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Abstract

Oligo- and polysaccharides are infamous for being extremely flexible molecules, populating a

series of well-defined rotational isomeric states under physiological conditions. Characterization

of this heterogeneous conformational ensemble has been a major obstacle impeding high-

resolution structure determination of carbohydrates and acting as a bottleneck in the effort to

understand the relationship between the carbohydrate structure and function. This challenge has

compelled the field to develop and apply theoretical and experimental methods that can explore

conformational ensembles by both capturing and deconvoluting the structural and dynamic

properties of carbohydrates. This review focuses on computational approaches that have been

successfully used in combination with experiment to detail the three-dimensional structure of

carbohydrates in a solution and in a complex with proteins. In addition, emerging experimental

techniques for three-dimensional structural characterization of carbohydrate–protein complexes

and future challenges in the field of structural glycobiology are discussed. The review is divided

into five sections: (1) The complexity and plasticity of carbohydrates, (2) Predicting

carbohydrate–protein interactions, (3) Calculating relative and absolute binding free energies for

carbohydrate–protein complexes, (4) Emerging and evolving techniques for experimental

characterization of carbohydrate–protein structures, and (5) Current challenges in structural

glycoscience.
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The complexity and plasticity of carbohydrates

Carbohydrates occupy a pivotal functional position in biological recognition processes

(Sharon and Lis 1993; Varki 1993; Dwek 1996). The complex shape, functionality, and

dynamic properties of oligo- and polysaccharides (hereafter denoted simply as

“carbohydrates”) allow these molecules to function in intermolecular interactions as

encoders of biological information. For instance, carbohydrate recognition is an integral part
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of normal biological development (Haltiwanger and Lowe 2004) and the immune defense

against pathogens via the identification of exogenous carbohydrates (Brown and Gordon

2001; Cobb and Kasper 2005). Conversely, many bacterial and viral pathogens (such as

Escherichia coli or Haemophilus influenza) initially adhere to host tissues by binding

specifically to carbohydrates on the host’s cell surfaces (Karlsson 1986, 1989; Rostand and

Esko 1997). Thus, there is an interest in developing therapeutic agents that can interfere

with, modulate, or exploit carbohydrate-based host-pathogen interactions. Examples of

therapeutic agents interfering with carbohydrate-specific interactions include the

neuraminidase inhibitors zanamivir and oseltamivir used in the treatment of influenza

infections (Dreitlein et al. 2001). Vaccines that employ bacterial polysaccharides,

conjugated to carrier proteins, have been particularly effective, for example against H.

influenza (Jennings 1992). Because abnormal glycosylation is also a marker for certain types

of cancer (Hakomori 1989; Fukuda 1996) and other diseases, such as IgA nephropathy

(Coppo and Amore 2004; Moura et al. 2004), inflammatory bowel disease (Campbell et al.

2001), and rheumatoid arthritis (Parekh et al. 1985; Malhotra et al. 1995), there is a growing

interest in exploiting these variations in the development of therapeutics (Lo-Man et al.

2004; Buskas et al. 2005; Xu et al. 2005). In certain diseases, such as congenital disorders of

glycosylation (Freeze 2001) or lysosomal storage diseases (Neufeld 1991), the origin of the

observed glycosylation defects can be traced back to mutations in the glycan-processing

pathway, suggesting a role for gene therapy and possibly glycosidase/transferase inhibition

(Platt et al. 1994; Sly and Vogler 2002; Grabowski and Hopkin 2003).

Thus far, only rarely has the design of carbohydrate-based therapeutic agents made

extensive use of 3D structural information, reflecting in part the difficulties of determining

carbohydrate conformation, as well as a paucity of structural data for many carbohydrate—

protein complexes. To help reverse this trend, computational approaches have emerged to

complement experimental techniques in the analysis of structure–function relationships of

carbohydrate–protein interactions.

A significant challenge in the characterization of the conformational properties of

carbohydrates is that they are flexible, populating multiple (defined) conformational states

under physiological conditions. This property necessitates a modification in the way we

think about biological recognition processes. A rigid molecule can be fully characterized by

a single conformational state, but not so for a flexible one. This raises an interesting

question: How are flexible molecules recognized in nature? Does the receptor protein

preferentially bind to the most frequently populated shape, or to the average shape, or to a

relatively rare “bioactive” conformation, or does binding induce a unique conformation?

To help explore the concepts of the carbohydrate structure and recognition, let us compare

carbohydrates to another flexible object, a snake. To the extent that a living snake is a

flexible 3D object that is not random in its motional properties, it serves as a useful analogy

for carbohydrate structure and recognition. The shape and motion (as well as color and

sound) of a cobra are clearly distinct from those of a rattlesnake. Both are generally long,

skinny, and wiggly, but each is recognizably different. Yet, the average shape of each snake

would be remarkably similar; if each one were to wiggle to an equal extent to the right and

left its average shape would be a straight line! So it goes with all flexible objects, including
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glycans; depending on the extent of the motion the average shape may be a very poor

description of any instantaneous conformation. That is not to say that the average properties

are not useful; most experimentally observable data are averages of a conformational

ensemble. For example, NMR intensities are the average of contributions from all of the

conformational states observed on the NMR timescale. This averaging means that NMR data

must be used with care when deriving a 3D model for a flexible carbohydrate, as the data

could point to a virtual conformation. Nevertheless, the NMR data are extremely important

in characterizing the carbohydrate structure and dynamics, and for validating computational

predictions (Sayers and Prestegard 2000; Kirschner and Woods 2001; Sayers and Prestegard

2002; Gonzalez-Outeirino et al. 2005, 2006).

If the average shape is not what is recognized, then a particular conformation must somehow

be selected from the conformational ensemble. From a statistical perspective, recognition of

the most frequently seen shape of the carbohydrate is more probable than recognition of a

rarely populated conformation. Surveys of the Protein Data Bank (PDB) have found that in

the majority of noncovalently associated carbohydrate–protein complexes (Petrescu et al.

