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Abstract

Alzheimer’s disease (AD) is the most common type of dementia (accounting for 60% to 80%) and is the fifth
leading cause of death for those people who are 65 or older. By 2050, one new case of AD in United States
is expected to develop every 33 sec. Unfortunately, there is no available effective treatment that can stop or
slow the death of neurons that causes AD symptoms. On the other hand, it is widely believed that AD starts be-
fore development of the associated symptoms, so its prestages, including mild cognitive impairment (MCI) or
even significant memory concern (SMC), have received increasing attention, not only because of their potential
as a precursor of AD, but also as a possible predictor of conversion to other neurodegenerative diseases. Although
these prestages have been defined clinically, accurate/efficient diagnosis is still challenging. Moreover, brain
functional abnormalities behind those alterations and conversions are still unclear. In this article, by developing
novel sparse representations of whole-brain resting-state functional magnetic resonance imaging signals and by
using the most updated Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, we successfully identified
multiple functional components simultaneously, and which potentially represent those intrinsic functional net-
works involved in the resting-state activities. Interestingly, these identified functional components contain all
the resting-state networks obtained from traditional independent-component analysis. Moreover, by using the
features derived from those functional components, it yields high classification accuracy for both AD (94%)
and MCI (92%) versus normal controls. Even for SMC we can still have 92% accuracy.
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Introduction

Although first identified more than 100 years ago
(Graeber et al., 1997), systematic studies of Alzheimer’s

disease (AD) regarding its causes, associated symptoms, and
treatments or interventions have gained great momentum
only during recent decades (Thies and Bleiler, 2013). AD
is the most common type of dementia (accounting for 60%
to 80%) and is the fifth leading cause of death for those
people who are 65 or older (Thies and Bleiler, 2013).
Today, every 68 sec someone in the United States develops
AD and, by 2050, one new case of AD in the United States
is expected to develop every 33 sec (Thies and Bleiler,

2013). During the first 10 years of the current century, the
proportion of deaths caused by prostate cancer, heart disease,
and stroke have decreased by 8%, 16%, and 23%, respec-
tively, whereas the proportion resulting from AD has in-
creased by 68% (Thies and Bleiler, 2013). Unfortunately,
there is no available effective treatment that can stop or
slow the death of neurons that causes AD symptoms. It is al-
ready widely believed that AD starts before development of
the associated symptoms, so its prestages, including mild
cognitive impairment (MCI) or even earlier stages such as
significant memory concern (SMC), have received increas-
ing attention, not only because of their potential as a precur-
sor of AD, but also as a possible predictor of conversion to
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other neurodegenerative diseases (Petersen et al., 2001).
Although these prestages have been defined clinically
(Albert et al., 2011; Sperling et al., 2011), accurate/efficient
diagnosis and differentiation among different stages, such as
early MCI (EMCI), late MCI (LMCI), and SMC, is still
challenging.

Although researchers have already found some critical
factors related to AD, such as amyloid plaques that are
core pathological features of AD, it is difficult to apply this
examination on live people directly. Indeed, amyloid posi-
tron emission tomography (PET) imaging and the measure-
ment of beta-amyloid (Ab42) in cerebrospinal fluid can
provide an indirect way for measuring fibrillar beta amyloid
(Ab) in the brain. These measures, however, are difficult to
be applied in practical clinical applications due to their inva-
sive nature. Moreover, the recent finding that many MCI
brains and aged controls exhibit a similar degree of Ab depo-
sition in postmortem brain tissues might limit the use of Ab
deposition as an effective biomarker (Aizenstein et al., 2008;
Price et al., 2009). In the last 10 years, many studies have
proposed using magnetic resonance imaging (MRI) to iden-
tify brain changes that might help to interpret AD symptoms.
Structure-MRI-derived biomarkers include abnormalities of
white matter bundles or structural connectivity alterations
(Li et al., 2008), local gray matter (GM) atrophy that is often
represented as decrease of GM thickness (Wang et al., 2009),
and loss of volume with some specific brain tissues/regions,
such as in cingulate, hippocampus, and entorhinal cortices
(Devanand et al., 2007; Gómez-Isla et al., 1996; Kordower
et al., 2001; Mufson et al., 2012; Villain et al., 2010). But
these structural changes are often found in the late-disease
stage in which the symptoms are relatively obvious. Moreover,
they might be insignificant in the very early stage, such as
EMCI or SMC, and spatially distributed over many brain
areas (Chételat et al., 2002; Convit et al., 2000; Davatzikos
et al., 2008; Dickerson et al., 2001).

Recently, researchers started to investigate the merit of
resting-state functional MRI (R-fMRI) in studying the poten-
tial functional alterations in MCI/AD (Greicius et al., 2004;
Maxim et al., 2005; Sorg and Riedl, 2007; Supekar et al.,
2008; Wang et al., 2007). For instance, Wang and coworkers
(2007) indicated that increased positive correlations often
appear within lobes, while decreased positive correlations
usually exist between different lobes, such as parietal and
prefrontal lobes. Supekar and colleagues (2008) and Zhu
and colleagues (2014) adopted different region of interest
strategies to study the functional connectivity alterations of
the whole brain. Greicius and associates (2004) and Sorg
and Riedl (2007) suggested a disruptive resting-state activity
existing within the default mode network (DMN) in AD or
MCI patients. In general, R-fMRI has obvious advantages
compared with the traditional methods due to its capability
for reflecting the potential intrinsic functional activities oc-
curring in the brain. It is the only possible way so far to ex-
amine the whole-brain functional abnormalities behind the
known structural changes in vivo.

