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Abstract

Recent research indicates that knowledge about social networks can be leveraged to increase

efficiency of interventions (Valente, 2012). However, in many settings, there exists considerable

uncertainty regarding the structure of the network. This can render the estimation of potential

effects of network-based interventions difficult, as providing appropriate guidance to select

interventions often requires a representation of the whole network. In order to make use of the

network property estimates to simulate the effect of interventions, it may be beneficial to sample

networks from an estimated posterior predictive distribution, which can be specified using a wide

range of models. Sampling networks from a posterior predictive distribution of network properties

ensures that the uncertainty about network property parameters is adequately captured. The

tendency for relationships among network properties to exhibit sharp thresholds has important

implications for understanding global network topology in the presence of uncertainty; therefore,

it is essential to account for uncertainty. We provide detail needed to sample networks for the

specific network properties of degree distribution, mixing frequency, and clustering. Our methods

to generate networks are demonstrated using simulated data and data from the National

Longitudinal Study of Adolescent Health.

1 Introduction

We develop a method to sample networks given a specification of the probability

distribution– of particular interest is a posterior predictive distribution–on network statistics

as researchers are often interested in utilizing observed network data to investigate the

impact of an intervention on populations with networks similar to those for which the data

are available. The probability distribution can be specified either by a posterior predictive

model, design-based inference, Null model (e.g. the Erdős-Rényi model), or Bayesian

inference for an exponential random graph model (ERGM) (Caimo & Friel, 2011; Koskinen

et al., 2013). Methods to generate networks are widely available, and include those to

generate networks based on one specific network property, such as the Erdős-Rényi model
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(Erdős & Rényi, 1960) and the Barabási-Albert model (Barabasi & Albert, 1999), as well as

those that are based on a wide range of network properties, such as the simulation methods

(Handcock et al., 2012) from an ERGM (Frank & Strauss, 1986). However, none of these

network generation efforts incorporate uncertainty due to sampling and collection error. In

the Erdős-Rényi model, the number of edges follows a binomial distribution with

parameters .5n(n − 1) and p, where n is the number of nodes and p is the probability of an

edge. ERGMs fix the probability distribution of network properties by maximizing the

entropy (Newman, 2010). This paper connects the two research areas, modeling posterior

predictive distributions and generating networks, by presenting a novel method for sampling

networks from a user–defined posterior predictive distribution, thereby ensuring that the

networks are consistent with not only point estimates but also their associated uncertainty.

The properties we consider are density, degree distributions, mixing patterns and clustering,

but these methods could be generalized to include many others.

Erdős & Rényi (1960) demonstrated the importance of characterizing the uncertainty in

estimates of network properties by analytically relating the size of the largest component of

an Erdős-Rényi graph to its expected mean degree. This work revealed the existence of

sharp thresholds in relationships among network properties. Subsequent research has shown

threshold behavior in the relationship between mean degree and categorization of networks

as connected, Hamiltonian, or planar, along with relationships between mean degree and

size of the largest clique and the network diameter under the Erdős-Rényi random graph

model (Friedgut & Kalai, 1996). Watts & Strogatz (1998), in their landmark paper,

demonstrated the rapid emergence of the small world property via changes in the mixing

patterns between near and distant nodes. The tendency for network properties to exhibit

sharp threshold effects – causing their joint distributions to be peaked (Newman, 2010) –

demonstrate that slight errors in estimation of a network property can have a major impact

on beliefs about the overall structure of the network. Therefore, it is essential for researchers

to utilize knowledge about the variability of network property estimates.

Our approach allows for specification of the error distributions of the estimated network

property or properties of interest and not just the estimate of the mean by the specification of

a posterior predictive distribution. For a simple illustration, assume we collected sample data

from an unknown network of interest, G, of size n. Let p̂ represent the point estimate for

network edge density–the sole network property under consideration in this example.

