper-
oxia for 3 days as neonates and then allowed to recover in room
air for approximately 8 weeks. During recovery from hyper-
oxia, the mice expressing low levels of full-length HO-1 had
normal alveoli and minimal oxidative damage, whereas those
expressing high levels of HO-1 had increased alveolar wall
thickness with type II cell hyperproliferation, worsened
pulmonary function, and evidence of abnormal lung cell
hyperproliferation at 8 weeks of age. In the mice expressing
C-terminally truncated HO-1 in the nucleus, increased lung
DNA oxidative damage, increased poly (ADP-ribose) poly-
merase protein expression, and reduced poly (ADP-ribose)
hydrolysis as well as reduced pulmonary function were ob-
served during recovery from hyperoxia. This demonstrates that
low cytoplasmic levels of HO-1 protect against hyperoxia-
induced lung injury by attenuating oxidative stress, whereas
high cytoplasmic levels worsen lung injury by increasing type
II cell proliferation, alveolar wall thickness, thereby impeding
gas exchange. Enhanced lung nuclear HO-1 impairs recovery
by disabling poly (ADP-ribose)-dependent regulation of DNA
repair (69). Interestingly, when HO-1 null mutant mice ex-
posed to hyperoxia as neonates were evaluated after 11 days of
recovery in room air, these mice exhibited significant changes
in lung alveolarization and altered expression of genes which
were important in cell proliferation and DNA damage (115).
With regard to fibroblasts’ myofibroblast proliferation, myo-
cardial infarct was reduced with both in vivo and in vitro HO-1
over-expression (62) Overall, as a regulator of cell prolifera-
tion and differentiation, moderate levels of HO-1 could have a
significant impact on lung injury and repair processes in hy-
peroxia. Perhaps in the neonatal lung exposed to hyperoxia,
basal moderate over-expression of HO-1 in epithelial and en-
dothelial cells promotes their proliferation; whereas it sup-
presses the over-proliferation of smooth muscle cells and
fibroblasts, thereby maintaining lung vascularization and al-
veolarization while suppressing pulmonary hypertension and
fibrosis during the repair phase. This would mitigate the phe-
notypic changes of BPD (Fig. 4).

HO-1 reduces inflammation

Through the degradation of heme, HO may have cyto-
protective effects against systemic infections (Fig. 5). The
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regulation of HO-1 expression in macrophages was strictly
required for protection against mycobacterial infection in
mice, and HO-1-deficient mice were more susceptible to in-
travenous mycobacterium avium infections, and failed to
mount a protective granulomatous response in mice lacking
mature B cells (91). In a mouse model of noneosinophilic
asthma, HO-1 provided anti-inflammatory effects by in-
hibiting the p-STAT3-RORct pathway (120). HO can also
work along with the scaffold protein caveolin-1 and nega-
tively regulate TLR-4 signaling. In LPS-challenged cystic
fibrosis macrophages, HO-1 accumulated intracellularly. The
over-expression of HO-1 or the stimulation of CO release
with a CORM enhanced caveolin-1 expression in the mac-
rophages and re-established HO-1 cell surface localization,

which restored the normal TLR signaling pattern (119). Mice
deficient in Irak-M, an important regulator of TLR-4, that
were exposed to 95% oxygen had reduced mortality com-
pared with WT mice, and this was associated with increased
expression of HO-1 and Nrf2 (5). Treatment of the mice
in vivo and incubation of cells in vitro with metalloporphyrins
that suppress HO activity decreased survival and reduced the
number of live cells after hypoxic exposure; this attenuated
anti-inflammatrory cytokines, including interleukin-10, and
up-regulated pro-inflammatory cytokines (4). In a premature
lamb model, intra-amniotic endotoxin decreased lung
caveolin-1 expression. This was associated with increased
expression of HO-1 (54). It was not obvious whether this
induction of HO-1 later resulted in improved lung histology
or function. The HO-1 null mice developed by Poss and
colleagues (77, 78) show evidence of oxidative damage and
chronic inflammation. Surprisingly, the exposure of neonatal
( < 12 h old) HO-1 null mice to hyperoxia did not result in
increased lung inflammation compared with WT litter-
mates, suggesting developmental differences in the effects of
HO-1 (23).