From our perspective, there are two major barriers that
hamper successfully applying R-fMRI to AD studies. The
first challenge is due to the variability and complex nature
of fMRI BOLD signals. From the MRI physics point of
view, by imaging the blood flow, BOLD contrast can reflect
neuron activities since they are coupled. But the signals

acquired from fMRI contain multiple sources, including dif-
ferent types of noise, for example, respiration or heart rate.
After many years of fMRI studies, there is still much to
learn regarding the source of the signals (Heeger and Ress,
2002). From the neuroscience side, it has been widely agreed
that a variety of brain regions and networks exhibit strong
functional heterogeneity and diversity (Anderson et al.,
2013; Duncan, 2010; Fedorenko et al., 2013; Kanwisher,
2010; Pessoa, 2012). That is, the same brain region could
participate in multiple functional processes/domains simul-
taneously and a single functional network might recruit var-
ious neuroanatomic areas at different stages as well. Under
this situation, the practical fMRI signals extracted from
every single voxel tend to reflect a complex functional activ-
ity resulting from multiple sources/components within the
whole brain. The second barrier is the critical lack of compu-
tational modeling strategies with which we can fuse, repli-
cate, and validate fMRI-derived features in independent
neuroimaging datasets. Indeed, validation of neuroimaging
studies has been challenging for many years due to the
lack of ground-truth data. It is even more challenging to val-
idate on separate populations or imaging centers, given the
variability in demographics, imaging equipment, scan proto-
cols, image reconstruction algorithms, and even the parame-
ters in the preprocessing pipelines.

To effectively address the just-mentioned fundamen-
tal barriers and limitations, in this article, we developed
a novel computational framework of sparse representa-
tions of whole-brain fMRI signals and applied it on the
most recently updated Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. Inspired by the successes of
using sparse coding for imaging and signal representations
in machine learning and pattern recognition fields (Wright
et al., 2009), the core idea of our proposed framework is
to assemble all R-fMRI signals within the whole brain of a
single subject into a big data matrix, which is further decom-
posed into an over-complete dictionary matrix and a coeffi-
cient weight matrix via an effective online dictionary
learning algorithm (Mairal et al., 2010). The most important
characteristic of this framework is that each row of the coef-
ficient weight matrix naturally reflects one spatial overlap
pattern of the corresponding dictionary atom in the dictio-
nary matrix, which is represented as a time series in the
over-complete basis dictionaries. It turned out that this
novel method can effectively uncover multiple functional
components corresponding to pairs of time series (one dictio-
nary matrix atom) and spatial pattern (one coefficient weight
matrix atom), which potentially represent multiple functional
networks/sources. To validate the effectiveness and robust-
ness, we applied our framework on 210 subjects who are
from ADNI dataset (until September 2013). Note that even
though these subjects were scanned with similar protocols,
their R-fMRI data were acquired at different sites and pos-
sess varied imaging parameters, including resolution and
TR (repetition time). Our results proved that all the known
resting-state networks (RSNs) (Smith et al., 2009), including
DMN, can be consistently identified from the achieved func-
tional components for all the subjects. Moreover, by using
the features derived from those functional components, it
yields high classification accuracy for both AD (94%) and
MCI (92%) versus normal controls. Even for SMC we can
still have 92% accuracy.
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Materials and Methods

Overview

As illustrated in Figure 1, the framework can be divided
into three major parts: functional sparse representation (Fig.
1b, c), feature construction (Fig. 1f) based on learned dictio-
nary matrix/coefficient weight matrix, and feature selection/
classification (Fig. 1g). First, by using online dictionary
learning methods, the whole-brain fMRI BOLD signals are
sparsely represented as the product of common dictionary
matrix (Fig. 1b) and the corresponding coefficient weight
matrix (Fig. 1c). That is, the signals of each voxel can be
sparsely and effectively represented as linear combinations
of some atomic dictionary components. Through comparing
with 10 predefined RSN templates, including visual, DMN,
cerebellum, sensorimotor, auditory, executive control, and
frontoparietal, we successfully identified highly similar dic-
tionary atoms (Fig. 1d) from others (Fig. 1e) within each
subject. Then for those identified dictionary atoms that are
highly similar with the RSNs, the likelihood of being RSNs
as well as the functional characteristics (e.g., functional con-
nectivity) with other dictionary atoms are explored to con-
struct multiple types of features (Fig. 1f). At last, all the
features are fit in the correlation-based feature selection
(CFS) algorithm and the ones with the most differentiation
power will be preserved. An effective support vector machine

(SVM) classifier was employed to solve the classification
problem (Fig. 1g). In addition, those highly discriminating
features are also analyzed and discussed in the ‘‘Results’’ sec-
tion (Features with high differentiation power heading).

Data

The dataset used in the preparation of this article was
obtained from the ADNI database (adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical corporations, and non-
profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test
whether PET, serial MRI, other biological markers, and clini-
cal and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. Determination
of sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. ADNI is the result of efforts
of many coinvestigators from a broad range of academic insti-
tutions and private companies, and subjects have been
recruited from over 50 sites across the United States and Can-
ada. The initial goal of ADNI was to recruit 800 adults but

FIG. 1. Illustration of the proposed framework. (a) Resting-state functional magnetic resonance imaging data. Here, the input
dataset includes 210 subjects from the most recently updated ADNI database until September 2013. (b) Dictionary matrix. (c)
Coefficient weight matrix. (d) Ten identified RSNs using ICA templates. (e) Other dictionary atoms. (f) Using dictionary matrix
and identified RSNs we constructed six types of features. They are spatial overlapping rate, functional connectivity within RSNs,
functional connectivity within dictionary, entropy of functional connectivity, entropy of component distribution within RSNs, and
common dictionary distribution. (g) Correlation-based feature selection and support vector machine classifier. ADNI, Alz-
heimer’s Disease Neuroimaging Initiative; ICA, independent-component analysis; RSN, resting-state network. Color images
available online at www.liebertpub.com/brain
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which has been followed by ADNI-GO (2009) and ADNI-2
(2010). To date these three phases have recruited over 1500
subjects, ages from 55 to 90, to participate in the research, con-
sisting of cognitively normal older individuals, people with
early or LMCI, and people with early AD. For up-to-date infor-
mation about ADNI database, see www.adni-info.org

Subject. From ADNI-GO phase the resting-state fMRI
(R-fMRI) data were introduced into the ADNI database
and enriched through ADNI-2. Because we are aiming to
explore the potential functional abnormalities in the whole
brain regarding the non-normal aging people, only the sub-
jects with at least one R-fMRI scan until September 2013
are included. And we only consider the R-fMRI scan at first
time for each subject since we do not focus on the longitudinal
changes of subjects in this article. In addition, besides normal
and AD, new cohorts of EMCI, LMCI, and SMC are also con-
sidered in this study. In brief, the just-mentioned criteria yield
a total of 210 subjects, including 50 normal controls, 34 AD
patients, 56 EMCI patients, 44 LMCI patients, and 26 SMC
adults.