1999; Imberty and Perez 2000) and glycoproteins (Petrescu et al. 1999), the glycosidic

torsion angles were consistent with those displayed most commonly by glycans in a

solution. Until recently, these types of statistical analyses were challenging to perform due

to limited search software; however, a particularly convenient interface for this purpose

(GlyTorsion) has been developed (Lütteke et al. 2005). Exceptions to the tendency to bind

low energy conformations are found in carbohydrate-processing enzymes, in which ligand

distortion in the active site may be integral to the enzyme’s function (Karaveg and Moremen

2005). Additionally, an induced fit in the carbohydrate has been observed in lectin binding

(Casset et al. 1995; Imberty and Perez 2000). However, the induced fit may be the result of

miss-matching a receptor with a ligand; that is, just because a protein is found to bind to a

particular carbohydrate does not mean that it evolved to recognize that ligand. A miss-

matched induced fit is potentially relevant to structures of plant lectins bound to mammalian

glycans. These issues underlie challenges faced by computational predictions of

carbohydrate epitopes.

Characterizing the extent of molecular flexibility is challenging for both experimental and

theoretical methods. To include molecular flexibility accurately in a computational model

requires a method that is able to generate states whose average properties are experimentally

consistent. Current molecular dynamics (MD) simulations, when combined with force fields

appropriate for carbohydrates, provide this capability (Vliegenhart and Woods 2006). A

perpetual challenge to MD simulations of biomolecules is to achieve adequate sampling of

molecular motions of the system under study. Fortunately, in the case of oligosaccharides,

there are relatively few energetically accessible conformational states for each glycosidic

linkage, and thus it is often possible to achieve good conformational sampling from an MD

simulation of between 10 and 1000 ns, depending on the size and complexity of the

oligosaccharide. Sampling efficiency may be enhanced by techniques such as replica

exchange MD (Sugita and Okamoto 1999) and Monte Carlo (MC) simulations (Metropolis

and Ulam 1949; Metropolis et al. 1953).
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MD simulations can also provide insight into the dynamic properties of carbohydrate–

protein complexes, given a reasonable initial structure for the complex. Crystallography

continues to play a significant role in the characterization of carbohydrate–protein

complexes; however, important new rungs have been added to the technological ladder.

Most notably, advances in the a priori prediction of complexes by molecular docking have

been made as well as NMR methods, such as saturation transfer difference (STD) NMR

(Mayer and Meyer 2001; Meyer and Peters 2003). STD NMR experiments facilitate the

identification of those regions of the carbohydrate that are proximal to the protein surface

(the carbohydrate epitope). Thus, docking experiments may be validated by a qualitative

comparison to STD NMR data (Haselhorst et al. 2004, 2007), or by quantitative

computation of the NMR intensities in the complex (Wen et al. 2005). Integrating STD

NMR data directly into docking algorithms is a potential next step. Emerging experiments

included protein surface footprinting, based on either H/D exchange differences (King et al.

2002; Seyfried et al. 2007), or hydroxyl radical oxidation (Sharp et al. 2003, 2004; Hambly

and Gross 2005; Takamoto and Chance 2006) that can identify carbohydrate interfaces on

proteins, and as such may also provide a significant step up the technological ladder.

Here we summarize some recent reports that employ computational simulations to examine

the 3D structures and dynamics of carbohydrates and carbohydrate–protein complexes. Our

goal is to help promote awareness of the capabilities and limitations of current

computational methods as applied to these systems and to illustrate how the integration of

computation and experiment can advance efforts in the structure determination of

carbohydrate–protein complexes (Figure 1).

Predicting carbohydrate–protein interactions

Given the development of high-throughput affinity assays, employing immobilized

microarrays of biologically relevant glycans, there is now a considerable amount of data on

carbohydrate–protein interactions in vitro (Fukui et al. 2002; Blixt et al. 2004; Paulson et al.

2006). Microarray technologies are able to identify carbohydrate ligands for a protein

receptor, providing an unprecedented level of information pertinent to carbohydrate

recognition. But the picture is incomplete. While microarray data may identify a core

carbohydrate recognition sequence, the precise manner in which the protein recognizes and

binds to a ligand remains undefined. To complement experimental structural studies of

carbohydrate–protein complexes, computational docking of carbohydrates to proteins can

contribute to the understanding of carbohydrate recognition.

Drug design

Often host cell-surface carbohydrates are the targets for invading microbes and viruses

(Karlsson 1986; Smith et al. 2004) and conversely may form targets for the design of novel

therapeutic agents (von Itzstein et al. 1993). In just such a case, the GM1 binding site of the

heat-labile enterotoxin produced by E. coli (a close structural analogue to the cholera toxin

produced by Vibrio cholerae) was targeted for an inhibitor design (Minke, Diller, et al.

1999). Using crystal structures of the heat-labile enterotoxin with fragments of the

carbohydrate head group of GM1, potential inhibitors were identified (Minke, Roach, et al.

1999). The program AutoDock (Goodsell and Olson 1990) was used to predict the structure
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of the toxin–inhibitor complexes. After the docking studies were complete, the structures of

the inhibitor–toxin complexes were solved by X-ray crystallography (Merritt et al. 1997),

providing a direct test of the docking protocol. In general, the experimentally obtained

structures validated the models predicted via the docking procedure (Figure 2). In the case of

one inhibitor, melibionic acid (galactose-α-(1-6)-gluconic acid), the majority of the highest

ranked binding modes from the docking simulations placed the galactose residue in a similar

position to that found in the crystal structure. For the gluconic acid residue there was no

consensus among the top-ranked binding modes, as the ligand adopted several poses. It is

noteworthy that this residue was also unresolved in the crystal structure (Merritt et al. 1997)

(a common occurrence when dealing with flexible molecules like carbohydrates).

Melibionic acid thus bound to the toxin primarily through interactions made by the galactose

residue while the gluconic acid provided non-specific interactions that enhanced the affinity

relative to free galactose.

Identifying the protein contact residues

While the above example illustrates a successful use of docking in the characterization of

the interaction between a protein and small carbohydrate derivatives, docking simulations

have also been used to probe larger carbohydrate–protein interactions (Bitomsky and Wade

1999; Sachchidanand et al. 2002; Kadirvelraj et al. 2006). Heparin, a complex sulfated

glycosaminoglycan, has several known protein-binding partners including antithrombin III

and interleukin 8 (IL8). Lacking a structure of the heparin–IL8 complex, efforts have been

undertaken to predict this carbohydrate–protein complex using a docking-based approach

(Bitomsky and Wade 1999). The docking-based protocol included (1) using mono- and

disaccharide heparin fragments to run a global docking search using several docking

programs (GRID (Goodford 1985), AutoDock (Goodsell et al. 1996), and DOCK (Ewing

and Kuntz 1997)); (2) calculating the probability that a particular protein residue would be

found in the binding interface, based on the results from the global searches; and (3) docking

a hexasaccharide fragment of heparin in the plausible binding regions. This method was first

tested on three heparin-binding proteins with experimental structures, and the success of

these test cases, along with available biological and spectroscopic data (Webb et al. 1993;

Kuschert et al. 1998), supported the application of this protocol to the prediction of the

heparin–IL8 complex. Using computational docking, it was possible to identify a shallow

carbohydrate-binding site on the IL8 surface and construct 3D models of the binding mode

of a complex and highly charged oligosaccharide.

