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Abstract

This paper presents a new simulation method to make global network inference from sampled

data. The proposed simulation method takes sampled ego network data and uses Exponential

Random Graph Models (ERGM) to reconstruct the features of the true, unknown network. After

describing the method, the paper presents two validity checks of the approach: the first uses the 20

largest Add Health networks while the second uses the Sociology Coauthorship network in the

1990's. For each test, I take random ego network samples from the known networks and use my

method to make global network inference. I find that my method successfully reproduces the

properties of the networks, such as distance and main component size. The results also suggest

that simpler, baseline models provide considerably worse estimates for most network properties. I

end the paper by discussing the bounds/limitations of ego network sampling. I also discuss

possible extensions to the proposed approach.

1. INTRODUCTION

Global network measures are notoriously difficult to measure with sampled, or incomplete,

information. It is difficult to describe the cohesion (Moody 2004), group structure (Frank

and Yasumoto 1998) or diffusion potential (Watts 2002) of a network if we cannot capture

the direct and indirect connections among all individuals.1 Unfortunately, it is often

practically impossible to collect full network data on many populations of interest. For

example, it may be impossible to interview everyone in a very large network, while an

electronic (or easily collected) data source may not exist (Lewis et al. 2008). A smaller

network may also prove difficult if one has limited resources or if the population is not

institutionally bounded (e.g. adolescents in schools). The problem only becomes worse if

one is interested in multiple networks at different locations. In short, while we may be

interested in global network features, it is often impossible to collect complete data on the

population of interest.

This paper offers a new, practical approach for researchers interested in global network

structure where only sampled data can be collected (Frank 1971; Granovetter 1976). There

are a number of ways to sample a network, including subgraph (Frank 1971) and snowball

*Please send all correspondence to Jeffrey A. Smith at jas76@soc.duke.edu..
1Complete census data are, however, unnecessary to make inference about most network statistics (Borgatti, Carley and Krackhardt
2006; Kossinets 2006).

NIH Public Access
Author Manuscript
Sociol Methodol. Author manuscript; available in PMC 2014 October 20.

Published in final edited form as:
Sociol Methodol. 2012 August 1; 42(1): 155–205. doi:10.1177/0081175012455628.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sampling (Goodman 1961; Handcock and Gile 2010; Koskinen, Robins and Pattison 2010),

but this paper focuses on the simplest possible option—an independent sample of ego

networks (Marsden 1987; Krivitsky, Handcock, and Morris 2011). Here, respondents are

randomly sampled from the population and describe themselves and their local social

network. Ego network data are easy to collect and already found on many social surveys. It

is, unfortunately, often infeasible to analytically estimate network properties from ego

network data, and past studies have typically used simulation instead (Lee 2004; Morris et al

2009).

This study builds on the ego network simulation tradition, offering a new method for global

network inference. The approach takes ego network data and uses two models, Exponential

Random Graph Models (Robins et al. 2007) and case control logistic regression

(McPherson, Smith and Smith-Lovin 2011), to generate full networks consistent with the

sampled data. The method also assumes that the size of the network is known. The simulated

networks are then used to estimate the features of the true network. Intuitively, ego network

data are drawn randomly from the population: any network consistent with the sampled

information is thus a possible construction of the true network.

The method extends past work by exploiting the sampled information more fully. The

simulation is built around a new measure of ego network structure, as well as more

traditional measures, like homophily. The measure of ego network structure captures the full

distribution of ego network types, and is thus more precise than existing options. The paper

also assess the validity of the proposed method on known networks.

I begin the paper with background sections on network sampling, simulation and ego

network data. I then describe my method of generating full networks from ego network data.

I follow the methods section with two validity checks. The first check uses data from the

National Longitudinal Study of Adolescent Health, or Add Health, a nationally

representative study of adolescents covering grades 7–12 in 1994–1995 (Harris 2009). The

analysis uses the 20 largest Add Health networks (N between 1000 and 2200) and compares

the estimates produced by my method with the empirically known values. I test my method

on a series of network features, including typical measures of connectivity (e.g. distance)

and clustering (e.g. modularity). The paper then moves to a larger network, describing the

same analysis on the Sociology Coauthorship network in the late 1990's (~60,000 nodes).

2. A SHORT SUMMARY OF NETWORK SAMPLING

Much of the work on network sampling stems from the pioneering analysis of Frank (Frank

1971; 1977; 1978a). Frank derived formulas to estimate network-level measures from a

sample (Frank 1971; 1978b). The formulas were often based on a random sample of nodes

in the network, or a subgraph sample, where all ties between sampled respondents are

recorded. Unfortunately, a subgraph sample is impractical for many, if not most, network

settings. For example, a subgraph sample on a large network may yield few, or even zero,

ties between sampled respondents unless the sample is very large or the density is very high.

A subgraph sample without ties tells the researcher the network is not very dense, but not

much else.

Smith Page 2

Sociol Methodol. Author manuscript; available in PMC 2014 October 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



As an alternative, researchers have employed sampling schemes that capture more local

information, such as ego network sampling (Marsden 1987) and snowball sampling (see

Thompson and Frank 2000; Handcock and Gile 2010; Koskinen et al. 2010; Goodman

2011). Both of these sampling strategies record local tie information, thus avoiding the large

N problem of subgraph samples. In a snowball sample, researchers interview respondents,

the friends of respondents, the friends of the friends, and so on.2 Snowball sampling avoids

the limitations of subgraph sampling but is quite complex in its own right—as one must

identify, find, and interview the associates of the respondents. Additionally, a snowball

sample is not easily embedded in an existing survey.

Ego network data, in contrast, are easy to collect and already widely used by network

scholars (e.g. Moore 1990; McPherson, Smith-Lovin and Brashears 2006). The survey

randomly samples individuals from a known population (i.e. the population is not hard-to-

reach). The survey then gathers information about the respondents and their local social

network: we know the number of associates, or alters, per respondent; the characteristics of

those alters; the characteristics of the respondent; and the presence of ties between alters.3

The ego networks are completely independent and the alters are not identified. Ego network

data are also easily added to existing surveys, even if that survey was not designed with

networks in mind. The promise of ego network sampling is thus considerable: for it becomes

possible to make global network inference from data that are, potentially, already at hand (or

at least easily collected).

I design my method with these practical issues in mind, focusing solely on an ego network

sampling scheme (Marsden 1987). I do, however, consider snowball sampling more

thoroughly in the conclusion, noting where the extra information from a snowball sample

will be particularly useful.

Past work on ego network sampling has employed simulation techniques as a means of

analysis, and the proposed method follows in this simulation tradition (Morris and

Kretzschmar 2000; Lee 2004; Lee 2008; Morris et al. 2009). Simulation based inference is

an ideal option as analytical solutions are infeasible: one can explore the properties of the

network by generating full networks consistent with the local ego network information. It is

important to recognize that the generated networks are consistent with the local information

in the sample, but need not, necessarily, be consistent with the macro properties of the true

network. Despite this limitation, simulation methods can produce excellent approximations

of the full network: for ego network data provide a surprisingly large amount of information

about the network.

Some network types will yield more accurate estimates than others, however, and I describe

the networks most appropriate for the simulation method in the conclusion.4 Briefly, the

method will be most appropriate for networks that exhibit homophily (as the simulations

2We can assume here that the population is not hard-to-reach (e.g. not sex workers) (Heckathorn 2011). The initial respondents can
then be randomly sampled from a known sampling frame (Goodman 2011), although the initial respondents can also be drawn from a
convenience sample (see Goodman 2011and Handcock and Gile 2011 for a more detailed discussion).
3The alter-alter tie information is based on ego's reports.
4It is important to note that many of these limitations are practical limitations, and not theoretical ones. The limitations may be less
restrictive under different sampling schemes and I discuss possible extensions in the conclusion.
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rely on group mixing patterns), are undirected (as there is no asymmetry information) and

capture strong tie relationships (as it is impractical for a respondent to list every person they

know or recognize).

3. EGO NETWORK DATA AND THE SIMULATION APPROACH

The proposed method proceeds in three steps. First, it calculates the local information

available from the sampled data. Second, it uses the local information to simulate full

networks consistent with the sampled data. And third, it uses the generated networks to

calculate the statistics of interest. The key to the simulation approach is extracting the

maximum amount of information from the sample.

Ego network data provide information on the local social world of respondents, but also

provide a wealth of information about the full, unknown network from which the ego

networks were drawn. At the simplest, an ego network sample provides compositional

information about the true network. Respondents answer basic demographic questions, thus

providing a count of males/females, blacks/whites, etc. in the network.5

More importantly, ego network surveys ask respondents to nominate their alters.6 The list of

alters provides an estimate of the degree distribution, or the number of alters per person.7

The list of alters also provides information on differential degree, or the average degree by

demographic group (as we know the demographic characteristics of the respondents). Some

surveys may employ a truncated naming scheme, where a respondent can name a maximum

of X alters (say 10). A truncated naming scheme will yield biased estimates of the degree

distribution (although one could possibly simulate, or project, the truncated part). I assume,

for the sake of this paper, that that the degree distribution is not truncated: respondents are

allowed to name a small but non-trivial number of alters.8

Ego network data also provide information about homophily. Respondents report on their

own demographic characteristics as well as the characteristics of their alters. The paired

respondent/alter information captures the demographic similarity among social contacts.9

5The alter demographic information is not used in the calculation. I do not use the alter information as the alters do not represent a
random sample of the population.
6Respondents describe their alters but do not formally identify them.
7The alter-alter ties are not used when calculating the degree distribution. I do not include the alter ties as they do not capture the true
degree of the alters—who could have ties to individuals not included in the respondent's ego network.
8I have, however, performed supplementary robustness checks on a set of Add Health networks (not reported here for space
considerations). I compared the estimates produced under truncation to those produced under no truncation. I first took random ego
network samples from the largest five Add Health networks. With the truncation sample, I only allowed respondents to name up to 10
friends (rather than full amount, where the maximum is upwards of 25). The sampled data yielded a biased degree distribution, and I
thus tried to “fill out” the truncated part before running the simulation. Specifically, I took those with 10 alters and assigned them a
value equal to or above 10. I assigned the value by taking draws from a negative binomial distribution (with shape and mean
parameters that yielded a distribution closest to the empirical distribution, after the full simulated distribution was truncated to 10 or
lower). After I assigned those with 10 alters a value equal to or above 10, I ran the simulation method, generating estimates for the
macro network features of interest. I then compared those estimates to the estimates produced with the full degree distribution. The
results are, on the whole, quite similar between the two sets, although the truncated results yield slightly higher bias for distance based
measures and for the triad census.
In interpreting these results, one must bear in mind that my analysis ignores the measurement error induced by the original study
design—where individuals were only allowed to nominate a limited number of male and female friends. It is possible that the bias in
my analysis would have been larger if the “true” network (with no truncating in the original design) had been available.
9The alter-alter ties are not considered in the homophily measurement as the alters do not comprise a random sample of the
population.
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The measures described so far, including composition, degree distribution, differential

degree and homophily, can be measured unbiasedly from ego network data. The measures

are unbiased as they depend on node or dyad level information, and thus do not depend on

information outside the ego network. Past sampling/simulation studies have measured

homophily and the degree distribution from ego network data and used those estimates to

generate full networks consistent with the sampled data (Lee 2008; Morris et al. 2009;

Krivitsky, et al. 2011).