Imaging data acquisition and data preprocessing. All
R-fMRI datasets were acquired on 3.0 Tesla Philips scanners
(varied models/systems) at multiple sites. There is a range
for imaging resolution in X and Y dimensions, which is from
2.29 to 3.31 mm and the slice thickness is 3.31 mm. TE
(echo time) for all subjects is 30 msec and TR is from 2.2 to
3.1 sec. For each subject, there are 140 volumes (time points).
Preprocessing steps of the R-fMRI data included brain skull
removal, motion correction, spatial smoothing, temporal pre-
whitening, slice time correction, global drift removal, and
band pass filtering (0.01–0.1 Hz) (Zhu et al., 2014).

Sparse representations of fMRI signals

Given a collection of data vectors X = [x1, . . . , xn] 2 Rm · n,
if there exists a linear combination of a small number of di that
can effectively represent X, then we say that X admits a sparse
approximation over dictionary D, where D = [d1, . . . , dk] 2
Rm · k. A general form of cost function in sparse dictionary
learning is defined as

fn(D) =
1

n

Xn

i = 1

‘(xi, D) (1)

Where D 2 Rm · k is the dictionary and [ is the loss function,
which is to be small if D can effectively represent the original
data X. In general, k will be much less than n.

In this article, for each R-fMRI dataset having n voxels
with t time length, we are aiming to learn a neuroscience
meaningful and over-complete dictionary D 2 Rt · m (m > t
and m << n) (Mairal et al., 2010) for the sparse representation
of whole-brain signals, S. That is, for the R-fMRI signal set
S = [s1, s2, . . . sn] 2 Rt · n, the empirical cost function is re-
written as Equation (2) by considering the average loss of re-
gression of n signals.

fn(D)D
=

1

n

Xn

i = 1

‘(si, D) (2)

For an effective sparse representation using D, the general
loss function is further defined in Equation (3) by using a [1

regularization that yields to a sparse resolution of ai. Similar
to LASSO (Tibshirani, 1996), here k is a regularization pa-
rameter that can be used as a trade-off item between the spar-
sity level and the regression residual.

‘(si, D)D
=

minai2R m
1

2
jjsi�Daijj22þ kjjaijj1 (3)

Because we are more interested with the fluctuation
shapes and patterns of basis fMRI BOLD activities, it is nec-
essary to avoid D having an arbitrarily large number of ele-
ments. So the columns d1, d2, . . . . . . dm in the learned
dictionary D are constrained by Equation (4).

CD
=
fD 2 Rt · m s:t: 8j = 1, . . . m, dT

j djp1g (4)

Eventually, the whole solution of dictionary learning prob-
lem in this article can be rewritten as a matrix factorization
with [1 regulation in Equation (5).

minDeC, ai2Rm
1

2
jjsi�Daijj22þ kjjaijj1 (5)

Specifically, the sparse learning procedure in this article
includes three steps. First, for each single-subject’s brain,
we extract preprocessed R-fMRI signals of whole brain
by using individual brain mask. Then, after normalizing
the signal to have zero mean and standard deviation of 1,
these signals are reassembled into a big matrix S 2 Rt · n,
where t is the number of time points (fMRI volume num-
bers) and n columns represent fMRI signals extracted
from n GM voxels. Finally, by applying a publicly available
efficient online dictionary learning methods (Mairal et al.,
2010), each fMRI signal (each column vector) in S can be
modeled as a linear combination of a small size of learned
dictionary atoms. For example, a specific signal vector, si,
can be represented as the product of basis dictionary D
and ai, where ai is the corresponding coefficient vector in
the coefficient weight matrix.

The rationale and advantages behind using sparse represen-
tation of fMRI signals have two aspects. (1) As mentioned in
the ‘‘Introduction’’ part, from neuroscience perspective, it
has been widely agreed that a variety of brain networks and
regions exhibit strong functional heterogeneity and diversity
(Anderson et al., 2013; Duncan, 2010; Fedorenko et al., 2013;
Kanwisher, 2010; Pessoa, 2012). That is, the same brain
region could participate in multiple functional processes/
domains simultaneously and a single functional network
might recruit various neuroanatomic areas at different stages
as well. So the practical fMRI signals of every single voxel
tend to reflect a complex functional activity resulting from
multiple components/sources within the whole brain. Under
this case, a natural strategy is to decompose the actual signals
back to multiple components that potentially represent the
original sources. Here, we adopted the same assumption as pre-
vious studies (Lee et al., 2011; Oikonomou et al., 2012) that the
components of each voxel’s fMRI signal are sparse and the
neural integration of those components is linear. (2) Given
the fact that it is largely unknown to what extent those multiple
interacting functional networks spatially overlap with each
other and jointly fulfill the intact brain functions, we do not
enforce the statistically independent constraint to the decom-
posed components like independent component analysis
(ICA) (Calhoun et al., 2001) does. Therefore, our framework
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has more freedom during the sparse learning procedure and
eliminates the need for initialization using a predefined model
at the most extent.

Individual RSN identification

As described in ‘‘Sparse representations of fMRI signals’’
heading and illustrated in Figure 1, for each atom in the
dictionary D, the corresponding coefficient vector ai of the
coefficient weight matrix can be projected back to the volu-
metric fMRI image space for the interpretation of the spatial
patterns. In this way, the spatial patterns of atoms in different
subjects can be compared within a template image space to
determine their spatial correspondences, as well as to further
identify meaningful RSNs within each subject.

In R-fMRI data analysis, a meaningful RSN is identified
and examined mainly based on its spatial pattern, since the
temporal and frequency characteristics have not been fully
understood or quantitatively described. Specifically, in this
article, a spatial-pattern-overlapping metric is adopted to
identify meaningful RSNs in each subject and defined as

SOR(X, T) =
jX \ Tj
jTj (6)

Where X is the spatial pattern of one functional component,
T is a specific RSN template, and SOR is the spatial overlap-
ping rate of X and T. For each subject, we first calculated
the SORs of all spatial patterns contained in the coeffi-
cient weight matrix with a specific RSN template, and sorted
them in decreased order. Then the first spatial pattern with
the highest SOR (Fig. 1d) was determined as the specific
RSN of this subject. Moreover, the corresponding atoms of
the spatial patterns were used for feature construction,
which will be detailed in the following heading. In this arti-
cle, we adopted the 10 well-defined and widely known RSNs
in Smith and coworkers (2009) as the RSN templates to iden-
tify the corresponding RSNs in each subject. More details of
the 10 RSN templates are illustrated in ‘‘RSN identification’’
heading.

