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ABSTRACT: High-throughput screening (HTS) assays that measure the in vitro
toxicity of environmental compounds have been widely applied as an alternative to
in vivo animal tests of chemical toxicity. Current HTS studies provide the
community with rich toxicology information that has the potential to be integrated
into toxicity research. The available in vitro toxicity data is updated daily in
structured formats (e.g., deposited into PubChem and other data-sharing web
portals) or in an unstructured way (papers, laboratory reports, toxicity Web site
updates, etc.). The information derived from the current toxicity data is so large
and complex that it becomes difficult to process using available database
management tools or traditional data processing applications. For this reason, it
is necessary to develop a big data approach when conducting modern chemical
toxicity research. In vitro data for a compound, obtained from meaningful bioassays,
can be viewed as a response profile that gives detailed information about the
compound’s ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex
bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the
existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g.,
potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity
research are also described.
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■ INTRODUCTION

With the great progress of combinatorial chemistry since the
1990s, large chemical libraries became the major source of
modern drug discovery procedures.1,2 Over the past 10 years,
this effort also stimulated the development of high-throughput
screening (HTS) techniques.3,4 Traditional toxicity testing
protocols using animal models are expensive and time-

consuming. Because of the urgent need to use alternative
methods in toxicity studies, the U.S. National Research Council
(NRC) outlined a new vision and strategies for the increased
use of in vitro technologies for chemical risk assessment.5 With
its low cost and short testing time, HTS has been viewed as the
potential alternative to animal models. In contrast with virtual
screening techniques (e.g., QSAR or docking), HTS does not
require prior knowledge about potential hits or 3D structures of
involved molecular targets.
HTS is a process that screens thousands to millions of

compounds using a rapid and standardized protocol. Current
HTS techniques are usually combined with robotic methods.
Parallel data processing and biological assay miniaturization
have become more and more popular in toxicology studies, as
they greatly reduce the cost of experimental testing.3,6 It is
understandable that some popular compounds, especially those
of toxicity interest (e.g., known human toxicants), have been
tested multiple times and in many different bioassays. For this
reason, the assay response data from multiple resources and/or
multiple testing protocols could be viewed as the response
profile of the compounds being tested. Figure 1 shows the
current data construction of compounds in toxicity testing.
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Compared to the limited amount of historical animal toxicity
data, the chemical−response data space obtained from HTS is
much more complex and keeps growing daily.
The term big data describes a collection of data sets that are

so large and complex that they are too difficult to process by
traditional data analysis tools. Originally, the big data focus was
on advanced data storage and handling techniques, such as
cloud-based computing or high-speed heterogeneous computa-
tional environments.7 Currently, the problem of big data is
gaining increasing recognition in clinical studies and other
research areas driven by biological data.8,9 Clearly, the progress
of HTS and relevant data sharing projects has moved modern
chemical toxicity research into the big data era. The need of
novel techniques, including data mining/generation, curation,
storage, and management, brings new challenges and
opportunities to the current toxicology community.

■ HIGH-THROUGHPUT SCREENING IN CHEMICAL
TOXICOLOGY

There were several important movements by regulatory
agencies for the development of HTS assays that are potential
alternatives to animal testing. The NIH Roadmap for medical
research was launched in 2004.10 Fueled by this initiative,
several molecular library screening centers were funded by the
NIH Molecular Libraries Common Fund Program. The
National Institutes of Health (NIH) Chemical Genomics
Center (NCGC), which is now part of the National Center for
Advancing Translational Sciences (NCATS), was one of them.
In 2005, the National Toxicology Program (NTP) and NCGC
started a collaboration to (1) develop a chemical library suitable
for quantitative HTS (qHTS), (2) develop HTS assays
potentially informative for in vivo toxicity effects, and (3)
experimentally test the chemical library by these qHTS assays.4

This was one of the early efforts to systemically use the HTS

technique within toxicology studies. During the same period,
there were many other HTS projects that were performed by
other research groups.11−15 Although these studies were not
specifically designed for chemical toxicity, but for drug
discovery and other areas, these HTS efforts also generated
numerous bioassay data for large chemical libraries. For the
early days of HTS development, several reviews are
available.3,16−20