Regardless of whether the Erdős-Rényi model or the ERGM is used to generate a collection

of networks, the probability distribution of network edge density for the collection of

networks is approximately normal with mean p̂ and variance . However, the

uncertainty in the estimated edge density depends on the number of units sampled and other

sample design considerations. Furthermore, the error distribution may be non-normal. Our

proposed method allows users to specify the posterior predictive distribution for edge

density. Characterizing and incorporating uncertainty is particularly important when point

estimates of network properties are near threshold values. The focus of the paper is on

methods for generating a collection of networks given the specification of the probability
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distribution of network properties. The specification can be established either by a posterior

predictive model, design-based inference, or a Null model, e.g. the Erdős-Rényi model.

To demonstrate our methods, we consider two settings with different types of observed

network data but a common goal: the generation of collections of networks that represent

new populations but retain the essential network properties inferred from the observed data.

In the first setting, the observed data arise from a population-based sample of nodes. Such

data have been analyzed to investigate the impact of concurrency on HIV propagation in the

United States (Morris et al., 2009) and changes in the core-dependence network (including

measures of social isolation) in the United States over a 20-year period (McPherson et al.,

2006). Section 5 presents a simulation study that emulated the first setting by randomly

sampling nodes from a network, and generating networks based on information from the

samples. In the second setting, the observed data are a collection of whole networks. In this

setting, the posterior predictive distribution incorporates the variation in network properties

across the observed networks. Settings in which analysis of multiple networks is of interest

include cluster randomized trials of interventions designed to prevent HIV infection (Wang

et al., in press; Boily et al., 2012) or smoking initiation (Valente et al., 2003). They also

include observational studies, such as those investigating impact of friendship network

structure on adolescent development (McNeely et al., 2002). Section 6 analyzes data from

The National Longitudinal Study of Adolescent Health (Add Health) on multiple friendship

networks in order to simulate such networks in a hypothetical collection of schools that

reflect the diversity of those actually studied.

Beyond the relative ease of collecting relevant data for their estimation, the network

properties of degree distribution, mixing patterns and clustering provide necessary and often

sufficient information to reconstruct networks in many settings (Mahadevan et al., 2006).

Additionally, these properties have great influence on processes operating on networks. For

example, the importance of mixing patterns, including age, social position, geographic

location and race, has been studied in many settings, in particular sexual disease

transmission (Morris et al., 2007). Degree mixing has also been important in many settings,

including investigation of disease transmission models (Newman, 2002), the Internet (Doyle

et al., 2005; Vázquez et al., 2002), and biological interactions (Maslov & Sneppen, 2002).

Newman (2002) concluded that degree assortative networks disseminate disease more easily

and are more robust to removal of their highest degree nodes compared to disassortative

networks. Clustering is relevant in a wide range of network types including social,

information, technological, and biological (Newman, 2010). Hence our focus is on degree

distribution, mixing patterns and clustering; the discussion section addresses extension to

additional network properties. An R package called CCMnet1 contains many of the methods

presented in this paper.

The proposed methods permit generation of collections of networks, which facilitates

simulation of processes on many probable realizations of a population that are consistent

with estimates of network properties, and thereby permits characterization of the reliability

of the conclusion. For example, a large collection of friendship networks that are based on

1R package CCMnet is currently available by request.
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observed networks available in the Add Health dataset can be useful to model and evaluate

smoking prevention programs since an individual's propensity to smoke is influenced by

his/her peers (Christakis & Fowler, 2008). Examples of research utilizing network

collections include investigation of disease control strategies for Mycoplasma pneumoniae

in hospitals (Bansal et al., 2006), influenza vaccination programs within an urban population

(Meyers et al., 2003), and management of tuberculosis progression within an HIV infected

population (Mills et al., 2011). Collections of networks have also been used to study factors

that account for differences in prevalence of sexually transmitted diseases among groups

(Morris et al., 2009) and the benefit of test and treat strategies to control HIV in Sub-

Saharan communities (Palombi et al., 2012). However, none of the examples incorporate the

full uncertainty in network property estimates; the models used to generate the networks are

based only on mean values for network properties.