Feature construction

After the sparse representation of fMRI signals and iden-
tification of 10 RSNs, we constructed six types of features
that can effectively reflect both spatial and functional charac-
teristics during the resting state. They are SOR, functional
connectivity within RSNs (FC-RSNs), functional connectiv-
ity within dictionary (FC-D), entropy of functional connec-
tivity (ET-FC), entropy of component distribution within
RSNs (ET-CDRSNs), and common dictionary distribution
(CDC). Except for the first type of feature (SOR), the other
five are directly or indirectly derived from the dictionary
matrix.

Spatial overlapping rate. As mentioned in the previous
heading (Individual RSN identification), for each subject,
by calculating the overlapping rate (Eq. 6) we can identify
10 dictionary atoms for which the corresponding spatial pat-
terns are most similar to the RSN templates. Thus, we have
10 features to depict the similarity between the selected spa-
tial patterns and the template. Since our strategy is to pick the
atoms that are most similar to the RSN templates, the over-

lapping rate could reflect the potential alterations of RSNs
in terms of the spatial patterns.

FC-RSNs and FC-D. Because the identified dictionary
atoms corresponding to 10 RSNs have intrinsic correspon-
dence across different subjects, for example, DMN, we
can easily calculate their functional connectivity repre-
sented by a 10 · 10 symmetric matrix (FC-RSNs). Note
that only 45 unique elements can be used for features. Sim-
ilar to FC-RSNs, in which we only examine the internal
relation among 10 RSN-dictionary atoms, we also need to
consider the interaction between these RSN-dictionary
atoms and other decomposed dictionary atoms (FC-D),
even though their functional roles are largely unknown so
far. FC-RSNs and FC-D can complement each other be-
cause they reflect the functional interactions among dictio-
nary atoms from two different angles. The former one
focuses on the interactions within RSN-dictionary atoms,
while the latter one focuses on the interactions between
RSN-dictionary atoms and non-RSN-dictionary atoms. An
essential difference between our FC features and traditional
FC features is that instead of calculating the correlation be-
tween actual fMRI signals, we explored the relation be-
tween dictionary atoms. Because these dictionary atoms
are more likely to represent the intrinsic activities of the
corresponding spatial regions described in the coefficient
matrix, our computed FC features are more grounded
from neuroscience point of view.

ET-FC and ET-CDRSNs. Based on the FC-D features,
we can construct a histogram representing the overall func-
tional connectivity distribution. Specifically, for each RSN
atom (the dictionary atom identified as a correspondence of
one RSN) we calculate its functional connectivity with all
the other dictionary atoms (except RSN atoms). If the size
of dictionary is k, then we could have k-10 functionary con-
nectivity results that are from �1 to + 1 for each RSN atom.
In this article we adopted 20 bins to cover [�1, + 1] with
equal distance and count how many dictionary atoms are
within each bin, which is followed by the calculation of
Shannon entropy, named as ET-FC. Similarly, we can also
construct a histogram to reflect the component distribution
for each RSN-dictionary atoms. For each voxel involved in
a specific RSN-dictionary atom (this voxel belongs to this
RSN), we calculate its non-RSN atoms’ (dictionary) compo-
sition when representing the original fMRI signals. To do
this, we focus on the nonzero items of the column corre-
sponding to this voxel in the coefficient weight matrix.
This process is repeated for each voxel contained in this
RSN. Eventually, this yields a distribution in terms of how
many voxels have been used for each dictionary atom and
based on which we calculate the Shannon entropy as ET-
CDRSNs. In general, the Shannon entropy characterizes
the information carried by the distribution itself (e.g., uni-
formly distributed or not). Hence, ET-FC and ET-CDRSNs
depict the distribution of functional connectivity and RSN-
related functional complexity from the information theory
point of view.

Common dictionary distribution. For each subject, we
derive a unique dictionary matrix (Sparse representations
of fMRI signals heading) that can be used to represent the
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original fMRI signals within individual space. One ques-
tion is whether we can find a set of common dictionary
atoms D* that have the capability to represent all the indi-
vidual dictionary atoms. Here we applied the second-
round sparse learning on the individual dictionaries. Spe-
cifically, we assemble all the individual dictionaries into
one matrix as we did to the fMRI signals in ‘‘Sparse rep-
resentations of fMRI signals’’ heading. It should be noted
that the size of D* is the same as that of D. Adopting the
similar procedure as ET-CDRSNs, we can calculate a dis-
tribution of how many individual dictionary atoms can be
represented for each common dictionary atom. In other
words, CDC is trying to explore and extract the most com-
mon dictionary atoms that could effectively compose indi-
vidual dictionaries.

Feature selection and classification

So far we have six types of features and we are aiming to
preserve only those features with most differentiation power.
At the same time we also need to consider the relevance
among different features since sometimes a set of ‘‘good’’
features cannot predict well when only part of them are
used. In this article we employed the CFS (Hall and Smith,
1999) algorithm as the feature selection strategy. Briefly,
the core idea of CFS is that through a heuristic process it
evaluates the merit of a subset of all the features by consid-
ering the ‘‘goodness’’ of individual ones along with the inter-
correlation among them when predicting. That is, CFS will
calculate feature-class and feature-feature correlations at
the same time. Given a subset of features, S, with k features,
the Merits is defined as:

Merits =
kCorre(c, f)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ (k� 1)Corre(f, f)
p (7)

Where Corre(c, f) and Corre(f, f) represent mean feature-
class correlation and average feature-feature intercorrelation,
respectively. Here we adopted Pearson correlation coeffi-
cient as the measurement for the correlation. Corre(c, f)
and Corre(f, f) are defined as Corre(c, f) = cov(c, f)/rcrf

and Corre(f, f) = cov(fi, fj)/rfi
rfj

, where fi and fj are two dif-
ferent features, cov(.) is the covariance, and r is the standard
deviation. Once we obtained the most discriminative features
following CFS procedure; an SVM classifier (Chang and Lin,
2001) was employed for solving the classification problem.
Specifically, for each group, a 10-fold cross-validation was
adopted to evaluate the performance of classifiers with dif-
ferent parameters. The major parameters include type of
SVM (C-SVC and nu-SVC), kernel function type (linear,
polynomial, radial basis function, and sigmoid), and penalty
parameter C (ranges from 2�10 to 210, interval is 20.1). For
each of all combinations of those parameters, we used 10-
fold cross-validation to obtain the classification accuracy,
respectively. Then, the parameter sets with highest classifica-
tion accuracy are obtained. In total, we have trained five clas-
sifiers (NC/AD, NC/SMC, NC/EMCI, NC/LMCI, and NC/
EMCI + LMCI). The detailed classification results including
sensitivity (proportion of patients correctly predicted) and
specificity (proportion of healthy controls correctly predicted)
are showed in ‘‘Classification results based on sparse repre-
sentation features’’ heading.