In 2006, the U.S. Environmental Protection Agency (EPA)
initiated a research program named toxicity forecaster
(ToxCast). The goal of this program was to develop methods
for utilizing in vitro toxicity tests and various toxicogenomics
technologies to quickly evaluate the toxic potential of chemicals
and to prioritize candidates for future animal testing.16 Phase I
of ToxCast employed a chemical library of 300 unique
compounds, most of which were chemicals for agricultural
use, such as pesticides, and had relevant animal toxicity testing
results available.21 Around 500 cell-free or cell-based assays
were used to screen this chemical library. From these, over 600
in vitro end points were measured for each chemical, generating
over 200 000 concentration−response data points. In ToxCast
phase II, another 767 compounds, including some failed
pharmaceuticals, were screened using around 700 HTS
assays.22

In 2008, another big collaborative program, called Toxicity
Testing in the 21st century (Tox21), was launched by NTP,
NCGC, and EPA,23−25 joined later by the U.S. Food and Drug
Administration (FDA). The Tox21 collaboration brought
together its partners’ expertise in the areas of experimental
toxicology, in vitro assays, and informatics.25 The target
chemical library of Tox21 screening contains over 8000 unique
compounds, including commercial compounds, pesticides, and
marketed pharmaceuticals.22 Screening of this extensive

Figure 1. Construction of big data for chemical toxicity research.
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chemical library commenced in 2011 at NCGC, with a
throughput capacity of approximately 25 assays per year.

■ CURRENT TOXICITY DATA SHARING PROJECTS
Table 1 summarizes the above data sharing projects and other
relevant toxicity sources. Facilitated by the combined efforts of
HTS and combinatorial chemical synthesis, modern screening
programs produced enormous amounts of biological data,
especially the chemical responses on specific targets.26 As a
result, several data sharing projects, in parallel to the generation
of HTS toxicity data, were also initiated during the past 10
years. For example, PubChem is a public repository for
chemical structures and their biological properties.27,28 Most of
the HTS data (e.g., those generated from the above toxicology
programs) were shared through PubChem. Figure 2 shows the

yearly increase of PubChem compounds.29−34 Over the past 5
years, the number of PubChem compounds increased from 19
million in September 200829 to 48 million in September
2013.33 During the same period, the number of bioassays that
were deposited into PubChem increased from 1197 in
September 200829 to over 700 000, resulting in over five
terabytes of data, in September 2013.33

The Chemical Effects in Biological Systems (CEBS) database
developed by the National Institute of Environmental Health
Sciences (NIEHS) is now the public repository for all NTP
conventional toxicology and carcinogenicity data as well as
NCGC HTS data.35,36 Along with the Comparative Toxicoge-
nomics Database (CTD) at Mount Desert Island Biological

Laboratory, CEBS aims to promote comparative studies of
genes and proteins across species.37−40

All of these data together can be viewed as the current
toxicity big data pool, which contains over 70 million
compounds, over 1 million bioassays, and around 50 billion
data points. The information within this pool is being updated
daily and increases rapidly (e.g., the progress of PubChem, as
shown in Figure 2).

■ CHARACTERIZING TOXICANTS BY MULTIPLE
BIOASSAY DATA

The direct consequence of the HTS testing efforts over the past
10 years is the massive amount of available biological data for
organic compounds, especially those of environmental interest.
A significant number of those compounds have been tested
multiple times. For example, Table 2 shows 20 toxicants

obtained from the Integrated Risk Information System (IRIS)
database.41 On the basis of the search result on PubChem,42

these toxicants were reported to be tested in hundreds of
PubChem bioassays. For example, chlordecone (CAS 143-50-
0), an insecticide banned from the market, showed active
responses in 328 bioassays (Table 2). Other toxicants have
similarly rich response information in PubChem (Table 2).