Past simulation methods have made less use of the structural information, which captures

the pattern of social ties among alters. In ego network data, the respondent describes the

relationship between each alter pair (is there a tie between alter one and two, one and

three…?). This structural information has rarely been the focus of past work, although some

studies have discussed the limitations of the data (Newman 2003; Grannis 2010). For

example, transitivity (where a friend of friend tends to be a friend) is estimated inaccurately

because it depends on information outside the ego network, such as the degree of the named

alters (Soffer and Vazquez 2005; Bansal, Khandelwal and Meyers 2009). In a similar

manner, we cannot estimate the rate of assortative degree mixing, or the tendency for

individuals with similar degree to be socially tied.

Given these limitations, this paper offers a new measure of ego network structure that makes

the most of the available data.10 Specifically, I take the alter-alter tie data and form a

distribution of ego network patterns, or a distribution of ego network configurations (see

Holland and Leinhardt 1976 and Middendorf et al. 2005 for related intuition).11 Figure 1

summarizes the 53 possible ego network configurations of size 5 and below (see Freeman

1979). The distribution of ego network configurations is formed by placing each respondent

in the appropriate structural category. Ego networks are placed in a unique category based

on three attributes: size; the degree distribution among alters (ignoring ego); and the number

of triangles (ignoring ego).12 We can write this formally as: Let X be a square matrix of

dimensions m × m, consisting of the alters in the ego network of respondent p. Let Xtj = 1 if

a tie exists between alter i and alter j. Define ego network configuration p by the unique

combination of:

10The simplest structural measure is local density, or the number of ties in the ego network relative to the number possible (ignoring
ego in the calculation). Local density can be averaged over all cases (with degree greater than two) to calculate the clustering
coefficient, or the mean local density (Watts and Strogatz 1998). The clustering coefficient, unfortunately, proves a poor measure for
my purpose. There may be many sets of ego networks that have the same overall mean density but different structural patterns across
the ego networks. Average density thus does not offer a precise enough measure, or signal, of ego network structure, so that we cannot
easily compare the structural types in the generated networks to the sampled data.
11Note that the alter-alter ties are used to construct the ego network configurations but are not used in the homophily or degree
distribution measures (see note 7 and 9).
12These three pieces of information will uniquely identify the configuration for small ego networks (i.e. less than six). For larger ego
networks, the three measures will reduce the number of possible configurations, but the configuration will not be uniquely identified
(as the space of possible networks increases non-linearly as size increases). For simplicity, I focus on smaller configurations, although
a researcher may, in practice, have alter tie information for a large number of alters (i.e. more than five). Also note that it is possible to
know the total number of alters but collect alter-alter tie data for a subset of all alters.
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(1)

Figure 2 offers two example distributions. The figure plots the proportion of (hypothetical)

respondents in each ego network category.13 The left hand panel plots the ego network

distribution from a random network (with a specified degree distribution), while the right

hand panel plots the ego network distribution from a clustered network—where there are

group divisions and moderate transitivity. It is clear from this simple example that networks

with different structural features yield very different ego network distributions (see Johnsen

1985 for this same idea applied to the triad distribution).

More generally, the ego network distribution is a reflection of the larger network: for the

distribution faithfully mirrors the data generating process and captures the structural

heterogeneity across respondents. For example, the distribution captures the structural

heterogeneity around size, where smaller ego networks may be denser than larger ego

networks. The distribution also captures more subtle heterogeneity, where ego networks of

the same size and density may have very different structural patterns.14 The measure's

precision is ultimately crucial for the simulation: for the algorithm uses the distribution to

choose between seemingly similar networks. A simple density score would obscure such

differences.

More substantively, the ego network distribution serves as a latent signal for many

properties not captured by ego network data. For the same underlying forces that structure

the real network (e.g. structural balance) similarly constrain the ego network configurations.

Simulated networks with the right ego network patterns are thus shaped by the same local

processes as the real network, and are thus more likely to have the right structural features—

even if those features are not directly captured by the individual level data.

For example, a network with the right ego network configurations is likely to have the right

level of transitivity, even though ego network data cannot directly measure transitivity

without bias. The key is fitting the entire ego network distribution, where the local

clustering patterns (by degree) aggregate to create global transitivity. We can see this in

Figure 3, which plots the ego network distributions from two networks with the same local

density (i.e. the density of the ego networks) but different levels of global transitivity. The

ego network distributions are significantly different across the two networks. The ego

network distribution thus differentiates the networks in terms of transitivity, even though the

ego networks offer the same direct, local estimate of clustering.

13I only use categories with four alters or below in the figure for space considerations.
14For example, there are four possible ego networks of size five with three ties between alters.
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4. METHODS: BACKGROUND

The methods section is divided into two parts. In the first section, I describe the models

employed during the simulation, Exponential Random Graph Models (ERGM) and case

control logistic regression. In the second part, I describe the simulation process itself.

4.1. ERGM

ERGMs are statistical models used to test hypotheses about the structural features of a

network (Holland and Leinhardt 1981; Frank and Strauss 1986; Wasserman and Pattison

1996; Snijders et al. 2006; Handcock et al. 2008). Formally, for each pair of actors, or

nodes, i,j in the set N (N=1,2…n), let Yij= 1 if there exists a tie from i to j and Yij=0 if no tie

exists (all Yii are definitionally assumed to be zero). Yij=Yji in undirected networks (the

focus in this paper). Furthermore, let yij be the observed values of Yij while y is the

observed, or realized, network. Y is then a random graph on N, where each possible network

tie may be seen as a random variable Yij. The ERG models the Pr(Y=y) to capture the

structural features of the network. The independent variables are counts of network

measures (e.g. number of edges) and take a variety of forms, including individual, dyadic

and higher order terms (Robins et al. 2007; Goodreau, Kitts and Morris 2009). We can write

the model as:

(2)

where g(y) is vector of network statistics, θ is vector of parameters, and κ(θ) is a

normalizing constant.

ERG models are particularly useful for testing hypotheses about the formation, or

generation, of a network, but can also be used to simulate networks (Robins, Pattison, and

Woolcock 2005). The model coefficients measure the strength of various micro processes

shaping the formation of the network. One can take those coefficients and (stochastically)

predict the presence or absence of a tie between pairs of people.

Traditionally, ERG models have been estimated on full networks without missing data, but

more recent work has extended the model to sampled data. For example, Handcock and Gile

(2010), estimated ERG models under a two wave link tracing design (or a snowball sample

on a not hard-to-reach population—Goodman 2011). They compared the estimated

parameters from the sample to the parameters from the complete network (N=36), finding

the bias to be relatively small. In a similar manner, Koskinen et al. (2010) introduced a

Bayesian approach for estimating ERGMs with missing data. Unlike Handcock and Gile

(2010), they also used the ERGM coefficients to make inference about global network

measures: where the estimated parameters were first used for missing link prediction; once

the missing data was “filled in”, the network was used to calculate various measures of

interest, such as betweenness. They also considered their model in the context of snowball

sampling on a not hard-to-reach population.
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Both papers estimated the properties of a network from sampled data, and thus had similar

goals as this paper. The sampling schemes employed by Handcock and Gile (2010) and

Koskinen et al. (2010) are, however, more complex than the ego network sampling scheme

considered here. Still, the work on snowball sampling highlights a crucial idea: if one can

estimate parameters from sampled data, the model can be used to simulate networks based

on the estimated coefficients.

Past work on ERG models and ego network sampling has explored this idea (primarily)

using degree and homophily terms (Morris et al. 2009; Krivitsky et al. 2011). For example,

Morris et al. (2009) used an ERGM to simulate sexual networks from ego network data,

including terms in the model for racial mixing, differential degree and the degree

distribution. Sexual ego network data do not provide configurational information (i.e. did the

alters share other sexual partners?) and the model was specified without a local clustering

term (transitivity, for example). The parameters could then be estimated from ego network

data and used to simulate synthetic networks. A degree/homophily approach is appropriate

for sexual networks as the structure is likely to be captured through the degree distribution,

differential degree and mixing rates.15 A model without a local clustering term is not,

however, appropriate for many other network types of interest—say a friendship network,

where there is strong transitive closure.

4.2. Case Control Logistic Regression

The case control framework is used for two tasks: to estimate homophily on the ego network

data; and, more crucially, to update the homophily coefficients as the simulation progresses.

This ensures that the simulated networks reflect the empirical level of homophily.

Past work on network sampling has typically used log-linear models to estimate homophily

(Mare 1991; Morris 1991). Log-linear models compare the frequency of observed ties

between categories (e.g. blacks and whites) to the frequency expected by chance. Log-linear

models are limited, however, as it is difficult to include a large number of predictors

(especially if they are not categorical). Given this practical limitation, McPherson et al.

(2011) introduced an extended log-linear model based on case control models. Case control

methods are employed in medical research to study rare events, such as having cancer,

which are difficult to capture with random sampling (Breslow and Day 1980). Instead, case

control methods take the cases, those individuals with the disease, and compare them to

individuals without the disease, or the controls, on some behavior or condition of interest

(such as smoking).

The case control method is a natural fit for ego network data. Rather than take a random

sample of dyads, ego network data capture the rare event of interest, the social ties between

individuals. We can then view the cases, or those dyads with a social relationship, as the

respondent-alter ties in the ego network data. The controls, in turn, are dyads that do not

have a social relationship. The controls are formed independent of the cases and need not

15Heterosexual networks are unlikely to have strong tendencies towards local clustering. It is unlikely, for example, for two women to
share multiple male partners (so we see chains rather than diamonds). Thus a researcher could afford to not explicitly model local
clustering and still capture the global structure of the network—as most of the clustering in the network would be induced, or
captured, by correctly modeling group mixing at a macro level.
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come from the same data source. It is, however, typical to create the controls by randomly

pairing respondents together, thus capturing random mixing in the population, or chance

expectations. In this case, the “0s”, or non-ties, are a random sample of respondent-

respondent dyads.

The case control model compares a behavior, or condition, between the cases and the

controls. Here the condition of interest is the social distance between i and j in each dyad:

for example, absolute distance on age or match/no match on race. For categorical variables,

social distance can also take the form of a mixing matrix. A mixing matrix describes the

frequency of ties between all categories, where there is one term for every combination of

categories a pair could fall into (e.g. black-white, white-white…). The social distance

between respondents and alters is then compared to the social distance between individuals

in the control part of the dataset. The model takes the form of a logistic regression, where

the “1s” are the respondent-alter pairs and the “0's” are those pairs where a tie does not exist.