Results

RSN identification

As described in ‘‘Individual RSN identification’’ heading,
we adopted 10 well-defined RSN templates provided in
http://fsl.fmrib.ox.ac.uk/analysis/brainmap + rsns/ (Smith
et al., 2009) to identify the corresponding 10 RSNs in each
subject. The first row of Figure 2 shows the most informative
slice as the spatial pattern of each RSN template. In brief,
RSNs#1, #2, and #3 are located in the ‘‘visual’’ cortex, and
include medial (BA 17), occipital pole, and lateral visual
areas (BAs 18/19), respectively. RSN #4 is known as the
‘‘default mode network’’ (DMN) (Raichle et al., 2001),
which mainly includes anterior (BAs 12/32) and posterior cin-
gulate cortex (BA 29), the medial prefrontal gyrus (BAs 9/10/
11), and bilateral supramarginal gyrus (BA 39). RSN #5 is lo-
cated in cerebellum. RSN #6 is known as the ‘‘sensorimotor’’
network, which mainly includes pre- and postcentral gyrus
(BAs 1/2/3/4), and the supplementary motor area (BA 6).
RSN #7, known as the ‘‘auditory’’ system, encompasses the
Heschl’s gyrus, lateral superior temporal gyrus, and posterior
insular cortex. RSN #8 includes anterior cingulate and para-
cingulate regions and is known as ‘‘executive control’’ net-
work. RSNs #9 and #10 show networks that have strong
lateralization in the right (RSN #9) and left (RSN #10) hemi-
spheres, covering the middle frontal and orbital (BAs 6/9/10)
and superior parietal areas (BAs 7/40). More details of the 10
RSNs are referred to Smith and coworkers (2009).

As illustrated in ‘‘Imaging data acquisition and data pre-
processing’’ and ‘‘Sparse representations of fMRI signals’’
headings, since the time points t = 140 for each subject, we
set the dictionary size m > 140 based on our experience to
learn an over-complete (m > t) dictionary D and correspond-
ing coefficient weight matrix a for each subject. Afterward,
10 RSNs were identified for each subject in all five groups
(NC, SMC, EMCI, LMCI, and AD) via the method in ‘‘Indi-
vidual RSN identification’’ heading. Note that to evaluate the
impact of parameter selection, different combinations of pa-
rameters were explored to verify whether reproducible and
consistent results can be achieved. Specifically, the dictio-
nary learning and sparse representation pipeline was applied
to subjects of NC group with different combinations of pa-
rameters since we expect to exclude the possible effect of
diseased group. To make fair and easy comparison, first, k
is fixed, and we change the dictionary size from 200 to 600
(interval is 100). The mean overlap rate of all identified
RSNs in all subjects is 0.38, 0.30, 0.31, 0.24, and 0.23. Sec-
ond, m is fixed and k changes from 1.0 to 2.0 (interval is 0.5).
The mean overlap rate of all identified RSNs in all subjects
is 0.31, 0.31, and 0.24. From the comparison, we can see
that although the parameter alteration will cause slight spa-
tial variation for the derived RSNs, the overall spatial over-
lap rate is reasonably stable. In this article, we chose m = 200
and k = 1.5 with better spatial overlap rate of RSN in NC
group. Rows 2 to 6 of Figure 2 show the 10 identified
well-matched RSNs of a randomly selected subject in each
of the five groups, respectively. In each subfigure, the most
informative slice, superimposed on the MNI152 template
image, was shown as the spatial pattern of a specific RSN.
The time series of corresponding atom was also shown
below each spatial pattern. Quantitatively, the mean overlap
rate of all 10 RSNs is 0.38 (0.24 to 0.52) for all subjects in
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NC group, 0.37 (0.25 to 0.49) for SMC group, 0.37 (0.25 to
0.48) for EMCI group, 0.34 (0.23 to 0.44) for LMCI group,
and 0.34 (0.24 to 0.46) for AD group. More detailed results
are shown in Table 1. We can see that for some specific
RSNs (e.g., RSN #4 representing DMN), the mean overlap
rate is different across the five groups and the trend is de-
creasing along with the disease progression (from 0.52 in
NC to 0.46 in AD for RSN #4, as detailed in Table 1), dem-
onstrating that the overlap rate might be an effective feature
to differentiate subjects between two groups.

Classification results based on sparse
representation features

In this section, we constructed six types of features (SOR,
FC-RSNs, FC-D, ET-FC, ET-CDRSNs, and CDC) contain-
ing both spatial and functional characteristics of R-fMRI
data illustrated in ‘‘Feature construction’’ heading, and per-
formed classification based on these features. For the feature
construction, it should be noted that, in ‘‘Individual RSN

identification’’ heading, we calculated the SORs of all spatial
patterns of atoms with a specific RSN template, and sorted
them in decreasing order. It is highly possible that first sev-
eral spatial patterns may have similar high SOR with a spe-
cific RSN template. As a consequence, for each RSN, we
considered top five spatial patterns with highest SOR and
adopted the corresponding atoms to measure functional char-
acteristics and construct features. Our rationale of consider-
ing top five spatial patterns for each RSN is twofold. (1)
There might be intrinsic functional characteristics missed
to differentiate normal controls from patients if we only
chose top one spatial pattern merely based on SOR criterion.
(2) The potential feature redundancy problem of introducing
top five spatial patterns for each RSN can be effectively
solved in the feature selection step via CFS. Finally, the
numbers of features in each type are listed as following: 10
for SOR; 45 · 5 = 225 for FC-RSNs; 10 · 5 = 50 for FC-D,
ET-FC, and ET-CDRSNs, respectively; and 200 for CDC.
The total number of features is 585 for each subject. CFS
was then adopted on all 585 features of subjects in each