Enzymatic pathway analysis

Computational docking can also assist in predicting carbohydrate–enzyme structures, and in

defining enzymatic pathways. Recently the mechanism of action of a glycoside hydrolase in

the N-glycan synthesis pathway, α-(1–2)-mannosidase I, was predicted using docking

simulations (Mulakala et al. 2006), in line with previously predicted mechanisms, based on

crystal structures of the enzyme with various substrates (Vallee et al. 2000; Karaveg et al.

2005). By computationally docking 16 α-D-manno-(1-2)-α-D-mannose conformers

(generated by constraining relevant ring atoms and then minimizing the structure in vacuo)

and evaluating binding energies and forces on the substrates (Figure 3) that were proposed

to drive it toward the transition state (with AutoDock), a reasonable enzymatic pathway was
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deduced (Mulakala et al. 2006). The substrate of α-(1-2)-mannosidase I was predicted to

populate conformations along the following pseudo-rotation pathway from its starting

conformation (either 1C4 or 0S2) through to the transition state (3E): 1C4 → 3H2 → 0S2

→ 3,0B → 3S1 → 3E (Mulakala et al. 2006).

Computational docking methods have evolved to help overcome difficulties in obtaining

experimental 3D structures of multiple ligands to a common receptor. Docking strategies

can utilize experimental or modeled protein structures to aid in the discovery new lead

compounds for drug design. In the field of glycobiology docking simulations have several

applications, in addition to drug design, as they provide computationally tractable methods

to predict carbohydrate-binding sites on proteins, bound ligand conformations, and

conformational pathways for carbohydrate-processing enzymes. Docking simulations are

however far from infallible and benefit from experimental verification, as false positives and

negatives are common. Typically, docking simulations do not generate a single model rather

multiple plausible low energy poses. These results require ancillary information in order to

select the most probable candidates. To facilitate selection, more rigorous post-docking

approaches can be used to generate additional data for predicted carbohydrate–protein

complexes; two such methods are highlighted in the following section.

Calculating relative and absolute binding free energies for carbohydrate–

protein complexes

Characterization of the structural and thermodynamic properties of carbohydrate–protein

interactions is desirable for many reasons, from understanding basic biological function to

structure-based drug design. Two types of theoretical methods are commonly used to

calculate the free energy of binding of a carbohydrate–protein complex: direct ΔG

calculations and thermodynamic integration (TI) methods (Figure 4). Direct ΔG calculations

use only the initial (free receptor and ligand) and final (complex) states of the cycle, which

correspond to experimentally observable states. Information regarding the pathway is not

required. Descriptions of the initial and final states are generated as structural ensembles

collected from independent MD simulations, or from decomposition of a single MD

simulation of the complex (reviewed in Swanson et al. 2004).

In TI calculations the relative ΔGbinding is computed for closely related systems by slowly

transforming or perturbing the initial state to the final state (Figure 4). By employing an

appropriate (although nonphysical) thermodynamic cycle and by proceeding in small

discrete steps, the relative ΔGbinding may be computed (Zwanzig 1954).

Each method has advantages and disadvantages (as highlighted in Table I). TI calculations

are best suited to a set of structurally similar ligands or a set of mutations within a binding

site. As for example in the refining of a lead compound into a high affinity binder or in the

design of higher affinity receptor proteins. To screen structurally dissimilar ligands, or a

single ligand against multiple receptors, direct ΔG calculations are preferred. Both of these

theoretical methods can provide a detailed structural explanation of the system under study;

notably, they can provide an estimate of the contributions of specific residues and atoms to
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the free energy, as well as decomposition of energetic contributions from steric and

electrostatic components, something that is difficult to achieve experimentally.

Direct ΔG calculations

Carbohydrate-binding proteins, known as lectins, exhibit a range of carbohydrate-binding

specificities. Galectin-3, a mammalian lectin with relatively narrow binding specificities, has

affinity for blood group A-oligosaccharides. At the other end of the spectrum are lectins

such as galectin-1 that can bind a relatively diverse group of oligosaccharides (Consortium

for Functional Glycomics (CFG), http://www.functionalglycomics.org). How is it that

lectins are able to display such broad binding specificities for structurally distinct

carbohydrate epitopes? To address this question, the ability of galectin-1 to bind a variety of

oligosaccharides with varying specificity was explored using a combination of

computational docking, MD simulations, and binding free energy calculations (Ford et al.

2003). Galectin-1 is known to bind to Gal-β-(1-4)-GlcNAc (LacNAc)-containing

oligosaccharides and there are several crystal structures of it in complex with ligands

including LacNAc (Liao et al. 1994). MD simulations, using the GLYCAM force field

(Woods et al. 1995), of galectin-1 complexed (via docking simulations) with carbohydrate

ligands containing the LacNAc core were run to determine the binding mechanism of

LacNAc derivatives (Ford et al. 2003). From these simulations, it was concluded that

various substitutions at the nonreducing end of the LacNAc core were tolerated with little or

no disruption of key-binding interactions. Hydrogen bonding and aromatic stacking that

occurred between LacNAc and galectin-1 were also found to be present for all of the

modified LacNAc ligands. Direct ΔG calculations based on the results from the MD

simulations provided good qualitative agreement with experimentally determined binding

affinities for the ligands under study. In addition to known ligands, two simulations were run

with negative controls (GlcNAc and N-acetylmaltosamine) and in both cases the ligands

diffused away from the binding pocket early in the simulation. The inclusion of negative

controls in MD simulations provides considerable confidence in the MD timescale and in the

force field used for the simulation. MD simulations in combination with direct ΔG

calculations predicted binding conformations that explained the weakly selective binding

behavior of galectin-1 and qualitatively ranked the predicted free energies of binding in

accordance with the experimentally determined binding affinities.

Similarly, a direct ΔG computational study using the GLYCAM force field (Woods et al.