Formally we can write the model as:

(3)

where Oij is the presence or absence of a tie; Xij is the social distance between i and j for

each dyad, and θo is the vector of coefficients. The case control model is conceptually close

to a dyadic independent ERGM, where both models compare the counts of dyadic properties

(e.g. matching on race) to the level expected by chance (see Koehly, Goodreau and Morris

2004 for a related discussion). There are, however, important estimation differences between

the models. In an ERGM, chance expectations are constructed from all individuals in the

network. In the case control models, chance expectations are constructed independently

from the network tie information. Thus, an ERGM on the ego networks would include the

alter information in the random baseline, while the case control model would not.

More generally, the case control model offers a great deal of flexibility: because the controls

are separate from the cases, the controls can easily be constructed to represent a different

comparison. The case control model is ultimately useful because of this flexibility, making it

easier to update the homophily coefficients as the simulation proceeds.

5. METHODS: THE SIMULATION APPROACH

5.1. Setup and Assumptions

The proposed simulation approach uses ERGM and case control logistic regression to

generate full networks from ego network data.16 I divide the discussion of the method into

three parts: gathering information prior to the simulation; setting up the simulation; and the

simulation itself. In the first part, the method extracts the local information from the sampled

data; in the second and third parts, the method generates networks consistent with the local

information. And more specifically, the method searches for the “best” fitting network,

16I assume that all ERGM estimation and simulation is done in R (2009) using the statnet package (Handcock et al. 2008). The
formulas are specified with the statnet package in mind, although the model form is quite general. The case control models are also
run in R.
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using the empirical ego network distribution as the benchmark (while also maintaining the

correct level of homophily). I present the method as a series of steps and offer a summary in

Table 1.

For the purposes of discussion, assume that the ego network survey has demographic

information on the respondents and alters. Also assume that the researcher knows the

number of alters per respondent, but can only ask alter-alter tie information for a subset of

the alters (e.g. for four randomly selected alters).17 Also assume that the size of the true

network is known.

5.2. Gathering Information Prior to the Simulation

Step 1: Calculate the degree distribution and differential degree from the sampled data.

Step 2: Calculate the ego network configuration distribution from the sampled data (using

Formula 1). See Figure 2 for an example.

5.3. Setting up the Simulation

Step 3: Simulate an initial network of size N (assumed to be known) with the same degree

distribution as the sampled data (estimated in Step 1); also assign demographic

characteristics to the nodes in the network.18 Specifically, nodes in the simulation are

randomly assigned the demographic profile (e.g. black, college graduate) of someone in the

sample with the same degree as themselves.19 The initial network will thus have the right

size, degree distribution (estimated from the sampled data), and demographic composition.

The network will also reflect differential degree, where some demographic groups have

higher degree than others.20

Step 4: Specify an ERG formula from which to simulate the full networks. The ERG

formula determines which micro features are used to generate the full network. The model

terms should thus capture all of the information available from ego network data: differential

degree, homophily and the ego network configuration distribution. The initial coefficients

for the terms are set in Step 5, while the degree distribution is handled separately as a

constraint in Step 6.

17The respondent burden increases non-linearly with the number of alters, and it is more realistic to cap the number of alter-alter tie
questions. For example, an ego network of size five yields 10 questions while an ego network of size 10 yields 45 questions.
18The initial simulation of the random network can be done within the ERGM framework, or alternatively, by using a stub based
algorithm (Newman, Strogatz and Watts 2001; Viger and Latapy 2005)
19Technically, the demographic profiles are drawn from the set of individuals with +/−1 of the degree of the focal node. I include a +/
−1 bound for situations where the simulated network is much larger than the sample. Here, it may be the case that in the sample there
are very few people with a given degree (say 12) but in the simulated network, with a much larger N, there may be many people with
that degree. If one matched exactly by degree, everyone with degree 12 would look demographically the same. I add and subtract one
to the degree value in order to induce some uncertainty into the demographic profile of these rare degree cases. This widens the pool,
however slightly, of who can be selected for a given degree. One could alternatively draw from among respondents with the exact
degree, x. The choice is not likely to be consequential.
20By assigning a node, i, with degree x, all of the demographic characteristics of a randomly selected person with that degree, the
correlation between the demographic characteristics is maintained. Differential degree is also captured as demographic categories with
high degree in the sample will be placed on high degree nodes in the simulated network. The network will also reflect the
demographic composition of the population as individuals are randomly selected from the sample (from the set of people with the
appropriate degree).
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Differential degree: include a nodecovariate term for initial degree, or the degree of each

node from the initial network (from Step 3). A nodecovariate term serves as a main effect: in

this case, a tie is more likely if person i has high initial degree and less likely if person i has

low initial degree (assuming a positive coefficient). The nodecovariate term thus maintains

the degree of node i throughout the simulations (with some stochastic variation). By holding

expected degree constant, the nodecovariate term maintains the empirical correlation

between degree and the demographic characteristics (as the demographic characteristics are

held fixed and the empirical correlation is reflected in the initial network—see Step 3).

Nodes falling into a given category in the simulation will thus have the same mean degree as

that category in the sampled data.21

Homophily—One should also include homophily terms for each demographic dimension

available in the sampled data. An absolute difference term is appropriate for continuous

variables, such as age, while a mixing matrix is appropriate for categorical variables

(“absdiff” or “nodemix” in the statnet package—Handcock et al. 2008). The mixing matrix

for race, for example, may include terms for the number of black-black, black-white, white-

white, etc. ties in the network.22 Formally, the count of black-white ties (for example) can

be written as:

(4)

Ego Network Configuration Distribution—The ego network configuration distribution

offers a more difficult specification problem than homophily or differential degree. There

are a large number of configurations, and the model must include a term, or terms, that will

reproduce the distribution in the simulated networks. One could include a term for each

possible configuration, but this yields a very large number of (similar) clustering terms.

Such a model is difficult to estimate and simulate from.

As an alternative, one could specify a model with a single clustering term. This specification

has two key advantages: first, the model is considerably simpler; and second, the model is

less likely to yield degenerate networks (Handcock 2003), likely under the dummy variable

specification (i.e. one term for each configuration).23 The question is what single term will

yield non-degenerate networks with the right ego network configuration distribution. There

are a number of possible options, but I suggest that GWESP (geometrically weighed

edgewise shared partner) is the most appropriate choice, where GWESP is a weighted

summation of the shared partner distribution (Snidjers et al. 2006). Formally:

21Alternatively, it is also possible to use a series of nodefactor terms for each demographic characteristic observed in the data.
22The full mixing matrix is, under most circumstances, the ideal choice as it captures the pattern of ties across all categories. One
could alternatively include a match-no match term for each category, effectively including the diagonal of the full mixing matrix. One
could also include a simple match/no match term.
23The simulations are degenerate when they put disproportionate weight on a few networks, often the full or empty graph (Handcock
2003).
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(5)

where α is a scalar, determining the rate of decay on the summation (where lower values

weight the initial shared partners to a much larger extent than the 10th, 11th, etc. shared

partner) and pi is the number of dyads (with an edge) who have i partners in common. A

GWESP coefficient is positive when pairs of tied nodes have a high number of shared

partners (relative to chance). Substantively, GWESP captures transitivity and higher order

clustering in the network (Hunter 2007).

GWESP is a particularly appropriate choice as it mirrors the structural features of the ego

networks. For example, the shared partner distribution in an ego network (from ego's point

of view) is equivalent to the degree distribution of the alters.24 The degree distribution of

the alters is largely sufficient to differentiate the ego network configurations, given size.

Similarly, GWESP captures structural heterogeneity through the α parameter, while the ego

network configurations vary systematically by size. By decreasing α, one implicitly

decreases the density in larger ego networks relative to smaller ego networks (as adding

another shared partner has a smaller effect and larger ego networks have a higher number of

possible shared partners).

I suggest that GWESP is the most theoretically and technically appropriate option, but there

is nothing inherent in the simulation that says GWESP must be used. A researcher could

easily specify another clustering term: for example, one term for each ego network

configuration or a triangle term. I only suggest that GWESP is an ideal option; it is certainly

not the only one.

Step 5: Set the initial coefficients for the terms specified in Step 4. The nodecovariate

coefficient, for example, must be positive, so that initial degree is highly correlated with

final degree. A coefficient that is too large, however, limits the flexibility of the simulation.
25 The initial homophily coefficients, defined as θo, are set using case control logistic

regression. The model predicts a tie as a function of social distance (as specified in Step 4).
26

Unlike homophily or differential degree, the coefficient for the clustering term (e.g.

GWESP) cannot easily be assigned: for it is not possible to analytically solve for the correct

coefficient (i.e. the coefficient that will yield networks with the right ego network

configuration distribution). The method thus generates an initial (naïve) value by estimating

a dyadic independent ERGM on the ego networks. The model predicts ties as a function of

24This follows as all ties within the ego network are shared partners from ego's point of view.
25If the constraint on degree is too strong it becomes difficult to simultaneously satisfy other constraints. A value of .5 is appropriate,
for example, although the exact value is not especially crucial.
26One could alternatively estimate the initial homophily coefficients using a dyadic independent ERGM. The proposed method uses
case control logistic regression as it is easier to exclude the alters from the baseline comparison, or the null, although the differences
across models should be small (Koehly et al. 2004). The alters of the respondents do not represent a random sample from the
population, and should thus be excluded when forming the baseline, which represents random mixing in the population.
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the specified term (e.g. GWESP), and the estimated parameter is used as the initial

coefficient.27

Step 6: Set the constraints for the model. The model is constrained on the degree

distribution, where only networks consistent with the observed degree distribution (from

Step 1) have a non-zero probability of remaining in the set of generated networks.28

5.4. Simulation Procedure

Step 7: Simulate a network using the model specified in Steps 4–6. The simulation takes the

network from Step 3 as the starting point.

Given the simulated network from Step 7, Steps 8–11 adjust the model to find a better fitting

network, specifically updating the homophily coefficients and the coefficient for the

clustering term.

Step 8: Compare homophily in the simulated network (from Step 7) to homophily in the

sampled data; update homophily coefficients if any error is found. The generated networks

may have incorrect mixing rates due to the initial estimation process. The initial homophily

model (see Step 5) only includes homophily terms, so that all non-homophily terms are

implicitly set to 0. The simulation model, in contrast, is conditioned on a non-zero clustering

term. The homophily estimates are therefore biased when they are used to simulate the

network (as the initial estimates are not conditioned on the positive value for clustering)

(Goodreau et al. 2009).29

The simulation method consequently checks for inconsistencies between the simulated

network and the sampled data. The method then updates the homophily coefficients to adjust

for any error. A coefficient is decreased if mixing is too strong in the simulated network

(between category i and category j) and increased if mixing is too weak.