Table 1. Available Public Toxicity Data Resources

name general information data description

PubChem27,28 Around 47 million compounds, over 700 000 bioassays, over 13 billion data points Toxicity, pharmaceutical, genomics, and literature data
ChEMBL87 Over 600 000 compounds, 3.3 million bioassay readout data Literature data
ACToR88,89 The toxicity results from 100 various data resources Both in vitro and in vivo toxicity data
ToxNET90 Over 50 000 environmental compounds from 16 different resources Both in vitro and in vivo toxicity data
SEURAT91 Over 5500 cosmetic-type compounds in the current COSMOS database web portal Animal toxicity data
CTD37−40 Over 13 000 compounds, over 32 000 genes, over 6000 diseases Compound, gene, and disease relationships
CEBS35 About 10 000 toxicity bioassays from various sources Gene expression data
DrugMatrix92 About 600 drug molecules and 10 000 genes Gene expression data
Cmap93 About 1300 compounds and 7000 genes Gene expression data

Figure 2. Increase of compounds recorded in PubChem within 5 years
(from September 2008 to September 2013).

Table 2. Twenty Human Toxicants with Their Relevant
PubChem Bioassay Responses

chemicals CAS
no. of active
responses

no. of inactive
responses

Chlordecone 143-50-0 328 539
Toxaphene 8001-35-2 294 112
Hexachlorocyclopentadiene 77-47-4 208 262
Dichlorvos 62-73-7 181 633
Pentachlorophenol 87-86-5 95 690
Heptachlor 76-44-8 85 624
DDT, p,p′- 50-29-3 76 386
DDD, p,p′- 72-54-8 70 186
Endosulfan 115-29-7 65 259
Naphthalene 91-20-3 61 890
DDD, o,p′- 53-19-0 61 964
1,4-Dichlorobenzene 106-46-7 57 362
4,6-Dinitro-o-cresol 534-52-1 57 213
Phenol 108-95-2 53 518
Chlorpyrifos 2921-88-2 48 739
Methoxychlor 72-43-5 47 710
2,4-Dinitrophenol 51-28-5 46 672
Tetrachlorophenol 25167-83-3 45 515
Benzo(a)pyrene 50-32-8 39 358
4,4′-Methylenebis(2-
chloroaniline)

101-14-4 32 431
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Although there are notable cases when individual in vitro
assays are predictive of in vivo outcomes (e.g., assays for skin
sensitization43 and endocrine disruption44), for many complex
toxicity end points, single-assay data is not sufficient. The
multiple bioassay data of a single compound can be viewed as
its biological profile, reflecting its interactions. Profiling
compounds, especially the toxicants, to study their toxicity
potential is the most straightforward way to use the available
bioassay data. ToxCast phase I screened over 300 unique
compounds, mostly food pesticides, in 467 bioassays. The
resulting data was used to profile screened compounds for their
potential to induce carcinogenicity,45 developmental toxic-
ity,46,47 reproductive toxicity,48 and endocrine disruption.44,49

In these studies, good correlations could be found between
some bioassays and animal toxicity. For example, a model was
developed by using peroxisome proliferator-activated receptor
signaling assays to predict rodent carcinogenicity of 33

compounds.45 However, although ToxCast is the most
comprehensive and biggest toxicity screening project so far,
using all of the available ToxCast assay data to develop a global
predictive model for chemical toxicants is still questionable.50

Besides the bioassay data generated by the ToxCast program,
the Tox21 compounds have been tested in other screening
projects (e.g., NCI60).51 In the current big data era, the
bioassay response profile can be very large for some
compounds (e.g., those well-known toxicants shown in Table
1). The initial response space can be large, complex, and
unorganized. For example, if we searched PubChem bioassay
data for the 962 ToxCast compounds, we could identify 193
PubChem assays that have at least five actives among these
compounds (accessed in December of 2013). By classifying the
ToxCast compounds into four major categories,52 we could
compare the response profiles, consisting of the 193 PubChem
assays, of different types of compounds (Figure 3). Compared

Figure 3. Response spaces of different ToxCast compound categories represented by the data obtained from 193 PubChem bioassays: (a) 171
consumer use chemicals (not including pharmaceuticals or pesticides), (b) 470 pesticides, (c) 245 pharmaceuticals, and (d) 34 phthalate plasticizers
and alternatives.
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to phthalate plasticizers, the pharmaceutical compounds and
pesticides have been studied in most bioassays, and the active
response ratios are relatively high.
It is understandable that most areas within the initial

response map are either “no testing” or “inconclusive”
(indicating that no conclusion could be made about the
relevant compounds based on the testing data) because many
bioassays have been applied only to a small portion of this large
chemical set. Furthermore, the nature of HTS assays, many of
which represent very specific interactions, results in a biased
distribution of responses for the target chemicals (many more
“inactive” than “active” data entries). Because not all of the
bioassay data are relevant or useful for a particular type of
toxicity, additional rational selection steps are needed to select
useful information from the bulk of available big data.