The next section provides a general description of the proposed method for generating

network collections. Section 3 provides additional detail for categories of network

collections that are of general interest. Section 4 describes how the proposed network

generation method can be used to sample networks from a posterior predictive distribution.

Sections 5 and 6 provide examples of sampling networks from a posterior predictive

distribution for simulated data and data from The National Longitudinal Study of

Adolescent Health (Add Health), respectively; and section 7 discusses the proposed methods

and suggests future research directions.

2 Network Collection Properties

To describe the method for generating network collections requires defining terminology

and notation. Let vector D(g) denote the degree distribution of a graph g, where the ith entry

of D(g), Di(g), is the proportion of nodes with degree i. Let d(g) represent the degree

sequence of network g, where the ith entry, di(g), is the degree of node i. Let MM(g) be a

matrix representing the mixing pattern of graph g. The entry MMk,l(g) is the proportion of

edges from a node with covariate pattern k to a node with covariate pattern l. Let vector m(g)

represent the covariate pattern for each node in g, where mi(g) is the covariate pattern for

node i. Let M(g) be the vector of proportions for the different covariate patterns. We use the

notation DMM(g) to represent degree mixing matrices, where entry DMMi , j(g) is the

proportion of edges from a node of degree i to a node of degree j. Finally, let CC(g) denote

the clustering coefficient of g as described in Newman (2010).

The network collection is a subset of networks from the space,  of graphs with n nodes. To

generate such a collection, we begin by partitioning  into congruence classes, such that

each network in the congruence class has the same values for network properties of interest.

Let Cg represent the congruence class containing network g; and let the number of networks

in Cg be denoted as |Cg|, also referred to as the volume factor in Shalizi & Rinaldo (2013).

For example if interest lies in degree distribution and degree mixing patterns, networks g

and h will reside in the same congruence class if and only if D(g) = D(h) and DMM(g) =

DMM(h). The congruence classes represent the finest partition of the space  that is based

on estimable quantities from observed data and is of scientific interest. In this paper, the

congruence classes will be constructed by partitioning  by density, degree distribution,
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mixing patterns and clustering coefficient. To generate a collection, each network in  will

be assigned a probability, P (g), of being selected into the collection. P (g) is based solely

on the congruence class of the network g.

By partitioning  into congruence classes and defining a probability mass function for the

probability of sampling a network from a congruence class, we can control the probability of

sampling a network with particular values of network properties. As some congruence

classes have vastly more networks than do others, this approach guards against over- or

under-representing networks with particular properties due to the size of the congruence

class, thereby ensuring the consistency of the collection of networks with the collected data.

Defining the probability of sampling networks from a congruence class allows for

generation of networks that reflect both the estimated mean and uncertainty associated with

the estimate–the only information available to the investigator–without requiring

consideration of the complex topology of the underlying space of graphs of size n.

A Markov chain Monte Carlo (MCMC) procedure is the basis for generating a collection of

networks, {g1, … ,gt} that satisfy the probability distribution assigned to the congruence

classes. Ideally, to generate our collection, {g1, … ,gt}, we would sample, with replacement,

t congruence classes {C1, … ,Ct}, based on the probability distribution on the classes. For

each congruence class, Ci where i ∈ {1, … ,t}, we would draw a network, gi, such that gi ∈

Ci. Since this procedure presents computational difficulties, we implement a Markov chain

using the Metropolis-Hastings algorithm to generate the networks. For a review on MCMC

methods see Robert & Casella (2004). In order to implement the Metropolis-Hastings

algorithm, four aspects have to be specified: target function, proposal function, acceptance

probability, and initial starting element. Many authors have described construction of an

initial starting element (Blitzstein & Diaconis, 2010), so we discuss only the first three

aspects below.