Formally, the homophily coefficients are updated using case control logistic regression. The

method first takes the tied dyads from the simulated network and the respondent-alter dyads

from the sampled data and creates a combined dataset. The dataset includes the demographic

characteristics of person i and j in each dyad. A 0/1 indicator variable is then created, where

the sample dyads are “1s” and the dyads from the simulated network are “0s”. The method

then runs a simple logistic regression, predicting 1s as a function of the social distance

between i and j. The regression thus compares the social distance in the sampled data

(between respondents and alters) to the social distance in the simulated network (among

pairs where a tie exists). The estimated coefficients are then added to the original homophily

coefficients, thus scaling the original homophily coefficients up or down, depending on the

error in the simulated network. This procedure can be written formally as: Construct

matrices A and D from:

27All of the respondents and all of their alters make up the network for the ERG model; although, of course, there will only be ties
between respondents and alters.
28Alternatively, one could include a model term capturing the degree distribution.
29The original homophily coefficients are not conditioned on GWESP or degree (or any term) for practical reasons. The initial
homophily estimates are updated throughout the simulation procedure, and this is facilitated by having unbiased initial estimates,
which is far easier to calculate when GWESP is set to 0.
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1 all i,j Respondent Alter pairs, defined as Rij

2 all i,j pairs ∈ Sij == 1 where S is the simulated network.

(6)

where θo is the original homophily coefficients, θa is the vector of estimated

coefficients, and θu is the updated homophily coefficients. For categorical

variables (e.g. a racial mixing matrix), θa will be positive when the simulated

network has too few ties for that term (e.g. black-white ties) and will be negative

when the simulated network has too many. And more generally, θa measures the

upward or downward error in the original homophily coefficients: for θa

compares the empirical level of homophily to the homophily generated by θo,

conditioned on the other terms in the model. By adding θa to θo, the coefficients

are brought back into line with the proper values.

Step 9: Simulate a new network using the updated coefficients from Step 8 (starting from the

network in Step 7 and using the model formula from Step 4 and 6). Steps 8 and 9 are

repeated a small number of times to ensure that homophily is correct in the simulated

network.

Step 10: Evaluate the ego network configuration distribution in the simulated network (from

Step 9). The generated network from Step 9 will have the correct degree distribution and

mixing patterns, but need not, necessarily, have the right ego network configuration

distribution. The simulation procedure thus allows the coefficient on the clustering term (e.g.

GWESP) to vary, looking for networks that better fit the empirical ego network distribution.

The ego network configuration distribution is evaluated in this step, while the coefficient is

updated in the next.

There are two steps to evaluating the ego network configuration distribution: first,

calculating the ego network configuration distribution from the simulated network; and

second, comparing the distribution from the simulated network to the distribution from the

sampled data (calculated in Step 3). The method compares the distributions using Pearson's

chi square value:

(7)

where Oi is the observed frequency in the simulated network, Ei is the empirical frequency,

and n is the total number of possible configurations (53 in the five alter case). Larger chi

square values indicate a worse fit, so that the ego networks in the simulated network do not

structurally match the ego networks in the sampled data.
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Step 11: Update the coefficient on the clustering term to find a better fitting network (given

the chi square value from Step 10). A “better” network has a lower chi square value, or has

an ego network configuration distribution closer to the empirical distribution (estimated

from the sampled data). The ego network configuration distribution thus serves as the

benchmark, or ruler, by which the generated networks are judged. The question is what

coefficient on the clustering term will yield simulated networks with the lowest chi square

value. In updating the model, the nodecovariate coefficient is held constant, while the

homophily coefficients are updated using the framework from Step 8.30

Figure 4 offers a snapshot of the minimization process. Assume, for this example, that the

researcher has included a GWESP term in the model. The x-axis represents a (restricted)

range of GWESP coefficients. The y-axis represents the chi-square value associated with

that GWESP coefficient. The GWESP coefficient is used to simulate a network (along with

the other terms in the model) and the chi square value is calculated from the simulated

network. The optimization process moves away from points with high chi square values, like

the “grey” distribution in Figure 4, and towards points, or coefficients, with lower chi square

values—like the “black” distribution in Figure 4. The “black” distribution matches the

sampled ego networks more closely and thus offers a better fit.

I present two options for minimizing the chi square value. The first is a simple hill climbing

algorithm. The algorithm moves the current coefficient in the positive and negative

direction, looking for a better fitting network. For each potential move, the method takes the

coefficients (from Step 9 but with the new coefficient for the clustering term) and simulates

a network; the method also adjusts for homophily bias if necessary (Steps 7–9). The method

then calculates the chi square value for each network, comparing the ego network

distribution in the simulated networks to the distribution in the sampled data. The algorithm

settles on whichever move maximizes the drop in chi square from the current coefficient.

The method then returns to Step 7 and starts the process over again, using the new

coefficients to simulate the networks. The search process ends when all local moves yield a

worse chi square value than the current coefficients.

The second minimization process is similar to the hill climbing algorithm, but requires a less

exhaustive search of the solution space. Under this option, the method first simulates a

sample of networks at different values of the (clustering) coefficient— specifically values

above and below the starting coefficient. For each simulated network, the method adjusts for

homophily bias and calculates the chi square value (i.e. Steps 7–10). The method then takes

the coefficients for the clustering term and the chi square values and fits an OLS regression

to the data. The regression predicts chi square as a function of a linear and quadratic term:

(8)

where  equals the chi-square value for network i, and Ci equals the coefficient on the

clustering term for network i. The regression coefficients are then used in an optimization

routine. The method uses the Nelder-Mead algorithm to find the clustering term coefficient

30One would introduce bias if the homophily coefficients are held constant as the coefficient on the clustering term is updated.
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with the lowest chi square value (based on the fitted regression line). The solution, or

coefficient, is then used as the starting point for the next iteration. The method then repeats

Steps 7–10 again, ending the process when the expected chi square value does not improve

over the last iteration.

At the end of the search process, the method generates networks from the best set of

coefficients.31 One then calculates the statistics of interest (e.g. component size) on the

simulated networks and summarizes over the estimated values. The simulated networks

yield a distribution of statistics, capturing the stochastic uncertainty in the estimates.

Sampling error provides another source of uncertainty, and a researcher would have to

perform a bootstrap analysis to take this into account.32

The simulation, in short, rests on a kind of approximated likelihood ratio test: the

coefficients are updated to find a more likely full network, where a network is more likely if

its ego network configuration distribution is closer to the empirical distribution (estimated

from the sampled data). The simulation approach thus draws (implicitly) on formal

statistical properties, increasing the probability that the generated networks approximate the

true network—as the method finds the most likely full network given the local data and the

specified model. One could even run the simulations with different specifications of the

clustering term, checking to see if the fit (i.e. chi square) improves under different models.

More generally, I argue that simulation based inference holds great promise: for social

networks are highly constrained by size, the degree distribution, and social/physical distance

(Butts 2001; Faust 2006), all properties captured by the simulation. If the simulated

networks correctly capture these constraining dimensions, then the space of possible

networks is greatly reduced. The number of possible networks is reduced further by finding

networks with the right ego network configurations. For the empirical ego networks are

shaped by the same processes that shape the true network; a network consisting of the

sampled ego networks thus represents a possible construction of the real network.

6. TESTING THE METHOD ON EMPIRICAL NETWORKS

6.1. Summary of the Analytical Strategy, Measures and Baseline Comparisons

I now present a set of empirical tests checking the validity of the method. For each test, I

first sampled ego networks from a completely known, empirical network. I then applied my

method to the sampled data and compared the properties of the generated networks to the

properties of the real network. I examined the accuracy and variability of the estimates and

compared my results with those of simpler, baseline models. I tested my method on the 20

largest Add Health networks and the Sociology Coauthorship network in the 1990's. The

Add Health networks ranged from 1000 to 2200 students and varied in structure and

composition, offering a robustness check for the method (see McFarland et al. 2009). The

31It is possible that more than one solution will yield a “low” chi square value, so that the optimization curve plateaus as the chi
square approaches its minimum. I take this uncertainty into account by simulating networks from a series of coefficients; specifically,
I use coefficients with a chi square value within 30 of the lowest estimated chi square value.
32One could take random samples from the original sample and redo the analysis. Each sample would yield multiple networks, and
thus statistics, to summarize over. In the end, one would produce a final distribution by pulling the parameter estimates from each
sample into one distribution.
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Coauthorship network offered a different type of test: here the method was used on a

relatively large, highly transitive network (N~60000).

The network properties of interest were divided into two broad categories: connectivity and

clustering/group structure. For connectivity, the measures included size of the largest

component and bicomponent, where a component is a set of nodes connected by at least one

path (a path exists if two nodes are reachable through a series of adjacent ties). Bicomponent

size is the largest set of people connected by at least two independent paths (Moody and

White 2003). There were also measures for reachability and mean distance, where distance

is the length of the shortest path between any two nodes (restricted to reachable pairs).

Reachability was measured as the proportion of people reachable 5 steps out into the

network (averaged over all starting nodes). The analysis used modularity as the measure of

group structure. I used the group detection algorithm of Clauset, Newman and Moore (2004)

to divide the network into groups. I then calculated modularity on the found groups, where

modularity measures the strength of group divisions in the network; modularity is high when

there are many ties within groups and few between (Newman 2006).33 The analysis used

transitivity and the triad census as the measures of clustering. Transitivity is the relative

number of two-step paths that also share a direct link. The triad census was measured as the

proportion of 102 triads, or triads with one symmetric tie, and the proportion of closed

triads, or 300 triads (Cartwright and Harary 1956).34

The proposed method estimates the global features of a network from sampled ego network

data; it is possible, however, that simpler, existing methods will produce equally valid

results. I thus compared my method to two baseline models. The first model generated

random networks with the correct size and degree distribution (Newman et al. 2001).35 This

model is called the Degree (D) model in the figures and tables. The second baseline model

incorporated homophily into the Degree model, capturing both the degree distribution and

the pattern of group mixing. This model is called the Homophily model in the tables and

figures (H). The full model included the degree distribution, homophily and the newly

introduced ego network configuration distribution. I refer to my own method as the Ego

Network Configuration Model (ENC).

The three models are directly nested. This makes it possible to discuss the “value added” for

each term in the model. The question is whether the ego network configuration distribution

is necessary to produce good estimates, or if homophily and the degree distribution are

sufficient.

33I do not contend that the Clauset et al. (2004) algorithm is the best, or most appropriate, group detection method available. I simply
need a consistent way of finding groups and the Clauset et al. (2004) algorithm is fast and serves my purpose. Formally, modularity

equals: , where ki is the degree of node i, m is the number of edges in the network, Y, ci is the
group that node i is assigned to and δ is the Kronecker delta symbol.
34The triad distribution represents a somewhat different comparison than the other measures: for the triad distribution is directly
captured by the test statistic in the algorithm, the ego network configuration distribution. The other measures, e.g. bicomponet size, are
less directly tied to the test statistic, as the sampled data provide no explicit information about these non-local measures. Thus a
“good” model will reproduce the triad census but not necessarily the other network measures.
35The networks can be generated within an ERGM framework (Handcock and Morris 2007) or from a stub-based algorithm (Viger
and Latapy 2005). I use a stub based algorithm for the sake of convenience. The stub based algorithm takes the degree distribution as
input and does not require any estimation prior to the simulation.
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6.2. Add Health Networks: Data, Sampling and Models

Add Health is a nationally representative survey of public and private schools covering

grades 7–12. Students were asked to nominate up to five male and five female friends. The

constructed, symmetrized networks were used in two sets of analyses. The networks were

symmetrized using a “weak” rule: if there was a directed link between i and j or a directed

link between j and i, then i and j were tied in the undirected network. The first analysis used

the 20 largest networks and randomly sampled 25 percent of the students within each school.

