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Higher plants have 2 GOGAT spe-
cies, Fd-GOGAT and NADH-

GOGAT. While Fd-GOGAT mainly 
assimilates ammonium in leaves, which 
is derived from photorespiration, the 
function of NADH-GOGAT, which is 
highly expressed in roots,1 needs to be 
elucidated. The aim of this study was to 
clarify the role of NADH-GOGAT in 
Arabidopsis roots. The supply of ammo-
nium to the roots caused an accumulation 
of NADH-GOGAT, while Fd-GOGAT 1 
and Fd-GOGAT 2 showed no response. 
A promoter–GUS fusion analysis and 
immunohistochemistry showed that 
NADH-GOGAT was located in non-
green tissues like vascular bundles, shoot 
apical meristem, pollen, stigma, and roots. 
The localization of NADH-GOGAT and 
Fd-GOGAT was not overlapped. NADH-
GOGAT T-DNA insertion lines showed 
a reduction of glutamate and biomass 
under normal CO

2
 conditions. These data 

emphasizes the importance of NADH-
GOGAT in the ammonium assimilation 
of Arabidopsis roots.

Glutamine oxoglutarate aminotrans-
ferase (GOGAT or glutamate synthase) 
catalyzes the synthesis of 2 glutamates 
through the transfer of a glutamine amide 
residue to 2-oxoglutarate.1 GOGAT uses 
ferredoxin or NADH as electron donor.2,3 
One glutamate serves as substrate for the 
glutamine synthetase (GS), and the other 
glutamate is used for amino acid metabo-
lism.4 The coupled reaction of the GS/
GOGAT cycle is the major ammonium 
assimilation pathway in higher plants.4-7

Reverse genetic studies showed that 
Fd-GOGAT participated in assimilation 

of ammonium derived from photores-
piration.8-10 Besides photorespiration, 
ammonium is generated by the pro-
tein catabolism, nitrate reduction, and 
the phenyl propanoid metabolism.11 
Furthermore, ammonium is primarily 
assimilated in roots, while it is imported 
from the environment.12-14 NADH-
GOGAT was involved in assimilation of 
ammonium derived from the non-photo-
respiratory pathway.15,16

However, it is not clear whether root 
NADH-GOGAT mediated ammonium 
assimilation is inhibited in the function 
under ambient air conditions or the func-
tion is only given under high CO

2
 con-

ditions. The tissue and cell-type specific 
expression of NADH-GOGAT is not 
fully elucidated yet. Therefore, the article 
compared the growth of mutants and 
wild-type plants grown in medium with 
ammonium as a major nitrogen source 
under ambient air condition. In addition, 
the temporal and spatial distribution of 
NADH-GOGAT was considered.

Quantitative real-time PCR showed 
that ammonium supply leads to a linear 
increase of root NADH-GOGAT. The 
ratio of all root GOGATs was compared 
at 6 hours after ammonium supply, while 
NADH-GOGAT and Fd-GOGAT2 
contributed 67 and 33% respectively, 
the content of Fd-GOGAT1 reached less 
than 1% of all GOGATs. Nitrate supply 
did not change the GOGAT composition 
in roots. It is likely that NADH-GOGAT 
is directly engaged in the root ammo-
nium assimilation.

The contribution of shoot NADH-
GOGAT to the plant growth is limited, 
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because of 2 reasons. First, Fd-GOGAT1 
is the major GOGAT isoform in shoots.17 
Almost 90% of all shoot GOGATs are 
Fd dependent under the tested nitrogen 
conditions. Second, only limited organ 
accumulated NADH-GOGAT in shoot. 
Protein gel blot analysis, promoter analy-
sis, and immunohistochemistry showed 
that shoot NADH-GOGAT is localized 
in vascular bundles of immature organs.

Furthermore, the function of NADH-
GOGAT was approached with reverse 
genetics. The wild-type and 2 T-DNA 
insertion lines were grown under differ-
ent nitrogen conditions. Although the 
ammonium supply of less than 1 mM did 
not show a difference between wild-type 

and mutants lines, the supply of 5 mM 
ammonium reduced the mutant bio-
mass. The result suggests that the ammo-
nium assimilation is NADH-GOGAT 
dependent under high ammonium 
concentrations.