2.1 Target Function

The target function is the desired stationary distribution for the Markov chain. In our setting,

the network g has a probability mass equal to the probability of the congruence class Cg

divided by the number of networks in Cg, |Cg|, thereby ensuring that each network in Cg has

the exact same probability:

(1)

Due to the constraints imposed on particular network properties, not all values of particular

network properties correspond to valid networks. For example, no network can have odd

values for Σi Di × i × n, which represents two times of the number of edges in the graph.

Section 3 outlines criteria to ensure that a congruence class contains at least one valid

network.
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2.2 Proposal Function

The algorithm generates the next network, gt+1, in the chain by nominating a proposal

network, gpt+1, based only on the previous network gt. A common method to generate a

proposal network is by toggling the existence of an edge. Edge toggling requires selecting

two nodes at random and either removing the edge if one exists or adding one if it does not.

The algorithm produces an irreducible Markov chain among all graphs with a fixed size; the

chain also has equal forward and backward probabilities.

2.3 Acceptance Probability

Once a proposal network, gpt+1, is generated, the Metropolis-Hastings algorithm will either

accept, gt+1 = gpt+1, or reject, gt+1 = gt, the proposal. The Metropolis-Hastings acceptance

probability is the following:

(2)

Let t(g, Ch) equal the number of elements in Ch that differ from g through toggling one

edge. Let  represent the total number of possible edge toggles for

graphs in Cg to graphs in Ch. Due to symmetry induced by edge toggling, T(Cg, Ch) =

T(Ch,Cg). Thus,

(3)

By defining f(Cg, Ch) as the average number of elements in Ch that are valid proposals from

an element g ∈ Cg, we get the following:

(4)

3 Network Collection Generation

This section demonstrates our framework by considering several common scenarios. Once

the network space and network proposal method have been selected, only the functions

PC(Cg) and f(Cg,Ch) need to be specified. In all scenarios, the network space consists of all

networks with a fixed number of nodes; edge toggling is used to propose networks. As the

probability mass function, PC, on congruence classes is set by the investigator, in this

section we only derive f(Cg, Ch). Sections 5 and 6 provide examples of various probability

mass functions associated with different sampling strategies. Denote g, h ∈  as the current

and proposal network, respectively. Let Cg and Ch denote the congruence classes for g and
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h. Let the edge, (i, j), between node i and node j be the connection that is toggled to move

from g to h and back. Without loss of generality, let (i, j) ∈ h but (i, j) ∉ g.

3.1 Topological Properties

Topological properties of a social network provide valuable insight into the operation of

processes within a community. This section discusses generation of networks based on

density, degree distribution, degree assortativity, and clustering. Though density is an

influential network property (Bollobás, 2001), it is usually collected with other network

properties, e.g. degree distribution, but it provides a useful example to illustrate the

mechanics of the proposed method.

3.1.1 Density—For density, a congruence class is the set of networks with the same

number of edges, as all graphs in  have the same number of nodes. Let |Eg| denote the

number of edges in graph g. Networks g1 and g2 are in the same congruence class if and

only if |Eg1| = |Eg2|. Since (i, j) ∈ h but (i, j) ∉ g, |Eh| = |Eg| + 1. To calculate f(Ch,Cg) we

need to know the average number of elements in Cg that are valid proposals from any

element h ∈ Ch. Since removing any edge in h will produce a graph in Cg there are exactly |

Eh| valid proposals in Cg from graph h, and this is true regardless of the choice of h ∈ Ch.

Thus,

(5)

To calculate f(Cg,Ch), we need to know the average number of elements in Ch that are valid

proposals from any element g ∈ Cg. Adding a new edge in g that did not previously exist

will produce a graph in Ch; hence, there are exactly  valid proposals in Ch from

graph g. Again, is it true for any g ∈ Cg. Thus,

(6)

The investigator can stipulate the proportion of networks in the collection with a particular

number of edges by specifying the values of P(Cg). One choice of specification is to

generate a network collection following Erdős-Rényi random graph model with parameters

(n, p); this can be achieved by setting .