The 25 percent sample results were used to compare across models. In the second analysis, I

focused solely on my method, exploring the bias and sampling variability of the estimates

under different sample sizes. I limited the analysis to the five largest networks but

considered sampling rates of 10 percent, 25 percent, 50 percent and 75 percent. I varied the

sample size to test my method under more or less favorable samples.

Each sampled student provided the following information: first, the number of alters and the

ties between alters; second, the characteristics of the respondent; and third, the

characteristics of the alters. The characteristics included grade, race, sex, and club

affiliations. Club affiliations were limited to broad categories: music, sports and academic.

The survey was “realistic” as I only recorded alter characteristics and alter-alter ties for up to

five friends, although there was no limit on the number of friends one could name. The five

friends were randomly selected from the set of all friends for that respondent.36 The

respondent described the ties between the randomly selected friends and answered questions

about their demographic characteristics. The decision to use five friends was made

independent of the Add Health study design. I used five alters for two reasons: first, it makes

counting the ego networks more tractable; and second, it is more realistic for data collection

purposes, where respondent burden is kept to a reasonable amount.

The simulation method requires an ERG model and I included the following terms in the

formula: nodemix terms for grade, race, gender and club affiliation; a nodecovariate term on

initial degree; and GWESP.37 The simulations were also constrained on the degree

distribution. The Homophily model was equivalent but did not include GWESP.

My method takes the model formula and initial coefficients and produces estimates for the

statistics of interest. The analysis captured the variability of the estimates by repeating the

procedure 30 times for each school, starting with a new sample of ego networks for each

iteration.38 There were parallel analyses for the baseline models (under 25 percent

sampling).

6.3. Sociology Coauthorship Network: Data, Sampling and Models

The second validity check used the Sociology Coauthorship network as the empirical,

known network. I constructed the network from article level data drawn from Sociological

Abstracts. The database includes information on all sociology related articles going back to

36I made no distinction between male or female friends and simply drew five people from the whole set of friends.
37The α parameter is fixed at 1.
38A larger sample would be preferable but not reasonable given the number of networks and the run time of my algorithm—at
minimum 1–2 hours for a network of size 1500.
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1963, but the network was restricted to articles published between 1995 and 1999. An edge

existed in the network if person i and person j coauthored a paper between 1995–1999. The

empirical network included 60098 people and I worked with a random sample of 5 percent

of the network. I produced estimates for only one sample due to the computational burden of

the analysis (where a network of that size and transitivity requires a rather extended run

time). I thus did not consider sampling variability for the Coauthorship network.

As with Add Health, the hypothetical survey collected the following information: the

number of alters (with no limit); the ties between alters (for five randomly selected alters);

the characteristics of the respondent; and the characteristics of the alters (for five randomly

selected alters). The characteristics included gender, prestige (defined as having ever

published in AJS, ASR, or Social Forces), subfield specialty, and quantitative/qualitative

identification. I specified an ERG model with mixing terms for each characteristic as well as

a nodecovariate term for initial degree. The model also included a GWESP term.39 All

simulations were conditioned on the degree distribution. The Homophily model was exactly

the same but did not include the GWESP term.

7. RESULTS

7.1. Qualitative Comparison

The results section begins with a qualitative comparison, showing that the simulation

produces realistic looking networks. Figure 5 offers a snapshot comparison for one typical

Add Health network. The left hand panel presents the true network while the right hand

panel presents one realization from the simulation process.40 The networks, while not

identical, are strikingly similar—the macro structure in the real network is reflected in the

overall shape of the simulated network. The comparison is similarly encouraging in Figure

6, which presents a more detailed view of the network. Here the figure is limited to nodes in

grade 9. The simulation performs well even at this more fine grained level, generally

reproducing the core-periphery structure of the grade 9 network.

Given these positive qualitative results, I now move to a more formal test of the approach. I

first compare my results to those of simpler models. I then examine my model in more

detail, looking at the results at different levels of sampling. In both sections, the results

begin with the connectivity measures before moving to clustering and group structure.

7.2. Connectivity: Baseline Model Comparisons

The connectivity results begin with the Add Health networks (under 25 percent sampling). It

is difficult to visually summarize the results over all 20 networks. I simplify the presentation

by focusing on five typical networks of different sizes. Figure 7 presents the results for my

model as well as the baseline models. For each model (and measure), the analysis subtracts

the empirical value from the estimated values from the 30 samples. The figure presents these

39The α parameter is allowed to vary during the simulation.
40The network figures were produced in R using the sna package (Butts 2010). The nodes were originally placed using the
Fruchterman-Reingold force-directed algorithm. The networks were then rotated to maximize comparability between figures—so that
grade level was roughly located in the same position in each figure for Figure 5.
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differences in a series of box plots. The black dot marks the zero point, where there is zero

difference between the true and estimated value. The paper offers more precise information

about bias and sampling variability in Appendix A (where bias is the difference between the

mean estimate and the true value). For each measure and network, the tables report the bias

and the proportion bias (bias divided by the true value). The tables also report the standard

deviation of the sampling distribution. See Tables A1–A8 for the 25 percent sample results.

It is clear from Figure 7 that all three methods successfully estimate the size of the largest

component and bicomponent. For example, my method yields an average bias less than 1

percent of the true bicomponent size (across all networks). The simpler models also perform

well. The Homophily and Degree models are thus good options if one is only interested in

component or bicomponent size.

The story is quite different for distance, where only the ENC model accurately estimates

mean distance in the network. Looking at row 3 of Figure 7, the Degree and Homophily

models underestimate the true distance while the ENC model does not. The results are

similar across all 20 Add Health networks: the average bias for my model is 3.5 percent of

the true value, while the bias is upwards of 15 percent for the Degree model and 11.8

percent for the Homophily model (on average). The Degree model is thus improved by

including homophily, while the Homophily model is improved by including the ego network

configuration distribution. See Table A3 for more detailed results.

The reachability results are qualitatively similar: the baseline models overestimate

reachability in the network while my method is quite accurate. In Figure 7, the empirical

values are close to the ENC estimates but below those provided by the baseline models

(especially for the larger networks). For example, the empirical 5 step reachability is .59 in

Add Health Network #17; the Degree and Homophily estimates are .87 and .75 while my

estimate is .626. More generally, the ENC model performs well for all of the networks, with

an average bias of .053.

The connectivity results for the Coauthorship network offer a substantially different story

than the Add Health networks. Here, both of the baseline models badly overestimate the size

of the main component and bicomponent. The real bicomponent size, for example, is 6807

while the baseline estimates are 36432 (D) and 34280 (H). The baseline models perform

poorly as they underestimate the level of transitivity in the network. The empirical network

has high transitivity and low density, leading many small components to break off from the

main component. By underestimating the level of transitivity, the baseline models

undercount the number of disconnected components, thus overestimating the connectivity of

the network. In the real network, an average node can reach 2.4 percent of people in 10

steps, yet the Degree model puts the value at almost 90 percent.

The ENC model fares considerably better than the baseline models (see Table 2). For

example, my method puts component size between 18262 and 21895 while the real value is

19155; the estimates for bicomponent size fall between 8698 and 10620 while the true value

is 6807. The results are similar for distance and reachability (10 step): the median estimates

are 13.52 and 2.2 percent, compared to the true values of 13.25 and 2.4 percent.
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7.3. Group Structure and Clustering: Baseline Model Comparisons

The results now turn to the group structure and clustering measures, beginning with the Add

Health networks under 25 percent sampling. The results for modularity are plotted in row 1

of Figure 8. The proposed method performs quite well: the estimated values are close to the

empirical value, with bias under 5 percent of the true value (on average). The baseline

models, in contrast, badly underestimate the group divisions in the network (although the

Homophily model outperforms the Degree model).

The results are similar for transitivity, where the ENC model estimates the empirical values

quite well with relatively small standard deviations—see row 2 in Figure 8. The Degree and

Homophily models perform poorly, systematically underestimating transitivity. For

example, Add Health Network #19 has a transitivity value of .14; the estimated values are .

147, .01 and .006 for the ENC, Homophily and Degree models. The average bias for

transitivity is .016 in the ENC model (with a mean true value of .17). See Table A6 for

details.

The triad distribution offers a more complicated story. The closed triad (300) is estimated far

better by my method than the simpler baseline models. In contrast, all three models

effectively estimate the proportion of 102 triads (see row 3 in Figure 8). A researcher

interested in balanced triads could use the baseline models to make inference, although my

model more accurately captures the closed triads.

The Coauthorship network results are similar, but less consistent, than the Add Health

results. The ENC model accurately estimates modularity and the 102 triad, while the Degree

and Homophily models only estimate the 102 triad well. Modularity is .979 in the true

network and .978 in the ENC model (compared to .64 and .66 for the Degree and

Homophily models). Transitivity and the 300 triad are also estimated more accurately by the

ENC model, but the error is larger than with modularity or the 102 triad (or with the Add

Health networks).41 For example, the true transitivity value is .6 while the estimated values

are .47 (ENC), .0004 (Homophily) and .00013 (Degree).

The Coauthorship results raise an important question about the bounds of the method: can

the method capture clustering measures when transitivity is high, such as in the

Coauthorship network? And more specifically, is the method appropriate when local

clustering is high but not complete?42 This paper offers an initial answer to the question in a

supplementary simulation analysis (not shown for space considerations). The analysis

measured transitivity bias in a series of generated networks (size 500) that ranged from very

low clustering (0 transitivity) to very high clustering (.62 transitivity). The results for this

supplementary analysis are encouraging: the bias and sampling variability for transitivity (as

well as the other clustering measures) are small overall and change only slightly as

clustering increases. The transitivity bias in the Coauthorship network is thus not indicative

of larger, systematic problems (i.e. of estimating transitivity when transitivity is high).43

41It is clear from the fit of the ego network configuration distribution that the complete five alter configuration is underrepresented in
the simulated networks. One could consider that misfit when specifying a new, better fitting model.
42So there are many shared partners (per edge) but transitivity is still below 1.
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7.4. Bias and Sampling Variability by Sample Size: ENC Model

The ENC model clearly offers a better option than the baseline models. Having established

this, it is important to examine the method on its own terms, and I now turn to a more

detailed assessment of the ENC model. Using the Add Health networks, I tested my method

at different levels of sampling (in terms of bias and uncertainty).