Since inflammation is an important component of BPD,
abundance and caveolar localization of HO-1 may serve to
mitigate this disease process.

Multiple roles of HO-1 in angiogenesis and vascular
proliferation

There is significant evidence in both humans and animals
that the disruption of lung vascular development disrupts
alveolarization. In vitro, transfection with the human HO-1
gene increased blood vessel formation (24). In endothelial
cells, hemodynamically relevant cyclic strain stimulated
HO-1 gene expression and inhibited cell death (63). In vivo,
lentiviral vectors with microRNA sequences controlled by
vascular endothelium cadherin were used to study the role of
lung endothelial HO-1 in mice exposed to hyperoxia (119).
When HO-1 was knocked down by 55% in the lung endo-
thelium, there was a twofold increase in apoptosis and ROS
generation, and this had the same effect on lung injury and
survival as silencing HO-1 in multiple lung cell types. Fur-
thermore, HO-1 regulated caspase 3 activation and autop-
hagy in the endothelium during hyperoxia (119). Pulmonary
inflammation arterial remodeling and right ventricular
hypertrophy were attenuated in transgenic mice over-
expressing HO-1 in Type II cells exposed to hyperoxia. Type
II cell-specific over-expression of HO-1 also reduced hy-
peroxia-mediated pulmonary edema, hemosiderosis and
prevented the loss of blood vessels observed in similarly
exposed WT animals (28). Interestingly, lung-specific HO-1
over-expression neither prevented alveolar simplification nor
altered ferritin and lactoferrin levels in this model, suggesting
that HO-1 over-expression primarily protects the vascular
system through iron-independent antioxidant and anti-
inflammatory pathways (28). In summary, HO-1 plays an
important vasculoprotective role in the lung, and this could be
beneficial for preventing BPD.

Clues of the role of HO-1 in lung cytoprotective
defenses in humans

So far, there have been only two reported cases of HO-1
deficiency in humans. A 6-year-old boy with severe growth

FIG. 4. Effects of HO-1 on cell proliferation. Increased
proliferation is shown by a + , decreased proliferation by a - ,
based on existing literature. In the developing lung exposed
to hyperoxia, the net effect of HO-1 on the different cell
lineages prevents the phenotypic changes of BPD. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars

FIG. 5. Mechanisms by which HO-1 influences in-
flammation. HO-1 can bind to caveolin to prevent toll-like
receptor (TLR)-4 signaling. In addition, the activation of
p-STAT3-RORc and p38 MAP kinase signaling is reduced
by HO-1, which also dampens inflammatory responses.
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restriction was evaluated for persistent hemolytic anemia
with a paradoxical absence of hyperbilirubinemia. He also
suffered from severe endothelial damage as well as from iron
deposition in his kidneys and liver. Sequence analysis re-
vealed complete loss of exon 2 of the maternal allele and a
two-nucleotide deletion within exon 3 of the paternal allele
for HO-1 (113). Another case of human HO-1 deficiency was
recently reported in a 12 year-old girl with congenital as-
plenia, who presented with severe hemolysis, inflammation,
and nephritis, refractory to therapy. Mutation analysis
showed homozygous missense mutations in exon 2 on
chromosome 22q12, which would result in the absence of the
functional HO-1 protein. Furthermore, the patient’s kidneys
were devoid of HO-1 immunostain (81). These two cases
show common phenotypes involving inflammation, hemosi-
derosis, and oxidative stress. There are no reports of abnor-
mal lung function in these patients. Perhaps a second insult
would be needed to unmask the lung phenotype.