FIG. 2. Ten well-matched RSNs identified from sparse representation. The first row showed the 10 RSN templates. For
each template, the most informative slice, which is superimposed on the MNI152 template image, was shown as the spatial
pattern. Rows 2 to 6 show the identified RSNs of a randomly selected subject of five groups (NC, SMC, EMCI, LMCI, and
AD), respectively. In each subfigure, the most informative slice, superimposed on the MNI152 template image, was shown as
the spatial pattern of a specific RSN. The time series of corresponding atom was also shown below each spatial pattern of the
RSN. All 10 RSNs were matched by calculating and sorting the overlapping rate with the corresponding RSN templates (first
row) provided in http://fsl.fmrib.ox.ac.uk/analysis/brainmap + rsns/ (Smith et al., 2009). The RSN templates shown in first
row were thresholded at z = 3. The color scale of spatial maps in sparse representation ranges from 0.1 to 10. AD, Alzheimer’s
disease; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SMC, significant memory concern.
Color images available online at www.liebertpub.com/brain
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group pair (NC/AD, NC/SMC, NC/EMCI, NC/LMCI, and
NC/EMCI + LMCI) to perform feature selection. Finally
10-fold cross-validation was performed for classification of
each group pair via SVM.

We summarized the number of features before and after
CFS and the corresponding classification results in Table 2.
If we trained classifiers and performed classification using
all 585 features, then the classification accuracy is not satis-
fied for all five group pairs (40.38% to 67.00%). After CFS, 5
to 30 features survived for the five group pairs detailed in
Table 2. We can see that with the most relevant and discrim-
inative features, the classification accuracy substantially
improved for all five group pairs (80.00% to 94.12%). More-
over, we removed the eight subjects in EMCI group with dif-
ferent TR (not 3 sec) to exclude the potential effect of the
scan parameters, and performed the feature selection and
classification. The classification accuracy is 79.59%, speci-
ficity is 72.00%, and sensitivity is 87.50%. The results did
not change much compared with the results in Table 2. We
will interpret those features with high differentiation power
in detail in the following heading.

Features with high differentiation power

As illustrated in ‘‘Classification results based on sparse
representation features’’ heading, we adopted CFS to obtain
the features with high differentiation power for each group

pair. Table 3 summarized the detailed feature numbers in
six feature types after CFS for each group pair. We discuss
the features with high differentiation in each of the five
group pairs in detail as follows.

For NC-SMC group, there are 22 features in total after
CFS. Specifically, there is no feature in SOR type. For FC-
RSNs type, there are 13 features, including the functional
connectivity between RSNs #4–#10, #5–#8, #1–#3, #3–#6,
#3–#7, #7–#8, #1–#8, #3–#4, #4–#7, #1–#4, and #4–#5.
The RSN IDs can be referred to Figure 2. This result indi-
cates that there are widespread functional connectivity alter-
ations among RSNs in SMC. For FC-D type, there are two
features related to RSNs #1 and #8. There is one feature in
ET-FC that corresponds to RSN #8. For ET-CDRSNs type,
there are three features related to RSNs #1 and #5. For
CDC, there are three features representing the common
atoms #97, #133, and #179. The time series of these common
atoms with high differentiation power are shown in Figure 3.

For NC-EMCI group, there are eight features in total after
CFS. There is one feature in SOR type corresponding to RSN
#1. For FC-RSNs type, there are two features corresponding
to the functional connectivity between RSNs #3–#5 and #5–
#6. For FC-D type, there is one feature corresponding to RSN
#4. For ET-FC type, there is one feature corresponding to
RSN #1. For ET-CDRSNs type, one feature corresponds to
RSN #3. For CDC, two features correspond to atoms #52
and #89 (Fig. 3).

Table 1. The Mean Overlap Rate of All RSNs in Sparse Representation of Each Group

NC SMC EMCI LMCI AD All

RSN #1 0.46 – 0.09 0.44 – 0.12 0.45 – 0.11 0.42 – 0.13 0.39 – 0.12 0.43 – 0.12
RSN #2 0.37 – 0.07 0.37 – 0.07 0.36 – 0.09 0.32 – 0.09 0.33 – 0.09 0.35 – 0.08
RSN #3 0.40 – 0.09 0.40 – 0.11 0.38 – 0.11 0.37 – 0.12 0.38 – 0.12 0.39 – 0.11
RSN #4 0.52 – 0.08 0.49 – 0.08 0.48 – 0.12 0.44 – 0.14 0.46 – 0.14 0.48 – 0.12
RSN #5 0.41 – 0.07 0.39 – 0.08 0.39 – 0.10 0.34 – 0.11 0.37 – 0.11 0.38 – 0.09
RSN #6 0.40 – 0.09 0.41 – 0.10 0.41 – 0.11 0.40 – 0.15 0.37 – 0.12 0.40 – 0.11
RSN #7 0.37 – 0.07 0.37 – 0.09 0.38 – 0.10 0.35 – 0.11 0.33 – 0.11 0.36 – 0.10
RSN #8 0.32 – 0.07 0.33 – 0.08 0.33 – 0.07 0.30 – 0.10 0.30 – 0.08 0.32 – 0.08
RSN #9 0.24 – 0.03 0.25 – 0.05 0.25 – 0.05 0.23 – 0.04 0.24 – 0.04 0.24 – 0.05
RSN #10 0.29 – 0.07 0.27 – 0.08 0.28 – 0.07 0.27 – 0.08 0.28 – 0.07 0.28 – 0.07

Each overlap rate is represented as mean – standard deviation.
AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SMC, significant memory

concern.

