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Abstract

Advanced diffusion weighted MR imaging allows non-invasive study on the structural

connectivity of human brains. Fiber orientation distributions (FODs) reconstructed from diffusion

data are a popular model to represent crossing fibers. For this sophisticated image representation

of connectivity, classical image operations such as smoothing must be redefined. In this paper, we

propose a novel rotation-induced Riemannian metric for FODs, and introduce a weighted diffusion

process for FODs regarding this Riemannian manifold. We show how this Riemannian manifold

can be used for smoothing, interpolation and building image-pyramids, yielding more accurate or

intuitively more reasonable results than the linear or the unit hyper-sphere manifold.

1 Introduction

The Human Connectome Project [1] has provided cutting-edge diffusion MR imaging

techniques to study brain anatomical connectivity in vivo at unprecedented spatial and

angular resolution. This advancement urges the development of novel mathematical methods

to modelling neural fibers.

Fiber orientation distribution (FOD) images, reconstructed from diffusion weighted images,

are widely used to represent the spatial and orientational distribution of neural fibers. At

each voxel location p, the likelihood of fibers along a direction u is described by a real-

valued and nonnegative function F(u).

The mathematical property of FODs is more complicated than that of intensity values or

diffusion tensors, so their fundamental operations such as smoothing and interpolation

cannot be conducted in the same way. For example, linear smoothing does not yield

satisfactory results, as shown in Section 5.2. In [2,3,4],  is modeled as a point on the

unit hyper-sphere, a manifold whose exponential and logarithmic maps are well studied.

Later in [5,6], FODs are separated as two parts: orientation and shape. FODs’ comparison

and interpolation are conducted by rotationally matching their shapes.
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In this paper, we propose a rotation-induced Riemannian metric for square-rooted FODs f,

and introduce a weighted diffusion process for FODs regarding this metric. This novel

weighted diffusion process can be used for smoothing, interpolation and down-sampling of

FOD images. It may potentially benefit many down-stream tasks, such as tractography or

registration. It can also be used to build FOD image pyramids for multi-scale image

processing. Contrast to the work in [5,6], we focus on the differential structure of FODs,

instead of their weighted average. In an experiment with real images, we compared the new

method with the linear manifold and the hyper-sphere manifold. The new method keeps

fiber integrity better in smoothing and down-sampling, and yields more accurate results in

interpolation.

2 Rotation and Spherical Functions

2.1 Rotation and Angular Velocity

Any rotation in  can be described with a rotation vector r⃗ = [rx,ry,rz] (||r⃗|| ≤ π) whose

direction r⃗ / ||r⃗|| is the pivot axis according to the right-hand rule and whose length ||r⃗|| is the

rotation angle. The rotation matrix associated with r⃗ is R = e[r⃗]× where [•]× is the cross-

product matrix of a 3D vector as define in Eq. (1),

(1)

An angular velocity vector ω⃗ describes the pivot axis and spinning speed of a rotating object

respectively with its direction and amplitude. If an object spinning with ω⃗ for time duration

t, the accumulated rotation effect, parameterized as a rotation matrix, is R = et[ω⃗]×. With R, a

point p ∈  rotates to Rp.

2.2 Rotation of Spherical Functions

If a spherical function f(u) is rotated with R, it becomes f(R−1u). Given a unit angular

velocity ω⃗ (||ω⃗|| = 1), we define

(2)

as the rotation differential of f around axis ω⃗.

3 Manifolds of FODs

An FOD F is a spherical probability density function satisfies both ∫u∈S2 F(u)du = 1 and

F(u) ≥ 0, where S2 is a unit sphere in . Cheng, etc. in [2] modelled the manifold

 as a unit hyper-sphere, assuming that f can be linearly represented by

a finite number of orthonormal base functions. In this section, we propose a Riemannian

metric for M, differently weighting the effect of rotation in . For simplicity, symbols such
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as “f”, “v” or “l”, depending on the context, denote either spherical functions, or their linear

coordinates as represented by orthonormal base functions.

3.1 Hyper-Sphere

For two spherical functions f1 and f2, we define 〈f1, f2〉 ≡ ∫u∈S2 f1(u)f2(u)du as their dot

product. As any f ∈ M satisfies 〈f, f〉 = 1, M is a unit hyper-sphere, a well-studied

Riemannian manifold. Given a point f ∈ M, another point f† ∈ M near f can be

logarithmically mapped to TfM, the tangent space at f, as

(3)

The Riemannian metric at f associated with the logarithmic map is gf(v1, v2) = 〈v1, v2〉 where

v1, v2 ∈ TfM are two tangent vectors at f.