1995) exploring the specificity of concanavalin A, a plant lectin specific for mannose-

containing oligosaccharides (common to N-linked glycans), was successful in structurally

accounting for the ligand preferences of the protein (Bryce et al. 2001). The results were

further de-convoluted by decomposing binding energy into entropic and enthalpic

contributions. Binding energy contributions were analyzed on a per-residue basis,

identifying key interactions for the general recognition strategy and specificity of

concanavalin A. The specific interactions of high-mannose fragments that led to the

observed binding differences, could thus be ranked.

In addition to examining biological ligands, direct ΔG calculations have unraveled the

energetics of binding of carbohydrate inhibitors for disease-related enzymes.
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Neuraminidase, a viral coat protein from influenza, is responsible for cleaving terminal

neuraminic acid (Neu5Ac, sialic acid) residues on the host cell surface to promote viral

fusion and release of viral progeny (Palese et al. 1974; Palese and Compans 1976; Liu et al.

1995). Due to its central role in influenza infection, viral neuraminidase has been selected as

a drug target. Inhibitors based on the natural ligand, Neu5Ac, boosted the affinity from

millimolar for the natural ligand (Potier et al. 1979; Jedrzejas et al. 1995) to nanomolar for

some of the better inhibitors (von Itzstein et al. 1993; Finley et al. 1999; Babu et al. 2000;

Chand et al. 2001). Direct ΔG calculations, using the AMBER force field, revealed that the

energetic component that resulted in such a jump in potency was caused by hydrophobic

contacts (Masukawa et al. 2003). The neuraminidase inhibitors tamiflu and relenza have

increased van der Waals interactions over the natural ligand resulting in more direct contacts

with the enzyme and fewer water-mediated interactions. Electrostatic contributions were less

important in determining the binding affinity but were useful in correctly orienting the

ligand within the active site.

The direct ΔG method is not only applicable to the study of small ligands, such as

oligosaccharide fragments or small molecule carbohydrate derivatives, but also for large

complex carbohydrates. Antibodies against capsular polysaccharides (CPS) from one strain

of Streptococcus, such as Group B Streptococcus agalactiae type III (GBSIII), rarely cross-

react with other strains, such as the CPS from Streptococcus pneumoniae type 14 (Pn14).

GBSIII and Pn14 share a similar backbone sequence, but Pn14 lacks α-Neu5Ac in its side

chains. This minor difference attenuates the antigenicity of Pn14-type CPS as compared to

the sialated GBSIII type-CPS for antibodies raised against the sialated antigen (Jennings et

al. 1981). To quantify differences in immunogenicity and antigenicity of CPS from a Gram-

positive bacterium (Group B S. agalactiae), Kadirvelraj et al. (2006) used a combination of

computational tools, including molecular modeling, docking, MD simulations, and direct

ΔG calculations. While the conspicuous difference between GBSIII and Pn14 is the loss of

an acidic monosaccharide, the primary contributions to differences in affinity were found to

be entropic in origin, as determined via MD simulations of the immune complex and direct

ΔG calculations with the GLYCAM force field (Kadirvelraj et al. 2006). Pn14 exhibited

greater flexibility in solution, and thus paid a greater entropic penalty upon binding to the

antibody, as compared to GBSIII. The absence of sialic acid in the side chains of Pn14 also

decreased contributions to van der Waals stabilization energy and the electrostatic

interaction energy. These factors combined to yield differences in affinity that accounted for

differential antibody recognition of bacterial CPS and provided a structural framework for

interpreting the observed immunological data.

Thermodynamic integration calculations

The application of TI calculations to the analysis of binding free energies of inhibitors to

carbohydrate-binding enzyme includes α-D-glucose-based inhibitors of glycogen

phosphorylase (Archontis et al. 2005). A potent inhibitor of glycogen phosphorylase, hydan

(a spirohydantoin of glucopyranose), and two of its analogues (methyl-hydan and NH2-

hydan) have been co-crystallized with the enzyme (Gregoriou et al. 1998; Oikonomakos et

al. 2002; Watson et al. 2005). These structures provided a qualitative explanation for the

differences in observed binding affinities (relative binding affinities: hydan > NH2-hydan >
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methyl-hydan ≫ α-D-glucose (Bichard et al. 1995; Watson et al. 2005)). The addition of

data from TI simulations using the CHARMM22 glucose force field parameters (MacKerell

et al. 1998) provided a quantitative description of the binding interaction energies (Archontis

et al. 2005). The addition of functional groups (methyl and NH2 group) introduced a

destabilizing van der Waals free energy component (the methyl group more so than the

NH2) through unfavorable interactions of the ligands with an aspartate residue and a water

molecule in the binding site. NH2-hydan improved with respect to electrostatic energies over

hydan, but this was not sufficient to overcome the destabilizing van der Waals contacts.

These results suggested alternative sites for hydan modifications that could yield more

potent inhibitors.

Free energy calculations based on computational simulations of protein–carbohydrate

complexes have also been employed to investigate antigenicitiy of carbohydrate–antibody

interactions (Pathiaseril and Woods 2000). As a test of the ability of a method closely

related to TI, free energy perturbation, to predict relative binding free energies for a series of

haptens, the interaction energy of the trisaccharide epitope of the Salmonella serotype B O-

antigen and a related monoclonal antibody fragment were analyzed. From calorimetric

experiments, five structural analogues of the natural hapten were estimated to have similar

binding affinities to the natural epitope, while one congener displayed very poor binding

affinity (Bundle et al. 1994). Free energy perturbation simulations reproduced the

experimentally determined relative free energies within an absolute error of 0.55 kcal/mol

and revealed the likely protonation state of a histidine residue in the binding cleft. This

computational study also demonstrated one of the challenges of free energy perturbation

simulations, predicting relative free energies of ligands that differ only in their interactions

with the solvent. This is also a challenge for the direct ΔG method, where accurately

calculating the contributions of ligand–solvent and protein–solvent interactions tests the

limits of the computational model.

Accurate representation of the effects of water as a solute is critical for the success of all of

the computational methods discussed (MD, docking, and ΔG calculations). With an accurate

force field and explicit water, MD simulations can generate conformational families that are

consistent with experimentally observed structural data (Corzana et al. 2004; Gonzalez-

Outeirino et al. 2006; Pereira et al. 2006). For docking studies, inclusion of conserved water

molecules in the binding site can improve the success of the simulation (Minke, Diller, et al.