Contradictory, wild-type and mutants 
lines did not show differences in the bio-
mass under nitrate supplied conditions. 
The largest amount of incorporated 
nitrate is transported to the shoot, where 
it is reduced in the leaves to ammonium 
through nitrate reductase (NR) and 
nitrite reductase (NiR).18 Since NiR is 
mainly localized in mesophyll chloro-
plasts,19 most of the ammonium is pro-
duced there. The foliar GS/GOGAT 

cycle consists of GS2 and Fd-GOGAT1, 
thus Fd-GOGAT1 should assimilate 
ammonium derived from the nitrate 
reduction.

The shoot and root glutamate con-
centrations in NADH-GOGAT T-DNA 
insertion lines were lower in comparison 
to the wild-type at 24 h after ammonium 
supply (Fig. 1), what suggests a domi-
nant contribution of NADH-GOGAT to 
the glutamate synthesis. Conversely, the 
mutant lines tended to accumulate gluta-
mine, one of the substrates for GOGAT 
reactions. However, neither glutamate 
was depleted nor mutant lines were lethal 
under ammonium conditions, suggest-
ing an alternative metabolic pathway 
that provides glutamate in the mutants. 
Fd-GOGAT2 represents the second larg-
est accumulation of GOGAT in roots; 
therefore it may provide glutamate in the 
mutants. Beside Fd-GOGAT2, glutamate 
dehydrogenase (GDH) could be another 
candidate for root ammonium assimila-
tion.16,21 GDH catalyzes the reversible 
amination of 2-oxoglutarate (2OG) for 
the synthesis of Glu using ammonium 
as a substrate.22 Recent reverse-genetic 
research revealed that the main physi-
ological function of NADH-GDH is to 
provide 2OG for the tricarboxylic acid 
cycle.23 It would make sense to compare 
the Glu concentrations of a quadruple 
knock out (nadh-gogat, gdh1–2-3) with 
that of single knock out mutant (nadh-
gogat) under high ammonium condi-
tions in order to study the conjunction of 
NADH-GOGAT with GDH.23

Since glutamate plays a pivotal role 
in the plant amino acid metabolism,3,24 
their composition was compared between 
wild-type and T-DNA insertion lines 
(Fig. 1). The aspartate (Asp) concentra-
tion of the NADH-GOGAT T-DNA 
insertion line was reduced compared with 
the wild-type. This decrease may reflect 
the conversion of aspartate to glutamate 
as a compensation for a low glutamate 
concentration. Asp aminotransferase cat-
alyzes the conversion of Asp and 2OG to 
oxaloacetate and Glu.25

NADH-GOGAT T-DNA insertion 
lines showed not only a reduction of glu-
tamate but also changes of other amino 
acids. Mutants showed an increase of 
branched-chain amino acids, Phe, and 

Figure  1. Schematic representation of the free amino acid composition in nAdH-GOGAt 
mutant lines. Plants of the wild-type and 2 t-dnA insertion lines were grown on vertical mGrl 
agar plates20 containing 7 mm nitrate as nitrogen source for 14 d before they were transferred 
to mGrl medium without nitrogen for 3 d. Afterwards plants were transferred to the medium 
supplemented with either 10 mm KnO3 or nH4cl. the plants were harvested at 6 or 24 h after 
nitrogen supply. the concentration of amino acids in wild-type plants was compared with the 2 
t-dnA insertion lines, whereas the increase or decrease is represented by different color. One-
way AnOVA followed by dunnett tests were used to identify significant differences between 
wild-type and t-dnA insertion lines (P < 0.05).
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Lys in roots, but a decrease in shoots, at 
6 h after ammonium supply. These dra-
matic differences were weakened at 24 h 
after ammonium supply, suggesting 2 
points. First, those amino acid concen-
trations seem to be dependent on the 
pool size of Glu, because their biosynthe-
sis cycles are not closer in pathway dis-
tance from GS/GOGAT cycle. Second, 
NADH-GOGAT plays a key role in 
the regulation of Glu concentrations in 
response to ammonium in roots.

Therefore, a loss of functional NADH-
GOGAT leads to a decreased biomass 
under high ammonium condition. This 
article showed that ammonium supply 
leads to an increase of NADH-GOGAT, 
which assimilates ammonium in the root.
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