■ THE USE OF BIOASSAY DATA TO PRIORITIZE
ANIMAL TOXICANTS

There have been some studies that use current bioassay data to
identify likely animal toxicants and/or prioritize them for future
experimental animal testing. For example, the currently
available ToxCast bioassays have been organized into a global
scoring system, called Toxicological Priority Index (ToxPi), to
identify potential toxicants by their responses in these
assays.44,47,49,52,53 ToxPi, which is a dimensionless index
score, was calculated as a weighted combination of all data
sources that represents a formalized, rational integration of
information from different types of ToxCast bioassays results.49

Furthermore, toxicity pathways could also be generated, linking
relevant bioassays together by analyzing their biological
targets.54,55 ToxCast phase I is the first time there has been a
big data effort to generate and systemically use large scale
bioassay data in chemical toxicity studies. In ToxCast phase II,
similar efforts continued with the new 767 target chemicals,
including 111 failed pharmaceutical drug molecules.52 In the
recent Tox21 program, the results obtained from ToxCast were
used to select the most useful bioassays as the testing battery
for a much larger database.24,56,57

There are other research groups and agencies that use
bioassays to study various in vivo toxicities, such as acute
toxicity,58−61 developmental toxicity,62 and drug−drug inter-
actions.63 One example is the AcuteTox collaborative project
initiated within the European Union. Its purpose is to develop
alternative testing strategies that could replace animal testing
for predicting human acute oral systemic toxicity.61,64−68

Similar to ToxCast, AcuteTox generated large scale in vitro
toxicity data from multiple bioassays.65 All of these efforts
contributed to the initial pool of big data for chemical toxicants.
The authors of this review have also utilized bioassay data to

predict animal toxicity of organic compounds. In the first two of
our studies, multiple qHTS data from NCGC bioassays were
used as biological descriptors to develop predictive models for
various animal toxicity end points.69,70 The models with hybrid
(combination of chemical and biological) descriptors showed
better predictivity than the traditional quantitative structure−
activity relationship (QSAR) models using only chemical
descriptors. In another study, the biological descriptors
obtained from toxicogenomics data were used to model animal
hepatotoxicity.71

■ PROGRESS OF TOXICOLOGY IN THE BIG DATA
ERA

The clear limitation of extrapolating results from in vitro assays
to a whole organism is that each in vitro assay generally
considers only one or several target sites rather than a
comprehensive organism consisting of hundreds of potential
targets.72,73 The practical solution is to form a large battery of
diverse in vitro assays for a specific animal toxicity, such as the
ToxCast strategy.16,22 In the toxicant profiling studies described
above, each project was limited to the use of the data generated
by its own HTS assays. This lack of data integration across
multiple related toxicity databases is clearly a big and open
issue. How to integrate large scale data sets from various
sources is a key question that needs to be addressed in the
current big data scenario. To realize this goal, novel data
storage and management methods need to be developed. For
example, it is clear that all HTS assays contain certain noise
associated with experimental data. Experimental noise varies
from assay to assay, but it is rarely less than 15% as is seen, for
example, for the Ames mutagenicity test.74 Even in the most
recent HTS project, e.g., ToxCast, random errors still exists in
the original dose−response data.75 To solve this problem,
quality control (QC) review is a necessary step to remove
experimental errors. Furthermore, automatic data processing
methods have been developed to identify hits (i.e., actives or
toxic compounds) from quality-assured HTS data and to
increase the data dissemination and reproducibility.76 Future
data management tools, which are specifically useful for big data
analysis, should be able to normalize the HTS data from
different sources into benchmark end points. Currently, some
preliminary studies (e.g., CurveP70) have been reported.
In 2007, the NRC envisioned a new paradigm in which

biologically important perturbations in key toxicity pathways
would be evaluated with new approaches in modern toxicology
studies.5 In this book, the NRC defined the toxicity pathway as
a cellular response pathway that would result in an adverse
health effect when sufficiently perturbed. This was the first time
the concept of toxicity pathways, and emphasis on the use of
pathways to explain the complex toxicity mechanisms, was
introduced. In the above section, some preliminary studies of
toxicity pathway studies (e.g., ToxCast project) were
introduced.16 Driven by the urgent requirements of the mode
of action (MOA) analysis in toxicity studies, the Organization
for Economic Development and Cooperation (OECD) has
funded the recent development of adverse outcome pathway
(AOP) development, which greatly advanced the area of
ecotoxicology.77 The AOP models have been successfully
applied to skin sensitization evaluations.78