1999; Rarey et al. 1999; Österberg et al. 2002); however, the position of key waters is not

always known. In the case of free energy simulations, the energetic contributions from direct

interactions between the ligand and receptor can often be well modeled although the

accurate treatment of contributions from ligand–solvent and protein–solvent interactions

remains a challenge.
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Emerging and evolving techniques for experimental characterization of

carbohydrate–protein structures

Partially oriented NMR spectroscopy

Over the past decade, NMR structural constraints from anisotropies in spin interactions have

greatly expanded the possibilities for biomolecular structure determination. By partially

orienting a sample via medium- or field-induced alignment, observables that arise from

anisotropic interactions such as residual dipolar couplings (RDCs), chemical shift anisotropy

(CSA) offsets, and pseudocontact shifts in paramagnetic systems can be detected (reviewed

in Prestegard 1998; Prestegard et al. 2004). In a recent application, a combination of NMR

experiments, mass spectrometry (MS), and computational simulations, yielded a novel

strategy to probe oligosaccharide conformation in a solution (Yu et al. 2007). In this

experiment, a pentasaccharide fragment of chondroitin sulfate was isotopically enriched by

replacing acetyl groups with 13C-labeled acetyl groups. The resulting 13C spectra provided

structural constraints from the orientational dependence of RDCs and CSA offsets. To

assign resonances, isotope ratios in the pentasaccharide, observed via the mass spectra, were

correlated with enrichment levels seen in the NMR spectra. The 13C data alone were too

sparse for structure determination, so additional structural constraints (NOEs, J-coupling

constants, 1H–1H, and 13C–1H RDCs) were determined. In the final structure determination

steps, a combination of computational tools was used: REDCAT (residual dipolar coupling

analysis tool) to calculate alignment parameters (Valafar and Prestegard 2004) and XPLOR-

NIH (using the GLYCAM force field; Kirschner et al. 2008) to optimize the structure via

simulated annealing (Schwieters et al. 2003, 2006). The ultimate goal of this novel strategy

is to examine oligosaccharides in complex with proteins, in which case the 13C data can be

augmented with principal order parameters determined from the protein and conformational

restraints for the oligosaccharide from computational simulations (Yu et al. 2007). This

combination of NMR, MS, and computation highlights the creative cross-disciplinary

approach necessary to tackle oligosaccharide–protein structure determination.

Hydroxyl radical protein footprinting with mass spectrometry

The concept of “footprinting” generally refers to techniques that probe macromolecular

surface changes upon complex formation of two or more molecules, by modifying solvent-

exposed surfaces. This technique has existed since the late 1970s when it was first applied to

probe DNA–protein complexes (Galas and Schmitz 1978; Schmitz and Galas 1980). Since

that time the concept has evolved to include footprinting of RNA–protein (Motoki et al.

1991; Wang and Padgett 1989) and protein–protein complexes (Sheshberadaran and Payne

1988). In glycoscience, footprinting is drawing attention for its potential to define

carbohydrate-binding surfaces on proteins. Footprinting data could be used to complement

computational predictions for systems that are not amenable to NMR spectroscopy or

crystallography.

The highest resolution protein footprint technique currently available uses hydroxyl-radical

oxidation of amino acid side chains, which can be detected and quantified by MS techniques

to map the solvent accessible surfaces of proteins and protein complexes (reviewed in

Takamoto and Chance 2006). Since many amino acid side chains react with hydroxyl
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radicals, this technique is capable of relatively high-resolution mapping. In contrast to H/D

amide exchange MS, oxidative footprinting has two critical advantages, namely it modifies

the amino acid side chains, rather than the backbone and it is not a chemically labile

modification. Hydroxyl radicals can be generated using metal-dependent chemical

generation from peroxide, by radiolysis of dilute peroxide solutions or by direct radiolysis of

water. Hydroxyl radicals are ideal reagents to probe solvent accessible surfaces, as they are

small and highly reactive. The relative reactivity of amino acid side chains has been

characterized (Xu and Chance 2005) and all but the amino acids Gly, Ala, Asp, Asn, Ser,

and Thr are sufficiently reactive to be useful probes. Since 14 types of amino acids are

potentially reactive (Xu et al. 2003), this method boasts considerably higher structural

resolution than residue-specific techniques (such as lysine modification), which provide

sparse sampling of the protein surface. In addition, initial studies demonstrate that the extent

of oxidation (reactivity) is strongly dependent on the solvent accessible surface area (SASA)

of the amino acid (Charvátová, Foley, Bern, Sharp, Orlando, and Woods, in preparation)

(Figure 5).

After brief exposure to hydroxyl radicals the sample is subjected to protease digestion. To

determine the modification sites and to quantify the extent of oxidation, MS/MS techniques

are employed. Due to the potential for multiple oxidation states for some residues and

oxidation combinations within a given proteolytic peptide, a far larger and more complex

data set is obtained than typical for a proteomics analysis. Efficient and reliable

identification of the locations and relative amounts of oxidation requires sophisticated

emerging computational analysis.

Recently, we have been exploring hydroxyl radical footprinting techniques for the

determination of binding surfaces of protein–carbohydrate complexes. In particular, we were

interested in assessing the potential of this method to resolve carbohydrate-binding sites for

future studies where the protein–carbohydrate complex may not be amenable to traditional

structure determination methods (Figure 1), such as antibody–polysaccharide complexes.

Initially, we used human galectin-1-lactose as a model system and pulse laser irradiation of a

1% hydrogen peroxide solution for the generation of hydroxyl radicals. By comparison with

MD data based on the crystal structure of the galectin-1–lactose complex (Lopez-Lucendo et

al. 2004), hydroxyl radical footprinting was able to identify those residues defining the

binding site (Figure 6). Differences in relative oxidation levels correlated well with the

difference in SASA calculated from MD simulations of galectin-1 with and without lactose

(Figure 6D) (Charvátová and Woods, unpublished data).

Due to the large number of uncommon modifications that arose from the oxidation

experiment, available proteomics (database-search) analysis software (Yates et al. 1995;

Perkins et al. 1999) were poorly suited to assign the mass spectra of the modified peptides.

A more efficient and sensitive identification of modified peptides was accomplished using

the program ByOnic, which combines database searching with de novo analysis (Bern et al.