3.2 Rotation-Induced Riemannian Metric

Riemannian metric gf is isotropic, treating all the directions in TfM equally. To incorporate

rotation into the metric, tangent vectors generated by rotating f in  should be treated

differently. Let ḟx, ḟy and ḟz denote the rotation differential of f respectively around the x, y,

and z axes, as defined in Eq. (2). As ḟx, ḟy and ḟz are in TfM, we use them to induce a

Riemannian metric as follows. First, for a tangent vector v, we project it to the subspace

spanned by ḟx, ḟy and ḟz. Let cxḟx + cyḟy + czḟz be the projection, c ≡ [cx, cy, cz] the

projection coefficients, and ξ ≡ v − cxḟx + cyḟy + czḟz the residual. Second, given two

tangent vectors v1 and v2, the induced Riemannian metric is defined as

where λ > 0 is a parameter weighting the contribution of rotation. Such a metric definition is

equivalent to  where  and Gf is a full-rank transformation matrix

induced by ḟx, ḟy, ḟz and λ. The gf in Section 3.1 can be regarded as using Gf = I.

As ḟx, ḟy and ḟz are not necessarily linearly independent, the projection coefficients c may

not be unique. To resolve the ambiguity, we choose the coefficients with the least norm. Let

b1, …, bm be a set of unitary bases of the subspace spanned by ḟx, ḟy and ḟz. The least norm

projection coefficients are
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The Riemannian metric  introduces a new logarithmic map near f. The length of a smooth

curve γ: [0, 1] → M is . The geodesic from f to a nearby point

f† is a curve γ which satisfies γ(0) = f and γ(1) = f† and minimizes L*(γ). With appropriate

re-parameterization of t,  can be time-invariant. Accordingly, the logarithmic

map of f† to TfM is .

4 Weighted Diffusion of FODs

An FOD image is a mapping from  to an FOD manifold M. Given a point p in , let fp
denote its square-rooted FOD. To calculate the diffusion force at p, we construct a local

helper function hp: hp(q) ≡ LOGfp(fq) where q is a point near p and hp(q) is the logarithmic

map of fq to TfpM. It should be noted that the definition of LOGfp is subject to the definition

of Riemannian metrics. Sections 3.1 and 3.2 describes different metrics and logarithmic

maps.

A weighted diffusion process on an FOD image is

(4)

where lp is the diffusion force at point p, and wp is a positive weight associated with point p

in the FOD image.  maps the diffusion force to tangent space of the hyper-sphere

manifold. FODs at points with higher weights changes slower than those with lower

weights. We assume that such a diffusion process eventually makes every point in the image

take the same FOD value.

The weighed diffusion can be applied to FOD image processing as follows:

• Smoothing: diffusion in .

• Interpolation: weighted diffusion within a 2×2×2 voxel cube.

• Down-Sampling: diffusion followed by interpolation.

5 Evaluation

We compare three different manifold models of FODs: the linear model, the unit hyper-

sphere model, and the rotation-induced manifold. For simplicity, we call them the linear, the

hSphere and the rSphere methods. With the three models, image processing tasks

smoothing, interpolation and down-sampling are conducted on real FOD images. Their

performances are evaluated with two indices: (1) the sharpness of their output FODs and (2)

the difference from baseline images depending on the processing tasks. The sharpness of

FODs is measured with the generalized Fractional Anisotropy gFA(f) = 2dist(f0, f)/π where

f0 is the uniform spherical function in M, and dist(•, •) ≡ arccos(〈•,•〉); the difference from a

baseline is measured with δ(f) = 2dist(fb, f)/π where fb is the baseline FOD. (The factor 2/π

scales the indices into range [0, 1].)
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Pixel-wise comparison within each subject is conducted as follows: a performance index

image of one method is subtracted from that of another method, and then the histogram of

the subtracted image is plotted. The subject-wise comparison is conducted as follows: for

every subject, a voxel-averaged performance index is calculated, and the averaged indices of

subjects are compared with the t-test between the three methods.

5.1 Data

Ten subjects are randomly selected from the Human Connectome Project. The diffusion data

were acquired with a multi-shell sampling scheme, and the FOD images, represented with

the 8-th order spherical harmonics [7], were reconstructed with the method in [8].