Table 2. Summary of the Feature Number and the Classification Accuracy Using Either All

Features or Features After Correlation-Based Feature Selection for Each Group Pair

NC-SMC NC-EMCI NC-LMCI NC-EMCI + LMCI NC-AD

All features
Feature no. 585 585 585 585 585
Accuracy 40.38% 62.00% 45.45% 67.00% 44.12%
Specificity 42.31% 64.00% 36.36% 52.00% 35.29%
Sensitivity 38.46% 60.00% 54.55% 82.00% 52.94%

Features after CFS
Feature no. 22 8 5 30 11
Accuracy 92.31% 80.00% 80.68% 92.00% 94.12%
Specificity 96.15% 76.00% 79.55% 90.00% 94.12%
Sensitivity 88.46% 84.00% 81.82% 94.00% 94.12%

CFS, correlation-based feature selection.
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For NC-LMCI group, there are five features in total. There
is no feature in SOR, ET-FC, or CDC type. For FC-RSNs
type, there are two features corresponding to the functional
connectivity between RSNs #1–#4 and #4–#5. For FC-D
type, there are two features corresponding to RSNs #2 and
#4. There is one feature in ET-CDRSNs corresponding to
RSN #10. We can see that RSN #4, known as DMN, has
discriminative functional characteristics in differentiating
LMCI from NC.

For NC-EMCI + LMCI group, there are 30 features in total
after CFS. There is one feature in SOR corresponding to RSN
#2. For FC-RSNs, there are 17 features corresponding to the
functional connectivity between RSNs #2–#8, #5–#10, #7–
#10, #2–#9, #4–#7, #1–#6, #3–#5, #4–#5, #4–#7, #6–#8,
#1–#4, #1–#10, #2–#4, #3–#10, #5–#6, and #6–#9. This re-
sult is in agreement with our previous results that show
that there are widespread functional connectivity alterations
among RSNs in MCI ( Jiang et al., 2013). For FC-D type,
there are four features related to RSNs #4, #6, and #7. For
ET-FC, there are two features corresponding to RSNs #4
and #3. There are three features in ET-CDRSNs correspond-

ing to RSNs #2, #3, and #4. For CDC type, there are three
features corresponding to atoms #52, #89, and #148 (Fig.
3). We can also see that RSN #4, known as DMN, has dis-
criminative functional characteristics in differentiating
MCI from NC. It should be noted that the performance of
NC/EMCI + LMCI group classification is better than NC/
EMCI and NC/LMCI. Although we cannot compare the clas-
sification results of the three groups directly since the classi-
fiers of the three groups were trained separately based on
different and specific features of the three groups after fea-
ture selection, from theoretical perspective, one possible ex-
planation is that after feature selection, more features that
have relevant and discriminative power for classification
were retained in the NC/EMCI + LMCI group than those in
NC/EMCI and NC/LMCI groups.

For NC-AD group, there are 11 features in total after CFS.
There are three features in SOR type corresponding to RSNs
#1, #2, and #4. For FC-RSNs, there are three features corre-
sponding to the functional connectivity between RSNs #3–
#8, #4–#8, and #7–#9. There is no feature in FC-D type.
For ET-FC type, there is one feature corresponding to RSN

Table 3. Summary of Number of Features After Correlation-Based Feature Selection

in Six Feature Types for Each Group Pair

Feature types

Total SOR FC-RSNs FC-D ET-FC ET-CDRSNs CDC

NC-SMC 22 0 13 2 1 3 3
NC-EMCI 8 1 2 1 1 1 2
NC-LMCI 5 0 2 2 0 1 0
NC-EMCI + LMCI 30 1 17 4 2 3 3
NC-AD 11 3 3 0 1 1 3

FC-RSNs, functional connectivity within resting-state networks; SOR, spatial overlapping rate.

FIG. 3. Time series of the
common atoms with high
differentiation power in each
group pair. There are 140
time points. The index of the
common atoms in the learned
dictionary for each subject is
shown above the time series
of the atoms.

SPARSE REPRESENTATION OF FMRI DATA ON ADNI 583



#1. For ET-CDRSNs type, there is one feature corresponding
to RSN #10. For CDC type, there are three features corre-
sponding to atoms #78, #111, and #130 (Fig. 3).

Discussion and Conclusions

In this article, we have presented a novel computational
framework to represent whole-brain R-fMRI signals via
sparse learning. The core idea is to assemble all the fMRI
signals within the whole brain of one subject into a big
data matrix, which is factorized into an over-complete dictio-
nary basis matrix and a coefficient weight matrix via an
online dictionary learning algorithm. Then, we designed
a computational method to quantitatively characterize 10
RSNs from the extracted functional components by estimat-
ing the SOR. And last, we constructed six types of features
derived from the previous sparse representation and success-
fully applied them for feature selection/classification on 210
subjects from the ADNI database. The results showed more
than 90% classification accuracy on AD, MCI, and SMC
from normal controls. Moreover, these six types of features
also displayed high differentiation power between EMCI
and LMCI with around 80% accuracy. One of the essential
differences between our proposed framework and traditional
fMRI analysis (Greicius et al., 2004; Maxim et al., 2005; Sorg
and Riedl, 2007; Supekar et al., 2008; Wang et al., 2007) on
AD/MCI is that, instead of estimating functional connectivity
on the original fMRI signals, we recovered the complex/
hybrid-source fMRI signals into multiple components that
potentially reflect different functional networks corresponding
to those back-stage brain activities. Based on our results, these
latent functional networks reflect some intrinsic brain activi-
ties that are difficult to be observed from the fMRI signals
directly. Note that we do not enforce the statistically indepen-
dent constraint during the factorization like ICA does. This
means that our framework has more freedom during the sparse
learning stage and on eliminating the need for initialization
using a predefined model at the most extent.

Another contribution of this article is that we purposely
construct six types of new features based on the sparse rep-
resentation results. For example, SORs reflect the possible
alterations of RSNs in terms of the spatial patterns compar-
ing to the normal RSN templates; FC-RSNs/FC-D character-
ize the functional interactions within/outside RSNs; ET-FC
and ET-CDRSNs depict the distribution of functional con-
nectivity and RSN-related functional complexity from the in-
formation theory point of view; CDC does the second round
of sparse learning of the individual dictionaries. Through this
way, it can successfully extract the most common dictionary
atoms composing individual dictionaries. The high classifi-
cation accuracy illustrated in ‘‘Classification results based
on sparse representation features’’ heading and Table 2
proves the effectiveness of all these features. Moreover, we
also compared our classification results with a recently pub-
lished method ( Jie et al., 2014) using the same dataset. The
difference is that, in the work of Jie and colleagues (2014),
they adopted a graph-kernel-based approach to construct
the features. The comparison result is summarized in Table
4 and the advantages of using sparse-representation-derived
features are obvious.