Another specification, which is a major goal of this paper, is to define P(Cg) in such a way

to generate networks based on the uncertainty due to sampling.

3.1.2 Degree Distribution—For degree distribution, congruence classes are sets of

networks with identical numbers of nodes and degree distribution. Thus, networks g1 and g2

are in the same congruence class if and only if Dk(g1) = Dk(g2) ∀ k. As g only differs from h

through a toggling of the edge (i, j), Dk(g) = Dk(h) for all k except possibly k = di(g), dj(g),
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di(h) and dj(h). Since the only difference between the graph g and h is edge (i, j) ∈ h but (i,

j) ∉ g, di(h) = di(g) + 1 and dj(h) = dj(g) + 1. The expressions relating D(g) and D(h) are

given below for those entries that may differ:

(7)

The number of edge toggles from a graph h ∈ Ch to any graph in Cg is equal to the

proportion of edges in h that have endpoint degrees of di(h) and dj(h), i.e. DMMdi(h), dj(h),

multiplied by the number of edges in h, |Eh|. Thus, f(Ch,Cg) is equal to the average of

DMMdi(h), dj(h) × |Eh|over all graphs h ∈ C. Let E(DMM|Ch) denote the expected degree

mixing matrix over graph that are in Ch. Since h′ ∈ Ch if and only if D(h′) = D(h),E(DMM|

Ch) = E(DMM|D(h)). Thus,

(8)

Following arguments from Newman (2002), based on the probability that a node's neighbor

will have degree k is proportional to kDk and not Dk,

(9)

The number of edge toggles from a graph g ∈ Cg to any graph in Ch is equal to the number

of possible non-loop edges with endpoint degrees di(g) and dj(g) minus the number of edges

that will generate a multi-edge. The expected number of edge toggles that generate a multi-

edge is E(DMMdi(g), dj(g) |D(g)) × |Eg|,denote this value as α1; therefore, an expression for

f(Cg, Ch) is the following,

(10)

To decrease convergence time in the MCMC procedure, one can use the algorithm described

in Blitzstein & Diaconis (2010) to initialize the starting network with the estimated mean

degree distribution. Based on results from Hakimi (1962) and Havel (1955), an algorithm to

validate that a degree sequence has a realization can be found in Blitzstein & Diaconis

(2010).

3.1.3 Degree Mixing and Degree Distribution—We consider a partition of  such that

networks g1 and g2 are in the same congruence class if and only if Dx(g1) = Dx(g2) ∀x and

DMMx,y(g1) = DMMx,y(g2) ∀x,y. An identical partition is defined when networks g1 and g2

are in the same congruence class if and only if DMM(g1)|Eg1| = DMM(g2)|Eg2|. Thus, the
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probability mass function can be defined using the degree mixing matrix and number of

edges.

Toggling the edge (i,j) in a graph h ∈ Ch, not only changes the entry associated with index

(di(h),dj(h)) in DMM(h), but also changes the set of entries associated with indices

{(di(h),dk(h))}k∈{in } and {(dl(h), dj(h))}l∈{jm} where  and  denote the set of

neighbors of i and j, respectively. Therefore, to move from a graph h ∈ Ch to any graph in

Cg via edge toggling, an edge (i, j) with the proper degrees for i and j as well as the proper

degrees for the neighbors of i and j needs to be toggled. Let di and dj denote the proper

degrees for i and j to move from a graph h ∈ Ch to any graph in Cg. Additionally, let {din}

and {djm} denote the proper degrees of the neighbors of i and j, respectively. f(Ch,Cg) is the

average over all graphs in Ch of the number of edges with endpoint degrees of di and dj, and

neighbors with degrees {din} and {djm} The expression for f(Ch,Cg) in the degree mixing

case is similar to the expression for degree distribution, as shown in equation (8), except for

an extra term for the probability that an edge with degrees di (h) and dj (h) has neighbors

with the proper degrees. f(Ch,Cg) is equal to DMMdi(h), dj(h) × |Eh| multiplied by the

probability that an edge with endpoint degrees equal to di and dj has neighbors with degrees

equal to {din} and {djm}; let  denote this probability. Therefore,

(11)