To incorporate more toxicity data, especially the daily
updated big data pool as shown in Table 1, into toxicity models
(e.g., toxicity pathways), novel data mining tools need to be
developed to extract useful data from different resources. Wild
and his co-workers developed a framework called Chem2-
Bio2RDF to link several data resources, such as DrugBank,
PubChem, ChEMBL, and others.79 This framework, including
other similar data mining tools developed in the same group,
was used to create complex systems biology models (e.g., for
drug adverse effects).79−81 Recently, Fourches et al. reported a
newly developed software, named HTS Navigator, to extract,
visualize, and analyze HTS data from various resources.82

Among emerging approaches specific to big data analysis, two
key developments are semantic text-mining,83 which helps
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bridge the language barrier across data sources with different
ontologies, and large scale network analysis, to identify groups
of related entities for further processing.84

In the current big data scenario, the most critical issue is to
identify useful in vitro data. In principle, this could be done by a
human expert using the knowledge of the design and quality of
each particular bioassay (e.g., confidence score assigned during
manual curation to each assay in ChEMBL). We, however,
believe that data-driven approaches would provide more
efficient ways to accomplish this. One possible strategy is to
select assays based on their in vitro−in vivo relationships.
Because there are multiple mechanisms behind each toxicity
phenotype, each bioassay is likely to show only partial
correlation with in vivo effect. For example, if a bioassay
represents a receptor that belongs to a toxicity pathway relevant
to the target animal toxicity, then this bioassay should provide
useful information, such as receptor/pathway perturbation.
However, if compounds show inactive results in a particular
bioassay, then they can still be toxic because they may bind to
other target sites (Figure 4). Indeed, our previous study showed

that the bioassay results have a low false-positive rate to predict
the relevant animal toxicity.85 The false-negative rate, on the
contrary, is high. On the basis of this study, we recently
developed an automatic bioassay system to evaluate and extract
the relevant bioassay data based on the in vitro−in vivo
relationship. In our most recent publications, we developed an
approach that could identify the most relevant bioassays as
alternatives for animal toxicity models.86 In this study, we
initially extracted over 12 000 bioassays and around half million
data points for 2000 compounds with animal toxicity results. By
using the in vitro−in vivo relationship, which was described in
Figure 4, as the criteria, we developed a novel approach to
select the most relevant bioassays to acute rat toxicity. The top
47 bioassays could be used to prioritize animal toxicants for
future experimental testing in animals. Interestingly, the top
potential animal toxicants, which have similar active responses
in these bioassays, have dissimilar chemical structures.

■ CONCLUSIONS
Current innovative technologies enable rapid synthesis and
high-throughput screening of large libraries of compounds.
Daily updated toxicity bioassay data have transformed current

toxicology studies into big data analysis. Fueled by the recent
input from the U.S. and European governments, there are many
ongoing data-generation and data-sharing programs, accom-
panied by the development of data curation and automated
data management (e.g., “EMBL-EBI” KNIME workflow nodes
for ChEMBL, “rpubchem” R package to PubChem) approaches
that could be used to sample HTS data in meaningful formats
to facilitate chemical toxicity studies. New scoring and
modeling methods are also under way to take advantage of
the massive amount of bioassay data. Although the use of
bioassay data in most current toxicological research projects is
still limited to a small portion of well-sampled HTS data,
several novel approaches have been reported to be able to
access and integrate multiple bioassay data resources to profile
toxicants. Under the current big data scenario, it is expected
that modern toxicology research will be able to better estimate
the systemic effects of compounds on whole organisms and to
translate this into better informed regulation of toxicants for
animals and humans.
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