Table 4 presents the connectivity results for the 5 largest Add Health networks under 10

percent, 25 percent, 50 percent, and 75 percent sampling. Sampling variability clearly

decreases with larger samples, although even a 10 percent sample yields low levels of

uncertainty. The standard deviation for component size, for example, decreases from 22 to

5.6 for Network #17 (10 percent to 75 percent sampling).

The bias results provide a more complicated story. The 10 percent estimates are (again)

quite good, so that a 10 percent sample is sufficient to produce quality estimates of

connectivity. The average bias for distance, for example, is approximately 3.6 percent of the

true value under 10 percent sampling. Bias does not, however, decrease systematically as the

sampling rate increases. The bias does not decrease appreciably as the connectivity measures

are not directly captured by the sampled information. A larger sample provides more precise

estimates of homophily, the degree distribution, and other inputs into the method. But as

these local measures are estimated well enough in smaller samples, and the connection

between the inputs and the connectivity measures is not one to one, we see little

improvement in bias after a reasonable sample size (e.g. 10 percent).

The method thus offers the greatest payoff when sampling rates are low. And more

specifically, a 10 percent sample would have been an ideal choice in this setting— given the

low levels of bias and uncertainty. Conversely, if one could really interview 75 percent of

the network, one should simply collect full network data and follow a more traditional route

of analysis.

Table 5 presents the sample size results for the clustering/group structure measures. As with

the connectivity results, sample variability decreases as sample size increases. For example,

the standard error for modularity decreases from .026 to .015 in Network #18 (with a true

value of .611). The bias results, in contrast, do not follow the pattern of the connectivity

measures: here the bias for transitivity and the triad census decreases as the sample rate

increases, although there is a plateau at the 75 percent level. The bias for transitivity in

Network #16, for example, is .027 (10 percent), .019 (25 percent), .015 (50 percent), and .

015 (75 percent). The bias decreases because the clustering measures are more directly tied

to the sample information (i.e. the ego network configurations) than the connectivity

measures.

43The Coauthorship network proved difficult to fit (likely) due to computational problems and/or an insufficient model; a simulation
on a network of that size and transitivity is still rather difficult and computationally expensive unless the model is quite detailed—i.e.
has included all (or nearly all) of the important homophily based terms.
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7.5. ERGM Coefficients and the ENC Model

The results presented thus far have focused on network measures, where the analysis

generated networks from an ERG model and examined the properties of the generated

networks. It is also possible to examine the ERGM coefficients themselves for bias. Here I

compared the true coefficients (estimated on the full network) to the coefficients found

during the simulation procedure. This comparison is presented in Appendix B (see Table

A9), and is limited to the Add Health networks and the coefficient for GWESP. It is clear

from Table A9 that the simulation coefficients do not necessarily map onto the true GWESP

coefficients; although, predictably, the simulation coefficients are close to the true values.

Thus, while GWESP is included in the ERG model, the method need not produce accurate

estimates for the GWESP coefficient: for the coefficient is updated to match the ego

network configurations, and not the shared partner distribution. See Appendix B for a more

detailed discussion.

The Add Health comparison is, unfortunately, complicated by the fact that we do not know

the “true” model generating the networks. It is thus difficult to judge what GWESP

parameter should have been recovered by the simulation method. I consequently offer

another, more controlled comparison in Appendix C. I tested my method on a network

generated from a known, or “true”, model (the network is size 1000). The model was based

on the degree distribution, homophily (for race and education) and GWESP. Thus, the only

processes affecting the network were clustering and homophily. It is clear from Table A10

that the simulation approach performs quite well here. The mean estimate for the GWESP

coefficient is 1.199 under a 20 percent sample, while the true coefficient is 1.2.

Thus, when the “true” model only includes a GWESP term (as well as degree and

homophily parameters), the simulation accurately captures the coefficient for GWESP. The

GWESP coefficient is updated to fit the ego network configuration distribution. If the only

local process affecting the configurations is GWESP, then the coefficient on GWESP will be

directly estimated through the simulation process.44

8. CONCLUSION

This paper has presented a simulation technique that uses sampled ego network data to make

inference about the properties of the full, unknown network. The simulation extends past

work by using a new, distributional measure of ego network structure (as well as more

traditional measures, like homophily). I tested the validity of the method on the 20 largest

Add Health networks and the Sociology Coauthorship network in the 1990's. The simulation

method performs quite well in both cases, producing excellent approximations of the true

network from a sample of ego networks. The method fares better than simpler baseline

models for most statistics, and equally well for the rest.

The proposed technique is a practical option for researchers interested in global network

structure where census data cannot be collected. Ego network data are easy to collect and

44The results for the empirical Add Health networks (where the true GWESP coefficient was only sometimes captured by the
simulation), suggest that the Add Health networks had other local processes at work.
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already found on many social surveys. The respondent burden is relatively light and the

researcher does not require a full network roster, a potentially difficult item to come by in

certain settings (Morgan and Rytina 1977). Additionally, the method makes heavy use of

ERGMs, which are widely used by network scholars. Finally, the method is quite general, as

any statistic can be calculated on the generated networks. The potential of the method, and

network sampling in general, is thus quite large: if a researcher can make inference using a

random sample of individuals, it becomes (more) feasible to undertake comparative network

work (i.e. comparing the network structure across different settings and locations) and to

move beyond small, institutionally bounded populations.

The advantages of the proposed method are partly offset by limitations which need to be

addressed in future work, or, at a minimum, must be considered before using the method.

For example, the method may produce poor estimates for networks with certain features. In

particular, the method may have difficulty with networks that are disconnected, or consist of

many separate components. In a supplementary simulation analysis (not presented here), I

tested my method on a disconnected network (size 500) close to its phase transition (where

the network becomes a fully connected network).45 The method, while performing well

overall, produces uncertain estimates for connectivity: some samples yield a disconnected

network while others yield a connected one, leading to high standard errors for measures

such as distance and bicomponent size (see also Grannis 2010). A researcher could still use

the method on a network below its phase transition; for as we saw in the Coauthorship

analysis, the method can produce accurate estimates of connectivity in a disconnected

network.46 One must, however, be willing to accept the possibility of large bounds around

the connectivity statistics.

Similarly, a network with a badly skewed degree distribution may propose problems for the

method: for the few high degree nodes are unlikely to be sampled, leading to a distorted

degree distribution. The method is thus most appropriate for strong tie relationships—where

the maximum degree is relatively small (e.g. under 75).47 Other more complex sampling

techniques, such as a snowball sample, may be a better option when the degree distribution

is skewed (as one is likely to reach the hub of the network quite quickly). This is especially

true of smaller networks, where the high degree nodes have a proportionally larger effect on

the network structure.

In a similar manner, the method will be less successful when the sampled data miss

important demographic or geographic information. For example, a large hill in the middle of

a village may strongly shape interaction patterns (by making it difficult to travel across the

village and creating distinct communities). A respondent's location relative to the hill,

however, is not easily captured by a standard ego network survey. The simulation approach

will thus fare better when the researcher has prior knowledge of the population of interest.

45In a phase transition, a disconnected network becomes fully connected with a small increase in density.
46A researcher could use the formulas provided by Grannis (2010) to determine if their network is below the phase transition.
Alternatively, a researcher could examine the networks generated from the simulation approach.
47Preliminary simulation results suggest, however, that the degree distribution must be strongly skewed before the estimates
deteriorate badly. For a network of size 500, for example, bias and sampling variability are still quite small when the top degree
person has 75 ties (the results are not presented here for space considerations).
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And more specifically, a researcher should know the demographic (or geographic)

characteristics exhibiting homophily.48 There is little gained in asking about alter hair color

(for example) if hair color is irrelevant as a predictor of ties. A researcher could improve the

quality of their survey by performing a small pilot study on the population of interest. The

initial survey would collect detailed information on respondents and their alters, thus

identifying the key social/physical dimensions in the network.

More generally, the simulation approach will be most successful when the true network is

strongly shaped by the local properties found in the sampled data. The more homophily

constrains the network, the more likely the simulation will reproduce the features of the true

network. Networks strongly shaped by organizational foci (e.g. associations, work) (Feld

1981) or physical geography are also appropriate.

Future work should consider the scope conditions not simply as practical limitations, but

also as methodological opportunities to extend the method. For example, researchers could

improve the efficiency of my algorithm. Currently, the full network of interest must be

relatively small due to computational limitations (say under 75000 nodes). This upper limit

could be extended by making better use of parallel processing (for example). A faster

algorithm would also make bootstrapped standard errors a more practical option for large

networks.

Future work could also extend the method to other network types and sampling schemes. I

restricted the current paper to ego network data and undirected networks, but one could

perform a very similar analysis using a two step sample and directed networks. In a two step

sample, the researcher interviews the alters of the respondents. The alters describe their

personal network, thus providing information on asymmetry (in relation to the respondent)

and assortative degree mixing (as we know the degree of the alters and the respondent). A

two step sample thus opens the simulation to directed networks and adds assortative degree

mixing to the set of local information.

And perhaps more importantly, future work could compare ego network sampling to more

complicated sampling schemes, such as snowball sampling (on not hard-to-reach

populations). For example, under what conditions, if any, does ego network sampling

perform as well as snowball sampling (or perhaps even better)? It is possible that future

work also could develop a hybrid sampling scheme that skirts the limitations of both

methods.49

In a similar manner, future work could examine the effect of measurement error on the

estimates. If the degree distribution is truncated, how biased are the estimates? And are there

any ways to reduce the bias?50 Researchers could also explore the bias due to respondent

48I also assume that the researcher knows the size of the population, which may be untrue for certain populations, especially hard-to-
reach ones. A researcher with no estimate of N would have to pair the proposed method with other sampling techniques, such as RDS
(Heckathorn 2011), which could estimate the size of the population. In general, the method is most appropriate for settings with a
known sampling frame on a known population.
49A snowball sample may get stuck in tightly connected clusters and does not capture isolates (and separate components more
generally) well. An ego network sampling scheme may miss very high degree nodes. The sampling schemes thus suffer from different
problems and could, potentially, be combined to the betterment of both.
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error. For example, Marin (2004) found that respondents are more likely to forget certain

types of alters.51 This could lead to an undercounting of degree.52 As a possible solution,

Marin and Hampton (2007) suggested using multiple name generators, while Brewer and

Garret (2001) offered survey techniques to reduce the number of missed alters. More work

in this vein is clearly needed to describe the costs and benefits of different survey options,

especially given the respondent burden in a long ego network survey (see McCarty et al.

2007).

Future work could similarly consider the respondent error in the alter-alter ties. There are

two potential sources of bias in the alter-alter data. First, some relationships could be

difficult to describe secondhand, as respondents may be unaware if a tie exists between two

other people. And second, the data could be biased towards transitive relationships, as

respondents try to maintain cognitive consistency in their local network (Kumbasar,

Romney and Batchelder 1994; Krackhardt and Kilduff 1999). The severity of these

problems will likely vary by the type of relation in the survey. For example, a broadly

defined tie (friends with, socialize with, like, etc.) will be easier to describe than a content

specific tie. A respondent may know if their alters talk to one another but not whether they

discuss politics.53 Future work is clearly needed to describe which relations can be

measured accurately via secondhand reports.