When removing any edge, (i,j), from h with endpoint degrees of di (h) and dj (h), it is known

that one of the di (h) neighbors of i has degree dj (h) and one of the dj (h) neighbors of j has

degree di (h). However, when adding any edge, (i, j), with particular endpoint degrees to g

none of the degrees of the neighbors of i or j are known. Therefore, the probability that an

edge with endpoint degrees equal to di and dj has neighbors with degrees equal to {din} and

{djm}has a slightly different expression for the two transitions, Ch to Cg and Cg to Ch. Let

 denote the probability that an edge with degrees di(g) and dj (g) has neighbors with

the proper degrees when transitioning from Cg to Ch. The expression for f(Cg,Ch), which is

similar to the expression (10) for degree distribution, is the following,

(12)

where α2 = DMMdi(g),dj(g)(g) × |Eg|.

 is equal to the average over all graphs in Cz of the number of ways to select edges

adjacent to i and j with endpoint degrees of {(din, di)} and {(djm, dj)} divided by the total

number of possible ways to select edges adjacent to i and j. Let the entries of DMM′ (z) × |

Ez| contain the total number of half edges, i.e. stubs; the entry DMM′k,l(z) × |Ez| is the

number of stubs from a node of degree k that attaches to a node of degree l. Therefore,

 if k≠l and if k = l. The number of
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ways to select m half edges each with an endpoint degree of k and attaches to a node of

degree l is . The number of ways to select edges adjacent to i and j with

proper endpoint degrees is approximately the product of the number of ways to select the

necessary number of stubs over each distinct endpoint degree. The product only needs to be

indexed over degrees that exist in {di (z), dj (z)}, since the edges connect to i or j and the

degrees of i and j are known. The denominator of  is equal to the number of ways to

choose valid stubs for the neighbors of i and j from the total number of valid stubs that

attach to nodes with degrees equal to di or dj. When transitioning from h to g it is known that

i and j are neighbors, thus only di − 1 and dj − 1 neighbor degrees need to be specified for i

and j, respectively. The formula for  is the following,

(13)

where  and  denote the number of elements in {din} and {djm} equal to k.

As with the degree distribution, not all degree mixing matrices have a valid realization.

Appendix A provides a method to characterize valid degree mixing matrices; an alternative

proof of the validity of this characterization is given by Amanatidis et al. (2008). Using the

construction procedure in the appendix to set the initial network with the estimated degree

distribution and degree mixing will tend to decrease time to convergence in the MCMC

procedure.

3.1.4 Degree Distribution, Degree Mixing, and Clustering—We consider a partition

of  such that networks g1 and g2 are in the same congruence class if and only if Dx(g1) =

Dx(g2)∀ x, DMMx,y(g1) = DMMx,y(g2)∀ x,y, and CC(g1) = CC(g2). An identical partition is

defined when networks g1 and g2 are in the same congruence class if and only if DMM(g1)|

Eg1| = DMM(g2)|Eg2| andT(g1) = T(g2), where T (g) is the number of 3-cycles in g. Let

 represent the average number of elements in  that are valid proposals from g

when the congruence classes are defined by only the degree distribution and the degree

mixing matrix; we calculated  in the previous section. Since Ch is a subset of

, we only need to calculate the proportion of the elements in  that are consistent with T

(h). Therefore,

(14)
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where  is equal to the probability that nodes i and j of degrees di(g) and dj (g) have

exactly k = |T(g) −T(h)| common neighbors in g given (i, j) ∉ g. Let pa be the probability that

a pair of edges from arbitrary nodes i and j, an edge from i and edge from j, share a common

node given i and j are not connected. Therefore,

(15)