Several HO-1 promoter polymorphisms have been docu-
mented in lung diseases (30, 36, 90). Since GT dinucleotide
repeats in the 5¢¢ flanking region of the human HO-1 gene can
modulate its transcription, differences in GT repeat length
could alter HO activity (Fig. 6). The frequency of longer
repeat alleles was significantly higher in the smokers with
chronic pulmonary emphysema than in smokers without it,
suggesting that diminished HO-1 promoter activation was
associated with increased susceptibility to emphysema (114).
In vitro studies showed that hydrogen peroxide induced HO-1
only in the short and medium promoter repeats, suggesting
that longer GT repeats prevent HO-1 induction. Other func-
tional polymorphisms were tested as well. No association
between the various single nucleotide polymorphisms of HO-1
and lung function decline could be found, nor was there any
evidence that three promoter polymorphisms affected the
regulation of HO-1 gene (101). In 44 asbestos-exposed sub-
jects without mesothelioma and 78 asbestos-exposed subjects
with mesothelioma, long GT repeats were significantly
higher in the asbestos-exposed subjects with mesothelioma,
suggesting that decreased induction of HO-1 is associated
with a higher risk of malignant mesothelioma (68). In 749
French subjects aged 20–44, lung function was assessed and
compared with the length of HO-1 promoter polymorphisms.
The long allele carriers showed lower forced expiratory

volume in 1 second/forced vital capacity (FEV1/FVC) than
other noncarriers with steeper decline in FEV1 over time than
noncarriers. In addition, HO-1 in the serum was lower in
rapid decliners than in normal decliners, suggesting that HO-1
may be a predictor of lung function decline in these patients
(87). Overall, lower inducibility of HO-1 is associated with
worsened lung disease in humans. As evidence in children
and neonates, a boy with marked elevation of serum bilirubin
during autoimmune hemolytic anemia was seen to be a ho-
mozygous carrier of short GT dinucleotide-repeat promoter
polymorphism (42), and short GT repeat alleles have been
associated with prolonged neonatal jaundice (11). No infor-
mation exists about neonatal lung disease and HO-1 promoter
polymorphisms.

Maturation alters the role and regulation of HO-1
in oxidative stress

Overall, HO-1 can exert pleiotropic effects in the lung
depending on localization and abundance (Fig. 7). This is a
very important consideration when devising therapeutic
strategies using HO-1 to prevent BPD.

Most studies on HO-1 have been done in adult animals.
Neonatal rodents are more tolerant to hyperoxia and have a
high expression of lung HO-1 than do adults (29, 96). This is
not attributable to less inflammation (8, 32, 89). Theoreti-
cally, antioxidant defenses up-regulated at birth could protect
the lung against oxidative injury (29). In fact, HO-1 is found
at highest levels in the first postnatal days and then decreases
to adult values by the second week of life (21). There may be
a benefit to having high constitutive levels of this cytopro-
tective molecule at the time of delivery, where the neonatal
animal transitions to the relatively hyperoxic ex-utero envi-
ronment. At birth, with the transition from the placenta to air
breathing, pulmonary vessels are exposed to oxidative stress
and undergo remodeling. Although some argue that the lungs
from HO-1-deficient mice develop normally after birth,

FIG. 6. Proposed effects of promoter polymorphisms
on HO-1 in lung disease. Long GT repeats on the HO-1
promoter (left) are associated with the development of several
lung pathologic states. It remains to be determined whether
short GT repeats are protective against lung disease.

FIG. 7. Maturational differences in HO-1 gene regu-
lation and protein localization. In response to hyperoxia,
neonates (left) do not up-regulate HO-1 mRNA but trans-
locate HO-1 to the nucleus. In contrast, adults (right) induce
HO-1 mRNA but do not translocate HO-1 to the nucleus. To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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which suggests that HO-1 induction plays no role in the de-
velopment of the vasodilator response and remodeling which
occurs at birth (94), we show evidence to the contrary. In fact,
HO-1 null mutant mice showed mild alveolar simplification,
disorganization, and reduced secondary crest formation.
These defects were more pronounced when these mice were
challenged with dexamethasone treatment. The latter further
decreased levels of both endothelial and alveolar epithelial
markers (121).