Future work should also consider the effects of alter-alter tie error on the ego network

configuration distribution, and, ultimately, the macro network statistics. Ideally, we would

know how the alter-alter tie error varies by name generator and how the measurement error

affects different macro network estimates (Grannis 2010). Finally, one could explore

possible solutions to the measurement problems, offering options to increase the validity of

the survey without interviewing the alters.54 The bias in the alter-alter ties is thus a potential

limitation to the method as well as a rich source of material for future studies.

In sum, the approach presented here has been quite successful, but there are a number of

methodological questions left unanswered. The hope is that future work will extend this

analysis, and the simulation will become a general option for network scholars. For now, the

results offer an initial glimpse, or perhaps a reminder, of the great promise of network

sampling: to bring the relational, connected nature of social life to standard survey research.
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Appendix A. Detailed Add Health Tables: 25 Percent Sampling

Table A1

Add Health Results: 25 Percent Sample, Component Size

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 815 817.232 23.182 2.232 .003 8.996 .011 14.220 .017

2 957 963.428 10.873 6.428 .007 .652 .001 −1.915 .002

3 987 991.508 10.674 4.508 .005 −1.268 .001 2.923 .003

4 1025 1032.327 14.337 7.327 .007 13.196 .013 9.625 .009

5 1201 1201.303 7.098 .303 .000 1.436 .001 .090 .000

6 1145 1157.201 14.306 12.201 .011 16.568 .014 19.172 .017

7 1180 1182.274 11.072 2.274 .002 2.680 .002 3.683 .003

8 1214 1222.823 7.318 8.823 .007 6.348 .005 7.005 .006

9 1250 1249.536 15.461 −.464 .000 5.096 .004 11.800 .009

10 1283 1290.029 12.253 7.029 .005 4.308 .003 6.548 .005

11 1278 1275.285 11.339 −2.715 .002 −2.252 .002 −5.610 .004

12 1411 1410.387 14.482 −.613 .000 −.516 .000 −.348 .000

13 1441 1442.547 10.210 1.547 .001 5.144 .004 3.372 .002

14 1355 1372.817 16.940 17.817 .013 23.568 .017 22.367 .017

15 1509 1509.036 8.173 .036 .000 −1.804 .001 −2.463 .002

16 1570 1567.755 9.209 −2.245 .001 −.748 .000 −2.352 .002

17 1707 1707.765 16.013 .765 .000 5.072 .003 7.170 .004

18 1745 1745.181 10.245 .181 .000 1.260 .001 .693 .000

19 1894 1894.772 9.308 .772 .000 1.100 .001 −1.185 .001

20 1954 1943.154 26.636 −10.846 .006 7.628 .004 5.795 .003

Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)−True Value

c
Relative Bias= |Bias/True Value|

Table A2

Add Health Results: 25 Percent Sample, Bicomponent Size

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 678 684.651 29.146 6.651 .010 22.032 .032 25.133 .037

2 888 897.066 16.309 9.066 .010 4.096 .005 −3.008 .003
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Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

3 898 908.140 14.096 10.140 .011 2.584 .003 6.312 .007

4 936 937.162 22.975 1.162 .001 13.572 .014 8.022 .009

5 1166 1170.421 10.644 4.421 .004 5.028 .004 −.293 .000

6 1023 1038.197 26.164 15.197 .015 28.288 .028 30.435 .030

7 1119 1124.328 16.484 5.328 .005 6.064 .005 9.640 .009

8 1164 1173.450 13.855 9.450 .008 5.844 .005 11.728 .010

9 1126 1136.715 24.125 10.715 .010 21.260 .019 27.318 .024

10 1200 1217.067 17.055 17.067 .014 14.508 .012 15.028 .013

11 1175 1177.974 22.917 2.974 .003 4.300 .004 2.155 .002

12 1306 1307.993 20.899 1.993 .002 1.116 .001 −3.758 .003

13 1355 1373.731 18.691 18.731 .014 18.332 .014 21.913 .016

14 1200 1212.092 27.118 12.092 .010 19.244 .016 16.043 .013

15 1449 1448.535 15.260 −.465 .000 5.224 .004 2.250 .002

16 1517 1510.359 20.319 −6.641 .004 .328 .000 −2.435 .002

17 1594 1590.469 27.695 −3.531 .002 9.852 .006 5.703 .004

18 1648 1655.374 20.124 7.374 .004 4.212 .003 15.532 .009

19 1838 1839.543 17.441 1.543 .001 1.648 .001 .520 .000

20 1664 1680.564 34.949 16.564 .010 29.380 .018 35.447 .021

Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)−True Value

c
Relative Bias= |Bias/True Value|

Table A3

Add Health Results: 25 Percent Sample, Distance

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 5.433 5.308 .195 −.125 .023 −.915 .168 −.770 .142

2 4.253 4.126 .083 −.127 .030 −.437 .103 −.370 .087

3 5.069 4.829 .122 −.240 .047 −.737 .145 −.611 .121

4 5.370 5.180 .150 −.190 .035 −.044 .194 −.754 .140

5 4.076 4.069 .086 −.008 .002 −.485 .119 −.369 .091

6 6.550 6.282 .216 −.268 .041 −1.559 .238 −1.130 .172

7 4.495 4.303 .094 −.192 .043 −.649 .144 −.548 .122

8 4.065 3.961 .073 −.104 .026 −.473 .116 −.425 .105

9 5.091 4.866 .108 −.224 .044 −.859 .169 −.728 .143

10 4.801 4.626 .105 −.176 .037 −.818 .170 −.596 .124

11 4.898 4.664 .104 −.234 .048 −.733 .150 −.619 .126
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Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

12 4.515 4.363 .069 −.152 .034 −.449 .099 −.415 .092

13 4.462 4.283 .085 −.179 .040 −.681 .153 −.532 .119

14 5.463 5.262 .145 −.201 .037 −.942 .172 −.797 .146

15 4.272 4.160 .058 −.113 .026 −.459 .107 −.394 .092

16 4.253 4.090 .058 −.163 .038 −.546 .128 −.440 .103

17 5.038 4.972 .098 −.067 .013 −.829 .164 −.447 .089

18 4.751 4.487 .088 −.264 .056 −.741 .156 −.667 .140

19 4.302 4.159 .041 −.143 .033 −.470 .109 −.384 .089

20 5.497 5.285 .103 −.212 .039 −.698 .127 −.625 .114

Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)−True Value

c
Relative Bias= |Bias/True Value|

Table A4

Add Health Results: 25 Percent Sample, 5 Step Reachability

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 .348 .380 .049 .032 .091 .224 .643 .195 .562

2 .801 .851 .024 .049 .061 .078 .098 .068 .085

3 .564 .649 .041 .085 .150 .230 .408 .196 .347

4 .464 .526 .049 .062 .133 .340 .732 .244 .526

5 .926 .932 .020 .006 .006 .047 .050 .040 .043

6 .233 .267 .034 .034 .146 .381 1.639 .227 .975

7 .775 .844 .029 .069 .090 .140 .181 .134 .173

8 .882 .924 .015 .042 .048 .063 .072 .065 .074

9 .565 .640 .038 .075 .133 .265 .469 .242 .428

10 .687 .746 .035 .058 .085 .221 .321 .174 .253

11 .610 .691 .037 .081 .133 .206 .338 .180 .294

12 .763 .812 .022 .049 .065 .108 .142 .101 .133

13 .800 .859 .024 .059 .074 .139 .173 .123 .154

14 .420 .492 .044 .072 .171 .313 .745 .265 .631

15 .881 .910 .016 .029 .033 .069 .078 .063 .071

16 .881 .924 .016 .043 .048 .082 .093 .073 .083

17 .591 .626 .033 .035 .059 .276 .466 .153 .260

18 .720 .824 .027 .104 .145 .203 .282 .193 .268

19 .882 .919 .012 .037 .042 .071 .080 .063 .072

20 .393 .440 .033 .047 .119 .202 .514 .177 .451
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Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)−True Value

c
Relative Bias= |Bias/True Value|

Table A5

Add Health Results: 25 Percent Sample, Modularity

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 .697 .669 .025 −.027 .039 −.216 .310 −.173 .248

2 .526 .512 .022 −.014 .027 −.164 .312 −.117 .222

3 .658 .601 .021 −.057 .086 −.225 .342 −.157 .239

4 .696 .668 .019 −.028 .040 −.265 .380 −.122 .175

5 .569 .572 .032 .002 .004 −.256 .449 −.111 .195

6 .768 .730 .021 −.038 .050 −.274 .356 −.151 .196

7 .594 .560 .022 −.034 .057 −.243 .409 −.140 .236

8 .520 .519 .026 −.002 .003 −.206 .395 −.133 .255

9 .661 .617 .021 −.043 .066 −.257 .389 −.179 .270

10 .631 .608 .017 −.022 .036 −.264 .418 −.100 .159

11 .599 .576 .022 −.023 .038 −.204 .340 −.145 .242

12 .566 .505 .019 −.060 .107 −.195 .344 −.163 .289

13 .600 .585 .017 −.015 .025 −.270 .450 −.092 .153

14 .681 .647 .021 −.034 .050 −.244 .358 −.179 .263

15 .535 .513 .020 −.022 .041 −.204 .381 −.129 .241

16 .575 .534 .023 −.041 .072 −.262 .455 −.127 .221

17 .667 .652 .014 −.014 .021 −.290 .435 −.069 .103

18 .611 .560 .021 −.051 .083 −.263 .431 −.185 .304

19 .545 .517 .016 −.028 .052 −.227 .417 −.111 .203

20 .627 .603 .017 −.025 .039 −.174 .277 −.138 .221

Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)-True Value

c
Relative Bias= |Bias/True Value|

Table A6

Add Health Results: 25 Percent Sample, Transitivity

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 .174 .218 .022 .044 .251 −.167 .957 −.154 .884

2 .132 .140 .018 .008 .061 −.123 .930 −.115 .876

3 .180 .168 .023 −.012 .069 −.173 .964 −.163 .908
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Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