(16)

 can be approximated by assuming each pair of edges, an edge from i and edge

from j, has an independent probability, pa , of having a common node. So,  is

approximately equal to the product of three quantities: the number of ways to select k pairs

of edges, the probability k pairs of edges each have a common node, and the probability that

the remaining possible pairs of edges do not have a common node:

(17)

Similarly,

(18)

where,

(19)

and pb is the probability that a pair of edges, an edge from i and edge from j excluding the

edge between i and j, share a common node given i and j are connected. Therefore,

(20)

(21)
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3.2 Nodal Covariates

The methods developed for topological network properties can be extended to include

mixing patterns based on nodal covariates. Let p be the number of distinct nodal covariate

patterns of interest in the population. The covariate patterns can represent single or multiple

nodal characteristics. We describe a common scenario in which we observe not only mixing

patterns between covariate patterns but also the degree distributions, {D1,…, Dp}, for each

covariate pattern. From the perspective of both underlying theory and computation, nothing

prevents each node from having a distinct covariate pattern; consequently, covariates may be

either continuous or discrete. In order to incorporate covariate information, knowledge of

the proportion of individuals with covariate pattern k, Mk, is required for each k ∈ {1,…, p}.

3.2.1 Nodal Covariate Mixing and Degree Distribution—For nodal covariate mixing

and degree distribution, the congruence classes contain networks with identical numbers of

nodes, degree distributions, and nodal covariate mixing matrices. Thus, networks g1 and g2

are in the same congruence class if and only if  and MMk,l(g1) =

MMk,l(g2)∀k,l.

Expected degree mixing matrices, E(DMMk,l), are constructed for each entry of the covariate

mixing matrix. The matrix entry  represents the proportion of edges between

nodes of types mi and mj where one endpoint node has covariate pattern k and degree x,

while the other endpoint node has covariate pattern l and degree y. Using the setup from the

previous section, we let the edge set of g and h be identical except that (i, j) ∉ g and (i, j) ∈

h, and let nodes i and j have covariate patterns mi and mj, respectively. The number of edge

toggles from a graph h ∈ Ch to any graph in Cg is equal to the number of edges in h where

one endpoint has degree di(h) and type mi and the other endpoint has degree dj (h) and type

mj. The proportion of edges where both endpoints are specified as types k and l (or number

of stubs from nodes of type k if k = l) compared to number of stubs from nodes of type k is

. Using similar arguments as above we can calculate the expected

degree mixing matrix where only edges between types k and l are considered:

(22)

where,

(23)

Thus,

(24)
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and

(25)

where , the expected number of edges between the node

types, and .

For each covariate degree distribution, one entry in the mixing matrix is fixed. Therefore,

given degree distribution estimates for each of the covariate patterns, the probability mass

function can only be specified for the degree distributions and the entries above the diagonal

in the mixing matrix.

3.2.2 Nodal Covariate Mixing, Degree Mixing, and Degree Distribution—In a

similar fashion as above the proposed method can be extended to include degree mixing.

Once again, we substitute the true degree mixing matrices for the expected degree mixing

matrices and adjust for all edges associated with nodes i and j.

4 Generating Networks based on a Posterior Predictive Distribution

To evaluate processes operating on a network, it is often beneficial to generate networks

representing a new population that are deemed “realistic”, i.e. the values for essential

network properties are consistent with observed data. Therefore, it would be useful to

sample networks from a posterior predictive distribution that ensures that the generated

networks reflect the uncertainty in network properties associated with the observed network

data. In this paper, the posterior predictive distribution on the space of networks is referred

to as the posterior predictive network distribution (PPND), which is denoted as P(G̃|Y),

where Y is the observed network data.