2007). Currently, the analysis of the MS data presents one of the most significant obstacles

to hydroxyl radical footprinting technology, which must be overcome before footprinting

makes the jump from “emerging” to established technology.
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The ever-increasing pool of known carbohydrate-binding proteins and their preferred

carbohydrate epitopes necessitates the development of efficient means to identify their

interfaces; a challenge potentially well suited for hydroxyl radical footprinting and MS

analysis.

Saturation transfer difference NMR

While footprinting may be used to identify the protein interface, STD NMR allows rapid

identification of the regions of a carbohydrate ligand that are proximal to the protein surface

in a complex (Mayer and Meyer 1999). STD NMR is now a mature technology; however,

integrating STD NMR data with other methods, such as computational docking, is still

evolving.

For the STD NMR experiment a single solution of the protein and carbohydrate ligand (with

~100-fold molar excess of ligand) is required, and two 1H-NMR spectra, at different

saturation frequencies, are measured. The STD spectrum, or the ‘on-resonance’ spectrum, is

acquired by irradiating at a small window of frequency where only the protein resonates

(Figure 7). The protons from a ligand in exchange between the bound and free forms can

also become differentially saturated when bound to the protein. The reference spectrum, or

the ‘off-resonance’ spectrum, is acquired with irradiation far from the protein’s or ligand’s

frequency range. The difference between the on- and off-resonance spectra, the difference

STD NMR spectrum, identifies carbohydrate protons in close proximity to protons from the

protein, revealing the carbohydrate epitope (Figure 7). A lack of observed intensities for

carbohydrate protons does not necessarily indicate that they are distant from the protein

surface, since carbohydrate interactions with regions of the protein surface with low-proton

density, or interactions mediated by water do not facilitate magnetization transfer.

Computational modeling used in conjunction with STD NMR can help explain such

ambiguous cases, improving resolution of and confidence in the carbohydrate-binding

epitope, or STD NMR can be used to validate computational predictions.

In addition to being a relatively straightforward experiment, STD NMR is advantageous

because isotope labeling of the protein or ligand is not required (Meyer and Peters 2003).

Some factors to consider when taking the spectra include the T1 relaxation times of the

ligand protons and the effect of temperature on the measured spectra (Yan et al. 2003). Most

critically, a fast off-rate of the ligand is required in order to observe saturation transfer to the

ligand (Mayer and Meyer 1999).

STD NMR has been employed to characterize the carbohydrate-binding epitopes for a

variety of classes of protein receptors, including glycosytransferases (Biet and Peters 2001;

Macnaughtan et al. 2007), bacterial toxins (Haselhorst et al. 2004), viral and antiviral

proteins (Sandstrom et al. 2004; Haselhorst et al. 2007), parasitic sialadases (Todeschini et

al. 2002), lectins (Bhunia et al. 2004) (Figure 7), and antibodies (Maaheimo et al. 2000;

Johnson and Pinto 2004). With data from STD experiments, validation of atomic resolution

computational models of the protein–carbohydrate interaction is possible. In addition, using

programs, such as CORCEMA (Moseley et al. 1995), nuclear Overhauser effect intensities

can be computed for the complex allowing back-calculation of STD NMR intensities.

Calculated STD NMR intensities have recently been employed in the validation of docking
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simulations (Bhunia et al. 2004; Haselhorst et al. 2004, 2007) and for refinement of docking

poses (Jayalakshmi and Rama Krishna 2004).

Varieties of footprinting and saturation transfer NMR techniques have existed for decades,

yet the application and modification of these methods to investigate problems in

glycoscience has come about relatively recently. In a field where obstacles in structural

determination abound, the potential synergy between these two methods is an appealing

prospect for obtaining medium-to-high resolution structural information. Combining these

methods with computational tools, such as protein homology modeling, MD simulations or

docking, could provide experimentally guided/validated atomic resolution descriptions of

protein–carbohydrate interactions.

Current challenges in structural glycoscience

Carbohydrate structure prediction

Given only the sequence of a protein, scientists have several tools for predicting its 3D

structural properties, including homology or comparative modeling, threading and secondary

structure prediction algorithms based on sequence similarity to other known proteins

(reviewed in Marti-Renom et al. 2000), and more recently, de novo fold prediction

algorithms (Baker 2000). Unfortunately, strategies based on sequence homology are

unlikely candidates for application to carbohydrates. Two carbohydrate molecules may share

a similar core structure, yet carbohydrate-residue modifications via addition, substitution,

deletion, change in linkage configuration or chemical modification may yield molecules

with vastly different structural properties. An example of this phenomenon is seen in

amylose versus cellulose; both are linear polymers of glucose found in plants. The building

blocks of amylose and cellulose are glucose-α-(1-4)-glucose and glucose-β-(1-4)-glucose,

respectively. Because the building blocks are diasteriomers, the polymers have different

structural and chemical properties leading to very different functions within plants and

different susceptibilities to hydrolysis (digestion) in humans. Cellulose polymers are linear

and rigid (Nishiyama et al. 2002, 2003), whereas amylose polymers are helical in shape and

have more internal flexibility than cellulose (Gessler et al. 1999). For carbohydrates a single

change, such as modifying an anomeric configuration or linkage position, is sufficient to

create two biologically distinct molecules.

For proteins, mutations in the sequence can be classified in two general groups:

conservative, such as Leu → Val, or nonconservative, such as Leu → Asp. However,

carbohydrate mutations are not easily classified in such terms. While carbohydrate residues

can be grouped into distinct families (hexoses, hexosamines, acidic, etc.), most carbohydrate

residues share similar properties, particularly the existence of polar and nonpolar groups.

Thus, such grouping is of limited usefulness since it is the great diversity in topological

presentation of these groups that give carbohydrate residues their complexity. As discussed

in the introduction, structural prediction is often further complicated by the existence of

several low energy conformations under biological relevant conditions. Two computational

methods, MC and MD simulations, have been extensively employed in the prediction of

carbohydrate conformational families. Over the past decade, explicit solvent MD

simulations have been successful in predicting conformational families, and often the
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relative populations of these families (Naidoo et al. 1997; Picard et al. 2000; Corzana et al.

2002, 2004; Eklund et al. 2005; Landersjo et al. 2005; Pereira et al. 2006). Evolution of new

computational tools to predict the carbohydrate structure will benefit from the knowledge

gained through experiments and computational simulations, and the challenge will be in

finding ways to apply what we have learned to generate more efficient and accurate

structure prediction tools.