Despite the cytoprotective effects of moderate HO-1 over-
expression, we have shown that at high levels, HO-1 may be
deleterious (108), resulting in enhanced oxidative stress and
apoptosis and decreased cell proliferation in vitro (99) and,
when targeted to type II cells in vivo, this leads to a mala-
daptive over-proliferation of type II cells and perhaps a
failure to differentiate to type I cells which are important for
recapitulation of the normal alveolar epithelium. This then
manifests as increased alveolar thickness and decreased lung
function (69). In neonatal rats exposed to hyperoxia, no
significant increase in lung HO-1 mRNA was seen in contrast
to similarly exposed adults (21). In addition, with prolonged
hyperoxic exposure, lung HO-1 mRNA only increased after
10 days in neonatal mice (107); whereas this occurred within
24 h in adult mice (74). Furthermore, neonatal lungs have
enhanced expression of Bach1, suggesting a developmental
cue to prevent further up-regulation of HO-1 in hyperoxia
(48). These differences may explain the lack of up-regulation
of neonatal lung HO-1 in hyperoxia, but other mechanisms
could also be involved. The role of microRNAs in regulating
HO-1 abundance is being explored (39, 40, 79, 80, 92, 119),
but it is not known whether there are developmental differ-
ences in microRNAs that explain both the increased abun-
dance and the relative lack of hyperoxic induction of lung
HO-1 in neonatal mice.

Using a pig and mouse model, HO-1 expression was in-
vestigated during adaptation to extrauterine life. HO-2 ex-
pression was constitutive, whereas HO-1 protein was induced
after birth in the blood vessels and airways, peaking at 14
days in the pig and at 4 days in the mouse. Inhibitors of HO-1
did not alter vasodilatory responses in the pigs (94), sug-
gesting that these effects may not be related to the enzymatic
activity of HO-1.

In the acute phase of hyperoxic exposure (3 days), neo-
natal mice have increased nuclear HO-1 compared with
similarly exposed adults (115). This pattern of over-
expression may be beneficial, because adults that induce
lung HO-1 and do not demonstrate nuclear localization are
more susceptible to oxidative stress. Corroborating this,
HO-1 null mutant MEFs with stable over-expression of
nuclear HO-1 show decreased cellular proliferation and are
relatively tolerant to 24 h of hyperoxia compared with MEFs
expressing cytoplasmic HO-1 or empty vector controls
(Fernando, unpublished observations). Intriguingly, trans-
genic mice over-expressing nuclear HO-1 in type II cells
initially showed improved alveolarization with (3 days)
hyperoxic exposure but had increased oxidative DNA
damage and abnormal lung histology and pulmonary func-
tion tests as adults (69), raising the possibility that the
duration of nuclear HO-1 protein signaling is key to cyto-
protective responses to injury and repair.

Overall, these observations suggest that the level, locali-
zation, and duration of expression of HO-1 may be extremely

important in determining its cytoprotective and proliferative
effects in the neonatal lung.

Maladaptive Consequences of HO-1 Overexpression
and Cellular Localization in the Lung

Obviously, HO-1 plays a significant role in cellular pro-
liferation. Important features of tumorigenesis are excessive
proliferation and invasiveness (67, 105). Therefore, by en-
hancing cellular proliferation and mitigating oxidative stress,
HO-1 could also promote tumor cell growth (Fig. 8). Many
examples suggest that HO-1 abundance and localization are
associated with tumor formation (20, 31). In nonsmall lung
cells, cancer patients with a high HO-1 expression ratio in
tumor tissue compared with normal tissue had a significantly
poorer prognosis and a higher metastatic rate compared with
those with a low HO-1 expression ratio (20). In vitro, the
invasive and migratory abilities of A549 and H441 lung
cancer cells significantly increased after high (20-fold in-
crease) exogenous HO-1 over-expression and significantly
decreased after HO-1 silencing. Furthermore, HO-1 over-
expression positively correlated with the expression of
metastasis-associated proteins (104). Adenocarcinoma is the
most prevalent subtype of lung cancer, and it is often asso-
ciated with mutations in the Kras oncogene (49). MAP kinase
signal amplification characteristic of Kras lung adenocarci-
nomas drives toward the progression of malignancy (64).
These result in constitutive signaling, which regulates
proliferation, differentiation, and cell survival (15). Onco-
genic ras alone results in a permanent G1 arrest, as in se-
nescence, but can transform most immortal rodent cells to a