Meanwhile, the work and methods in this article can be
further expanded and enhanced in the following aspects in

the future. First, at the current stage, we have adopted the
dictionary size at 200 and k at 1.5 based on experiment eval-
uation. To further refine our framework, we need to system-
atically evaluate the relation of these parameters to the
components extracted from the sparse representation.
Although how to choose the ‘‘best’’ parameters is still an
open question in machine learning field, we can introduce
some prior knowledge or constraints from neuroscience
point of view. Second, we can introduce and integrate more
meaningful functional and structural features into our frame-
work to improve the classification power of our method (e.g.,
to handle the subtle difference among the subtypes of MCI
and achieve satisfactory classification accuracy). In this arti-
cle, we only focused on the quantitative characterization of
spatial patterns of 10 well-known RSNs in ‘‘Individual RSN
identification’’ heading. It should be pointed out that there
are many other potentially important and meaningful dictio-
nary network components that should be examined and char-
acterized in the future. For instance, Figure 1e shows other
spatial distributions that do not match the known RSN tem-
plates. However, it is unclear whether their spatial patterns
correspond to some potential functional networks activated
during the resting state. On the other hand, we could do
more analysis in the temporal domain (dictionary matrix)
to explore the dynamic interactions among different dictio-
nary atoms at different frequency scales. Another thing we
can do is to introduce structural information and combine
with current-derived spatial patterns. For example, we can
predict dense individualized and common connectivity-
based cortical landmarks (DICCCOLs) (Zhu et al., 2012)
on these 210 subjects and examine whether there exists a
consistent overlap between DICCCOLs and a specific spatial
pattern. Finally, it should be also noted that, in this article, we
focus on the presentation of the methodologies that using
dictionary-learning-based method for AD classification
based on the R-fMRI scan at first time for each subject. In
the future work, we will apply our method to other applica-
tions, for example, the MCI conversion prediction and stud-
ies of longitudinal changes of subjects.

Acknowledgments

D.Z. and X.J. were supported by NSF CAREER Award
(IIS-1149260), NIH R01 DA-033393, NIH R01 AG-042599,
and NSF BME-1302089. X.Z. was supported by the China
Government Scholarship and the Doctorate Foundation of
Northwestern Polytechnical University. Data used in this article

Table 4. Comparison of the Classification

Accuracy with Graph-Kernel-Based Method

Classification
accuracy of

proposed
method

Classification
accuracy of
graph-kernel
method ( Jie
et al., 2014)

NC-SMC 92.31% 71.05%
NC-EMCI 80.00% 65.09%
NC-LMCI 80.68% 60.22%
NC-EMCI + LMCI 92.00% 66.44%
NC-AD 94.12% 61.9%

584 JIANG ET AL.



were funded by the ADNI (U01AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-
2_0012). ADNI is funded by the NIA, NIBIB, and through
generous contributions from the following: Alzheimer’s Asso-
ciation; Alzheimer’s Drug Discovery Foundation; BioClinica,
Inc.; Biogen Idec, Inc.; Bristol-Myers Squibb Company;
Eisai, Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
F. Hoffmann-La Roche Ltd and its affiliated company Genen-
tech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.;
Janssen Alzheimer Immunotherapy Research & Development,
LLC.; Johnson & Johnson Pharmaceutical Research & Devel-
opment LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuti-
cals Corporation; Pfizer, Inc.; Piramal Imaging; Servier; Syn-
arc, Inc.; and Takeda Pharmaceutical Company. The CIHR is
providing funds to support ADNI clinical sites in Canada. Pri-
vate sector contributions are facilitated by the FNIH (www.fnih
.org). The grantee organization is the Northern California Insti-
tute for Research and Education, and the study is coordinated
by the Alzheimer’s Disease Cooperative Study at UCSD.
ADNI data are disseminated by the Laboratory for Neuro Imag-
ing at the University of Southern California.

Author Disclosure Statement

No competing financial interests exist.

References

Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tso-
pelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W,
Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk
WE. 2008. Frequent amyloid deposition without significant
cognitive impairment among the elderly. Arch Neurol 65:
1509–1517.

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH,
Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen
RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. 2011. The
diagnosis of mild cognitive impairment due to Alzheimer’s
disease: recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement
7:270–279.

Anderson ML, Kinnison J, Pessoa L. 2013. Describing func-
tional diversity of brain regions and brain networks. Neuro-
image 73:50–58.

Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for
making group inferences from functional MRI data using inde-
pendent component analysis. Hum Brain Mapp 14:140–151.

Chang C, Lin C. 2001. LIBSVM: a library for support vector ma-
chines. Computer (Long. Beach. Calif) 2:1–30.

Chételat G, Desgranges B, De La Sayette V, Viader F, Eustache
F, Baron J-C. 2002. Mapping gray matter loss with voxel-
based morphometry in mild cognitive impairment. Neurore-
port 13:1939–1943.

Convit A, de Asis J, de Leon MJ, Tarshish CY, De Santi S, Rusi-
nek H. 2000. Atrophy of the medial occipitotemporal, inferior,
and middle temporal gyri in non-demented elderly predict de-
cline to Alzheimer’s disease. Neurobiol Aging 21:19–26.

Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM. 2008. Detec-
tion of prodromal Alzheimer’s disease via pattern classifica-
tion of magnetic resonance imaging. Neurobiol Aging 29:
514–523.

Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S,
Segal S, Rusinek H, Pelton GH, Honig LS, Mayeux R,
Stern Y, Tabert MH, De Leon MJ. 2007. Hippocampal and
entorhinal atrophy in mild cognitive impairment: prediction
of Alzheimer disease. Neurology 68:828–836.

Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson
RS, Bennett DA, Beckett LA, deToledo-Morrell L. 2001.
MRI-derived entorhinal and hippocampal atrophy in incipi-
ent and very mild Alzheimer’s disease. Neurobiol Aging 22:
747–754.

Duncan J. 2010. The multiple-demand (MD) system of the pri-
mate brain: mental programs for intelligent behaviour. Trends
Cogn Sci 14:172–179.

Fedorenko E, Duncan J, Kanwisher N. 2013. Broad domain gen-
erality in focal regions of frontal and parietal cortex. Proc
Natl Acad Sci U S A 110:16616–16621.
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