Nomenclature

As part of the set of tools to probe the carbohydrate structure, nomenclature systems that

effectively and precisely communicate carbohydrate structure—from monosaccharide

composition to 3D shape—are essential. For many years glycoscientists have relied on the

International Union of Pure and Applied Chemistry and the International Union of

Biochemistry and Molecular Biology (IUPAC-IUBMB) standard (Figure 8) (McNaught

1997). Unfortunately, the IUPAC nomenclature system for carbohydrates is extremely

complex, and unlike the IUPAC system for amino acids, peptides, and proteins, it is not

suitable for many glycomics applications. In the short term, a glycomics nomenclature

“wish-list” might include a standardized single-letter code for monosaccharides and a

nomenclature system consistent with the PDB file format. Due to the format restrictions of

PDB files (discussed below), a continuing objective is the development and implementation

of a comprehensive nomenclature system appropriate for current and future glycomics

applications. It is likely that future nomenclature systems will evolve to be machine

readable, for reasons of accuracy and completeness, at the expense of human readability.

Nevertheless, within the foreseeable future, the PDB format will continue to be the most

widely supported and accepted file format for structural data.

For a standardized code for monosaccharides, we propose a one-letter code for

monosaccharides and a two-letter code for their common derivatives (Table II). This system

could be generalized for other applications or used to simplify existing nomenclature

systems (Figure 8). This system is currently utilized in the GLYCAM carbohydrate and lipid

force field as the foundation of its three-character PDB-style nomenclature system (http://

www.glycam.com).

Since, at present, all molecular visualization programs as well as many other types of

biostructural software depend on the PDB format, a three-character code for carbohydrates

is necessary. Creating a three-character system that captures the structural diversity of

carbohydrate structures presents many challenges but would greatly facilitate structural

searches and glycomics analysis. One of these challenges is the desire to explicitly state

linkage information. When dealing with proteins, the linkage between amino acids is

implicit in its sequence. Linkage information for carbohydrate molecules must be

determined experimentally at each position (which is not a trivial task) and then explicitly

defined in the nomenclature. To add another layer of complexity, carbohydrate residues can

exist as D- or L-isomers, α- or β-anomers, and as pyranose or furanose ring forms. In animal

systems, most monosaccharides exist as a single isomer (e.g. D-mannose), yet there are

sufficient counter examples from outside the animal kingdom (Fichtinger-Schepman et al.

1979, 1981) to make the case for the inclusion of isomeric configurations in the
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nomenclature. This means that any standard code for carbohydrates residues would ideally

include, at a minimum, five types of information: (1) residue type, (2) isomer, (3) anomer,

(4) linkage, and (5) ring structure.

While it would be preferable for the PDB format restriction if all this information could fit

into an uppercase three-letter residue identifier, it is not possible to specify all potential

permutations of carbohydrate residues using only three noncase sensitive characters. As

such, machine-readable nomenclature systems that dispense with the three-character PDB-

constraint, such as the linearly formatted LINUCS (Bohne-Lang et al. 2001) and LinearCode

(Banin et al. 2002), and the XML programming language codes Glyco-CT (Herget et al.

2007) and GLYDE-II (Sahoo et al. 2005), have been proposed for bioinformatics

applications and described elsewhere (Figure 8). To accommodate the numerous

biostructural applications that still make use of the PDB format, the GLYCAM PDB-style

carbohydrate nomenclature system was created.

The development of the GLYCAM PDB-style nomenclature has evolved over the past 14

years (Woods et al. 1995; Tessier et al. 2007; Kirschner et al. 2008), originating from the

necessity of having a descriptive and logical three-character naming system for carbohydrate

residues for MD simulations with AMBER (Case et al. 2005). Here we propose a case

sensitive three-character code that provides a descriptive, but concise nomenclature system

for all monosaccharides and several common monosaccharide derivatives (Tables II–V) that

can still meet the restriction of the PDB file format. A complete description of the

nomenclature system can be found on the GLYCAM website (http://www.glycam.com). In

general, the PDB-style GLYCAM code uses the first character to encode the linkage

position(s) (Table III), the second to encode the residue (via the character, Table II) and the

isomer (via case), and the third to encode anomeric configuration (via the character) and the

ring size (via case). For specific monosaccharide derivatives, the third-placed character

encodes the derivative class (via the character, Table II) and anomeric configuration (via

case) at the expense of defining the ring size. Given only three characters, we have

attempted to generate a comprehensive, relatively readable and flexible nomenclature

system (Tables II–V). This naming convention, as well as the GLYCAM parameters, can be

used with molecular mechanics programs that support AMBER input files (Case et al.

2005), including NAMD (Phillips et al. 2005) and NWChem (Kendall et al. 2000).

Additionally, the GLYCAM nomenclature system can be implemented in other molecular

mechanics programs such as GROMOS (Scott et al. 1999) and CHARMM (Brooks et al.

1983).

While suitable for many monosaccharides, no three-character system is sufficiently robust to

cover all possible monosaccharide derivatives. Due to this format-imposed limitation, the

GLYCAM nomenclature system includes monosaccharides and common monosaccharide

derivatives, omitting the more elaborate and rare derivatives. Another issue arises due to

potential overlaps with existing PDB residue identifiers. For these reasons, we are working

to implement an extended version of the GLYCAM code suited for the newer Research

Collaboratory for Structural Bioinformatics standard format, macromolecular

Crystallographic Information File (mmCIF). This newer format dispenses with the three-
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character limitation, which will permit the development of a highly descriptive and

comprehensive, yet relatively user-friendly, nomenclature system.

Conclusion

The ability of proteins to recognize and distinguish carbohydrate molecules is at the heart of

many critical biological processes, such as cell adhesion, adaptive and innate immunity, and

cell signaling. Carbohydrates flex and bend, taking on different 3D shapes, yet somehow

nature has evolved to recognize these complex and pliable molecules. Protein receptors are

able to differentiate between (1) the varied 3D shapes any given carbohydrate may adopt

and (2) closely related carbohydrates that differ only in such structural properties as

configuration or linkage position. To develop a better understanding how nature employs the

peculiar structural and dynamic properties of carbohydrates to its advantage, 3D

characterization of carbohydrate–protein complexes is required. However, structure

determination of flexible and dynamic molecules is a great challenge. Beginning with more

rigid systems (often small carbohydrates in complex with proteins, or glycoproteins with

deliberately trimmed glycans), crystallography and NMR spectroscopy added the first few

rungs of the technical ladder that leads to more high throughput methods for carbohydrate

structure determination. For the next rung of the ladder, MD simulations were employed,

alongside NMR techniques, as a means to identify the 3D shapes, and relative populations,

of more complex systems.