FIG. 8. Association of nuclear HO-1 with lung cancer.
In both rodents and humans, increased nuclear distribution
of HO-1 (inset on the right where DAPI nuclear stain and
HO-1 are co-localized as shown by the cyan color) is as-
sociated with abnormal lung histology (as shown in the
hematoxylin and eosin-stained tissue on the right). With
cytoplasmic localization of HO-1 (left inset), lung tissue
histology is more likely to be normal (left). To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars
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tumorigenic state with the inactivation of tumor suppressors
such as p53 (88). Growing tumors also preferentially utilize
glycolysis over mitochondrial oxidative phosphorylation for
glucose-dependent ATP production even in the presence of
oxygen (35, 76). In addition to energy, glycolysis generates
intermediates that are important to cell growth such as ribose-
5-phosphate, a key intermediate in nucleotide biosynthesis
(17) which supports the proliferation of tumor cells. In neo-
natal HO-1 null mutant mice and WT littermates exposed to
hyperoxia for 3 days and allowed to recover in room air for 11
days, six DNA damage-response genes were down-regulated
in the WT; whereas these were up-regulated many-fold in
the knockout, suggesting that HO-1 disruption modifies
DNA repair pathways which are important in tumorigenesis
(115). We also show that transgenic mice with cytoplasmic
over-expression of HO-1 in type II cells exposed to 3 days of
hyperoxia as neonates had increased numbers of multinucleated
hyper-proliferating type II cells and foamy macrophages but no
evidence of fibrosis or inflammation (69). This correlated with
lung lesions on MRI with enhanced p-ERK (which is seen in
early tumorigenesis) and PCNA staining (69). Interestingly,
adult nuclear HO-1 transgenics exposed to hyperoxia as new-
borns also had increased p-ERK (69). Furthermore, HO-1 null
mutant MEF cells stably transfected with nuclear HO-1 showed
the most migration toward EGF in an agarose assay, suggesting
that nuclear HO-1 is a stronger stimulus for abnormal cell
migration than cytoplasmic HO-1 (69). Lastly, G6PDH syn-
thesis and activity was facilitated in nuclear HO-1-infected
MEFs more so than in cytoplasmic HO-1-infected MEFs or
empty vector controls (Biswas, unpublished observations). This
suggests that nuclear HO-1 in conjunction with hyperoxia re-
sults in a metabolic switch that favors cancer cell survival. The
precise mechanisms by which abundance and localization of
HO-1 influence lung tumorigenesis in hyperoxia remain to be
determined.

Conclusions

HO is a complex and pleiotropic protein that has multiple
roles depending on its abundance, intracellular localization,
and duration of action. In the lung, many examples demon-
strate its beneficial cytoprotective effects. Nevertheless,
equal evidence exists which shows that abnormally high
levels are detrimental. In the neonatal lung, HO-1 is found at
high abundance but is not further inducible in response to
hyperoxia, suggesting the importance of tight regulation of
this protein. Furthermore, excessive induction of HO-1 may
have abnormal consequences, including favoring a tumori-
genic phenotype. In order to take advantage of this important
protein, caution should be taken to enhance its cytoprotective
properties while preventing adverse effects due to excessive
expression, prolonged action, or subcellular localization.
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Bach1¼ heterodimer of BTB and CNC homology 1
BPD¼ bronchopulmonary dysplasia

CO¼ carbon monoxide
CORM¼CO-releasing molecules

G6PDH¼ glucose-6-phosphate dehydrogenase
HO¼ heme oxygenase

MARE¼multiple antioxidant response element
MEF¼mouse embryonic fibroblast

NADPH¼ nicotinamide adenine dinucleotide phosphate
Nrf2¼NF-E2-related factor 2

p-ERK¼ phospho-Extracellular signal-regulated kinase
PPS¼ pentose phosphate shunt

ROS¼ reactive oxygen species
TGF¼ transforming growth factor
TLR¼ toll-like receptor
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