5.2 Smoothing

Images are diffused with time duration t = 1. gFA is calculated on the diffused images, and

the original images are the baseline images of δ. The diffused images of a subject is shown

in Figure 1, taken from the highlighted region in the figure besides Table 1. The rSphere

method yields more reasonable results, as the fibers are sharper and orientationally

smoother. The linear and hSphere methods yield “bloated” FODs. Figures 1(b) and 1(c)

show the histogram of the pixel-wise contrast of the gFA and δ indices among the three

methods. The rSphere method produces higher gFA than the other two methods. Table 1

shows the t-test of subject-wise comparison. The rSphere method makes slightly less

changes (low δ) from the original images, yet keeps the diffused FODs much sharper (high

gFA). Tiny p-values evidence the statistical significance of the results.

5.3 Interpolation

Images are sub-sampled into two parts: one of odd-index voxels and the other of even-index.

FODs at even-index voxels are then interpolated from the odd-index image, and then

compared with the original even-index image. gFA is calculated on the interpolated images,

and the original even-index images are the baseline images of δ. The interpolation results of

a subject is shown in Figure 2, taken from the highlighted region in the figure besides Table

2. The rSphere method yields more accurate results, with FODs more similar to the original

image. Figures 2(b) and 2(c) show the histogram of the pixel-wise contrast of the gFA and δ

indices among the three methods. The rSphere method yields higher gFA and lower δ than

the other two methods. Table 2 shows the t-test of subject-wise comparison. The rSphere

outperforms the other two methods with higher gFA and lower δ. Tiny p-values evidence the

statistical significance of the results.

5.4 Down-Sampling

Down-sampling is conducted as follows. Images are diffused with time duration t = 1 and

then is interpolated for the down-sampled voxel locations. Two-level down-sampling is

conducted to build image pyramids. gFA is calculated on the down-sampled images. The

down-sampled results of a subject is shown in Figure 3. Sub-figures (a) and (b) show

respectively the overview and highlighted region of the original image. Sub-figures (c) and

(e) show the down-sampled images of the hSphere method, sub-figures (d) and (f) show

those of the rSphere method. (Due to limited page room, the following contents are not
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presented here: the results of linear down-sampling which are very similar to the hSphere

method, the histogram of pixel-wise contrast of the gFA index which is very similar to the

smoothing and interpolation tasks.) The rSphere produces sharper FODs. Table 3 shows the

t-test of subject-wise comparison of gFA. The rSphere yields higher gFA, indicating the

down-sampled FODs are shaper than the other methods. Tiny p-values evidence the

statistical significance of the results.

6 Conclusion

Weighted diffusion of square-rooted FODs f with the rotation-induced Riemannian metric

leads to significantly better smoothing, interpolation and down-sampling of FOD images, in

comparison with the linear manifold, and the hyper-sphere manifold.
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Fig. 1.
Example of smoothing. The rSphere method produces sharper and orientationally smoother

FODs. The linear and the hSphere methods produce “bloated” FODs.
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Fig. 2.
Example of interpolation. The rSphere results are more similar to the truth.
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Fig. 3.
Example of down-sampling. The rSphere method produces sharper FODs.
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Table 1

Subject-wise comparison of smoothing.

gFA δ

mean p-value mean p-value

rS. - hS. 0.092 ± 0.002 8.14e-16 −0.0059 ± 0.0011 6.54e-7

rS. - L. 0.084 ± 0.002 2.02e-15 −0.0221 ± 0.0013 2.22e-11

hS. - L. −0.007 ± 0.003 1.51e-12 −0.0162 ± 0.0004 3.33e-15
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Table 2

Subject-wise comparison of interpolation.

gFA δ

mean p-value mean p-value

rS. - hS. +0.071 ± 0.0015 3.35e-15 −0.131 ± 0.0034 1.72e-14

rS. - L. +0.064 ± 0.0015 6.87e-15 −0.134 ± 0.0035 1.95e-14

hS. - L. −0.0061 ± 0.0002 2.60e-13 −0.0033 ± 0.0005 2.45e-07
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Table 3

Subject-wise comparison of down-sampling, regarding the gFA index.

Level-1 Level-2

mean p-value mean p-value

rSphere - hSphere +0.035 ± 0.0008 3.43e-15 0.082 ± 0.0012 8.03e-17

rSphere - Linear +0.033 ± 0.0008 2.85e-15 0.075 ± 0.0011 7.82e-17

hSphere - Linear −0.0015 ± 0.0001 1.24e-13 −0.0077 ± 0.0002 4.30e-15
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