The latest major advance has been the creation and widespread use of glycan microarrays

for receptor screening. With the emerging wealth of microarray data comes the urgent need

for high throughput methods that provide structural insight into the mechanisms of

carbohydrate recognition. By characterizing the interacting interfaces between ligands and

protein surfaces, experimental and computational methods offer a new route to deriving the

3D structures of carbohydrate–protein complexes. Current computational techniques for

carbohydrate–protein structural characterization include docking simulations and absolute

and relative free energy calculations. On the experimental front, we have highlighted

oxidative footprinting of the receptor surface, which is emerging as a method to complement

epitope-mapping data from techniques, such as STD NMR. Also, NMR strategies that use

partially oriented samples, in combination with computational simulations, are a promising

avenue for 3D oligosaccharide–protein structure determination.

Acknowledgments

We would like to acknowledge Professors P. Hünenberger, A. Imberty, C. von der Lieth, and J. Naismith for their
insightful comments regarding the development of the GLYCAM nomenclature system.

Abbreviations

CSA chemical shift anisotropy

IL8 interleukin 8

LacNAc N-acetyllactosamine (βGal(1-4)GlcNAc)
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MC Monte Carlo

MD molecular dynamics

MS mass spectrometry

RDC residual dipolar coupling

SASA solvent accessible surface area

STD NMR saturation transfer difference nuclear magnetic resonance

TI thermodynamic integration
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Fig. 1.
The roles of computational methods (purple) alongside experimental methods (blue) in

structural glycobiology.
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Fig. 2.
Inhibitors of the heat-labile enterotoxin from E. coli. Computationally docked galactose

derivatives (white) were able to reproduce the experimentally observed binding modes

(black) (reprinted from Minke, Diller, et al. 1999).
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Fig. 3.
Docking used to compute hydrogen-bonding forces on the substrate α-D-mannopyranosyl-

(1-2)-α-D-mannopyranose (3H2) exerted by the active site of yeast α-(1-2)-mannosidase

(measurements in pN) (reprinted from Mulakala et al. 2006).
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Fig. 4.
(A) The thermodynamic cycle for ligands (orange and green) binding to a protein receptor

(blue). Direct ΔG calculations determine the free energy of binding of a ligand to a receptor

(ΔG1), whereas TI methods calculate the free-energy difference between receptor–ligand

complexes (ΔG4), where only the ligand is changed. (B) By considering the ΔG4 pathway as

a series of nonphysical intermediate states (0 < λ < 1), the free energy difference between

the real states λ = 0 and λ = 1 can be computed by taking the ensemble average of the first

derivative of the potential energy (V) with respect to λ.
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Fig. 5.
Correlation between reactivity and SASA (calculated from MD simulation) for amino acids

from galectin-1: (A) phenylalanine (high reactivity), (B) proline (medium reactivity), and

(C) asparagine (control/nonreactive).
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Fig. 6.
Extent of oxidation mapped onto the surface of the crystal structure of galectin-1 in the

presence (A) and absence (B) of ligand. (C) The difference in the level of oxidation with and

without ligand (with the ligand superimposed in green for reference) correlated with (D) the

change in SASA of the protein from MD simulations with and without the ligand present.
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Fig. 7.
STD NMR characterized the carbohydrate-binding epitope of the siglec sialoadehesin at

high resolution. (A) The STD NMR spectrum of sialyllactose in the presence of sialoadhesin

and (B) the corresponding reference 1H NMR spectrum at 500 MHz. (C) The relative STD

effects of sialyllactose bound to sialoadhesin. Percentages were calculated using the

difference in individual signal intensities between the measured spectra and normalized to

the largest STD effect (reprinted from Bhunia et al. 2004).
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Fig. 8.
A sample of carbohydrate nomenclature systems and schematic representations using a

human blood group A antigen as an example. Due to the lengthy formats of GLYDE-II and

GlycoCT, readers are directed to relevant websites to view sample XML codes.
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Table I

A comparison of methods used to predict binding free energies

Comparison Automated docking Direct ΔG calculations Thermodynamic integration

Computational efficiency High Moderate Low

Ligand set Can be diverse Can be diverse Close structural analogues only

Binding free energy computed Absolute ΔG Absolute ΔG Relative ΔG

Water model Implicit Implicit Explicit

Accuracy strongly dependent on Compounds used for calibration Water model, force field, and
sampling

Sampling and force field
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DeMarco and Woods Page 34

Table II

Monosaccharide codes that form the core of the PDB-style GLYCAM nomenclature

Symbol Core monosaccharidesa Symbol Special cases and common derivativesb

Pentoses 2-N-Acetylhexosamines

A arabinose GN N-acetylglucosamine

R ribose LN N-acetylgalactosamine

X xylose MN N-acetylmannosamine

D lyxose

Uronic Acids

Hexoses GU glucuronic acid

G glucose LU galacturonic acid

M mannose MU manuronic acid

L galactose IU iduronic acid

I idose

Sialic Acids (9 carbon)

T talose

9N N-acetylneuraminic acid

N allose

9G N-glycolylneuraminic acid

E altrose

9O 3-deoxy-D-manno-oct-2-ulosonic acid (KDO)

K gulose

Hexuloses Others

8O 3-deoxy-D-glycero-D-galacto-non-2-ulosonic acid (KDN)

C fructose

P psicose

S sorbose

J tagatose

6-Deoxyhexoses

F Fucose

Q quinovose

H rhamnose

a
Case designates the isomeric configuration: D (upper case) and L (lower case).

b
The case of the first character designates the isomeric configuration: D (upper case) and L (lower case), with the exception of sialic acids and

KDN. For the second character, case designates the anomeric configuration: α (upper case) or β (lower case).
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DeMarco and Woods Page 35

Table III

One-letter codes for specifying linkage positions in pyranoses and furanoses

Symbol Linkage Symbol Linkage

0 Terminal v 3,6-

1 1- U 4,6-

2 2- M 5,6-

3 3- T 2,3,4-

4 4- L 2,3,5-

6 6- s 2,3,6-

Z 2,3- R 2,4,6-

Y 2,4- K 2,5,6-

O 2,5- Q 3,4,6-

x 2,6- J 3,5,6-

w 3,4- p 2,3,4,6-

N 3,5- I 2,3,5,6-
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