4 .206 .202 .018 −.004 .022 −.199 .968 −.185 .899

5 .175 .207 .018 .031 .179 −.166 .950 −.155 .885

6 .265 .257 .032 −.007 .028 −.261 .986 −.253 .955

7 .168 .191 .017 .022 .132 −.161 .956 −.152 .903

8 .153 .180 .015 .027 .179 −.143 .937 −.134 .878

9 .188 .206 .019 .018 .098 −.182 .968 −.172 .916

10 .183 .198 .017 .015 .082 −.177 .963 −.166 .905

11 .151 .180 .021 .029 .190 −.144 .958 −.136 .903

12 .132 .140 .017 .008 .057 −.126 .954 −.120 .907

13 .186 .183 .022 −.002 .013 −.178 .960 −.168 .906

14 .202 .213 .019 .011 .056 −.197 .976 −.189 .934

15 .141 .162 .016 .021 .151 −.134 .953 −.127 .901

16 .140 .158 .014 .019 .135 −.133 .950 −.122 .872

17 .161 .185 .016 .024 .148 −.156 .970 −.137 .849

18 .178 .191 .019 .013 .074 −.173 .969 −.164 .918

19 .141 .147 .013 .007 .049 −.135 .961 −.129 .921

20 .138 .148 .017 .010 .074 −.134 .973 −.130 .944

Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)-True Value

c
Relative Bias= |Bias/True Value|

Table A7

Add Health Results: 25 Percent Sample, Proportion 102 Triad

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 .011 .011 .001 .000 .006 .000 .004 .000 .000

2 .018 .018 .001 .000 .000 .000 .006 .000 .015

3 .014 .014 .000 .000 .005 .000 .019 .000 .008

4 .013 .013 .001 .000 .003 .000 .011 .000 .015

5 .020 .020 .001 .000 .011 .000 .008 .000 .020

6 .010 .010 .000 .000 .009 .000 .005 .000 .003

7 .016 .016 .001 .000 .003 .000 .012 .000 .013

8 .019 .019 .001 .000 .006 .000 .016 .000 .004

9 .012 .012 .000 .000 .001 .000 .001 .000 .004

10 .014 .014 .000 .000 .009 .000 .012 .000 .001

11 .012 .012 .000 .000 .002 .000 .002 .000 .016

12 .012 .012 .000 .000 .001 .000 .008 .000 .001
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Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

13 .015 .015 .000 .000 .010 .000 .003 .000 .014

14 .009 .009 .000 .000 .002 .000 .000 .000 .005

15 .014 .014 .000 .000 .006 .000 .006 .000 .009

16 .015 .015 .000 .000 .012 .000 .005 .000 .002

17 .010 .010 .000 .000 .001 .000 .007 .000 .000

18 .011 .011 .000 .000 .003 .000 .004 .000 .005

19 .012 .012 .000 .000 .002 .000 .002 .000 .007

20 .006 .006 .000 .000 .000 .000 .003 .000 .001

Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure
a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)-True Value

c
Relative Bias= |Bias/True Value|

Table A8

Add Health Results: 25 Percent Sample, Proportion 300 Triad

Ego Network Configuration Model Degree Model Homophily Model

Net
ID

True
Value

Mean
Estimate

SE
a

Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c Bias
b

Relative
Bias

c

1 .351 .431 .055 .080 .229 −.335 .957 −.310 .885

2 .622 .652 .096 .030 .048 −.579 .931 −.546 .878

3 .469 .438 .061 −.031 .067 −.452 .965 −.426 .909

4 .507 .492 .064 −.015 .030 −.491 .969 −.457 .902

5 .898 1.035 .107 .137 .153 −.854 .951 −.798 .889

6 .319 .318 .046 −.001 .004 −.315 .986 −.305 .955

7 .599 .672 .080 .073 .122 −.573 .957 −.542 .905

8 .774 .895 .100 .121 .156 −.727 .938 −.680 .879

9 .375 .412 .045 .037 .097 −.363 .968 −.344 .916

10 .504 .548 .051 .044 .087 −.486 .964 −.456 .904

11 .302 .358 .048 .056 .187 −.289 .957 −.273 .906

12 .275 .290 .038 .014 .052 −.263 .955 −.250 .907

13 .565 .546 .073 −.019 .034 −.542 .960 −.513 .909

14 .256 .269 .027 .013 .050 −.250 .976 −.240 .935

15 .384 .439 .048 .055 .142 −.366 .953 −.347 .902

16 .424 .467 .043 .043 .103 −.403 .951 −.369 .872

17 .219 .251 .026 .032 .146 −.212 .971 −.186 .848

18 .309 .328 .031 .019 .062 −.299 .970 −.283 .917

19 .267 .279 .028 .012 .046 −.256 .961 −.246 .922

20 .070 .076 .010 .005 .077 −.069 .973 −.067 .945
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Note: The values for Mean Estimate, SE, Bias, and Relative Bias are calculated over 30 independent samples, where each
sample yields one estimate of the network measure. Estimates, SE, and bias values are 10−5

a
The Standard Error is the standard deviation of the sampling distribution.

b
Bias=E(estimates)−True Value

c
Relative Bias= |Bias/True Value|

Appendix B. Estimated ERGM Coefficients: Add Health Networks

In this appendix section, I present a table of ERGM parameter estimates from the Add

Health analysis (25 percent sample). I compare the true coefficients estimated on the full

network to the coefficients found during the simulation procedure. I limit the table to the

GWESP coefficient. I focus on GWESP as it offers a particularly telling inferential problem.

For the GWESP coefficient in the simulation is updated to minimize the chi square value,

where the chi square value is low when the ego network configurations in the simulated

network match the empirical distribution. The GWESP term, in contrast, measures the

shared partner distribution; the coefficient in the simulation is therefore updated without

explicitly considering what GWESP actually measures.

I take all of the Add Health networks and compare the true GWESP coefficients to the

simulation GWESP coefficients. The true GWESP coefficients are estimated on the full

network, conditioned on the other terms in the model. The simulation GWESP coefficients

are taken from the best set of coefficients for each iteration (for each school).

I present the results in the table below, where the Add Health networks offer a somewhat

muddled picture: for about half of the networks the true GWESP coefficient falls in the

interval of the simulated values; for the other half, the simulation coefficients are clearly

higher than the true coefficient. This suggests that the simulation coefficients do not

necessarily map onto the ERGM estimates, although the coefficients from the simulations

are generally close to the true values.

Table A9

Comparing True GWESP Coefficients to Simulation GWESP Coefficients: Add Health

Networks

GWESP:
True Value

GWESP:
from Simulation

Net
ID

Min Median Max

1 1.059 1.160 1.353 1.569

2 1.035 .908 1.109 1.289

3 1.190 .898 1.227 1.445

4 1.217 1.099 1.272 1.346

5 1.248 1.281 1.505 1.689

6 1.526 1.388 1.580 1.790

7 1.268 1.279 1.435 1.633

8 1.188 1.270 1.417 1.617
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GWESP:
True Value

GWESP:
from Simulation

Net
ID

Min Median Max

9 1.290 1.247 1.447 1.619

10 1.287 1.248 1.441 1.642

11 1.157 1.120 1.361 1.555

12 1.182 1.014 1.275 1.533

13 1.283 1.302 1.525 1.736

14 1.381 1.315 1.494 1.652

15 1.192 1.166 1.408 1.596

16 1.088 1.132 1.350 1.573

17 1.060 1.071 1.268 1.452

18 1.301 1.338 1.541 1.712

19 1.368 1.263 1.463 1.639

20 1.321 1.274 1.432 1.636

Appendix C. Estimated ERGM Coefficients: Known Model Analysis

In this appendix, I test my method on a network generated from a known, or “true”, model,

testing whether my model can reproduce the parameters of the known model. I specifically

use a model based on the degree distribution, mixing terms (for race and education) and

GWESP to generate the test network. Thus, the only processes affecting the network are

clustering and homophily. I set the GWESP coefficient to 1.2 and use a network of size

1000 as my test case. I take 10 percent, 20 percent, and 30 percent random samples from the

network and use that as the input into my method. I then check if the simulation approach

captures the true, known value for GWESP.

I present the results below. My simulation approach performs quite well, with accurate

estimates of the true GWESP coefficient. The mean estimate for the coefficient is 1.199

under 20 percent sampling, with a standard deviation of .095. The bias is thus only −.001

under 20 percent sampling. The results for the 10 percent sampling are predictably worse

than the 20 percent or 30 percent results but even here the bias is only 10 percent of the true

coefficient.

Table A10

Estimated GWESP Coefficients for Known Model Analysis

Bias
a

SE
b

Statistic
True
Value

10 Percent
Sample

20 Percent
Sample

30 Percent
Sample

10 Percent
Sample

20 Percent
Sample

30 Percent
Sample

GWESP
Coefficient 1.2 .129 −.001 −.015 .144 .095 .086

Note: The values for Bias and SE are calculated over 30 independent samples, where each sample yields one estimate of
the network measure. All estimates come from the ENC model.
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a
Bias=E(estimates)−True Value.

b
The Standard Error is the standard deviation of the sampling distribution.
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FIGURE 1.
All Possible Ego Network Configurations for Symmetric Ego Networks of Size 5 and Below
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FIGURE 2.
Example Ego Network Configuration Distributions
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FIGURE 3.
Example Ego Network Configuration Distributions: Transitivity Comparison
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FIGURE 4.
Example Optimization Curve
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FIGURE 5.
Comparing Add Health Network #6 to Example Simulated Network
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FIGURE 6.
Comparing Add Health Network #6 to Example Simulated Network: Grade 9 Only
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FIGURE 7.
Comparison between True and Estimated Values for 5 Illustrative Add Health Schools:

Connectivity Measures, 25 Percent Ego Network Samples
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FIGURE 8.
Comparison between True and Estimated Values for 5 Illustrative Add Health Schools:

Clustering Measures, 25 Percent Ego Network Samples
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Table 1

Summary of Simulation Steps

Part I: Gathering Information Prior to the Simulation

   Step 1: Calculate degree distribution and differential degree from the sampled data.

   Step 2: Calculate ego network configuration distribution from the sampled data.

Part II: Setting up the Simulation

   Step 3: Simulate network of size N with the degree distribution from Step 1; assign demographic characteristics to the nodes in the
network (based on the sampled data).

 Set ERG Model to Simulate Network From:

   Step 4: Specify terms in the model.

     Model terms capture:

      Differential degree (nodecovariate term)

      Homophily (absolute difference or mixing matrix)

      Ego network configuration distribution (GWESP or alternative clustering term)

   Step 5: Set initial coefficients on terms from Step 4.

   Step 6: Constrain model on the observed degree distribution (from Step 1)

Part III: Simulation Procedure

   Step 7: Simulate network using the model specified in Steps 4–6. Start from network simulated in Step 3.

   Step 8: Compare homophily in simulated network (from Step 7) to homophily in sampled data. Update homophily coefficients if bias is
found.

   Step 9: Simulate new network using the updated coefficients from Step 8. Start from the network in Step 7.

   Step 10: Use chi square value to compare ego network configuration distribution in simulated network (from Step 9) to ego network
configuration distribution in sampled data (from Step 2)

   Step 11: Update coefficient on clustering term to find better fitting network. A “better” network has a lower chi square value (compared
to the chi square value from Step 10), or has an ego network configuration distribution closer to the empirical distribution. Steps 7–10 are
repeated for each proposed change to the clustering term coefficient (with the new clustering term coefficient used in the set of coefficients).

Repeat Step 11 until the expected chi square value does not improve over the last iteration.
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