Sections 2 and 3 provide methods to generate networks in settings where the investigator

knows the desired distribution for specific networks properties; such settings include

generating a collection of networks based on a Null model or on design-based inference. As

described in section 3.1.1, a network collection drawn from the Erdő-Rényi random graph

model, a commonly used Null model, with parameters (n, p) can be done by setting

 in equation (1). The probability

distribution on the congruence classes, PC, can be also be based on estimates from designed-

based inference. For example, the Horvitz-Thompson estimator, a common tool in design-

based inference, can be used to calculate the probability distribution for the network

statistics. Frank (2005) and Kolaczyk (2009) provide a good overview of work on design-

based inference. In this section, we demonstrate how to utilize the network generation

method described in section 2 to sample from a PPND based on specific essential network

properties. The essential network properties, which define the congruence classes on the
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network space, are referred to as the sufficient network statistics for the model. By

marginalizing over values of the sufficient network statistics, denote these values as Θ, the

PPND, P(G̃|Y), can be written as the following,

(26)

Let η(G) be the values of the sufficient statistics for a network G. Using the probability

distribution defined in equation (1), the first term in the integral evaluates to the following:

(27)

Substituting equation (27) into (26), the PPND simplifies to the following:

(28)

where P(η(G̃)|Y) represents the posterior predictive distribution on the space of values for

the sufficient network statistics, which is referred to as the posterior predictive sufficient

network statistics distribution (PPSNSD). In this paper, network density, degree distribution,

mixing by degree and covariates, and clustering are of particular importance as sufficient

network statistics.

Equation (28) indicates that by simply setting PC(CG) in equation (1) equal to the PPSNSD,

P(η(G̃)|Y), it is possible to sample networks from the PPND using the method outlined in

section 2. The network generation method places no additional restrictions on the PPSNSD,

beyond those required to use the MCMC procedure. The nearly complete flexibility in

specification of the form of the PPSNSD enables the investigator to specify the most

appropriate PPSNSD for the data available. The specification of the PPSNSD can arise from

a parametric model (see examples below) or a non-parametric model.

The following sections introduce two settings with different types of observed network data,

though the goal is the same in both settings: sample networks representing a new population

of individuals that retains the essential properties of the observed data. In the first setting,

the observed data arises from a sample of individuals from a specific population. In the

second, the observed data are a collection of whole networks. In the second setting, the

PPSNSD is based on the variation in network properties across the observed networks.

5 Simulation Studies

In research on disease propagation, interest lies in generating random networks representing

the population of interest that retain characteristics of “realistic” contact networks that can

be used in epidemic simulations (Meyers et al., 2005). Investigation of the HIV epidemic in

heterosexual populations has been based on generation of networks where sufficient network

statistics include only information on the degree distribution and mixing patterns (Morris et
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al., 2009), as higher order network properties are difficult to collect. This section described

networks that are generated using only degree distribution; the sampled network data and

model are kept simple to better illustrate the methods described in sections 2-4. In the next

section, an additional network property, mixing patterns, is considered; that section also

makes use of an actual data set as well as a more complex model.

5.1 Simulated Data

In what follows, interest lies in generating random networks consistent with data

representing nodal degree values collected from k nodes. Current procedures permit

generation of networks that have approximately the desired point estimate of the degree

distribution (Britton et al., 2006); the proposed methods allows the generation of networks

that reflects uncertainty, as specified by the PPSNSD, in the degree distribution estimate.

The data, Y, containing the k nodal degree values is represented as a vector where Yi denotes

the number of nodes in the sample with degree i. Thus, Σi Yi = k. This type of data is

commonly collected in studies of the spread of communicable diseases. In disease modeling

the nodal degrees represent the number of contacts; in the case of sexually transmitted

infections, this may be number of sexual partners. The distribution of contacts has

historically played an important role in epidemic network models.

The simulated dataset is a sample of 100 nodes from a network generated under the Erdő-

Rényi random graph model with parameters (n = 1000, p = .003). Table 1 shows the values

of Y from the 100 nodes sampled. Appendix B contains four additional simulated datasets

consisting of 100 nodal degrees; the datasets were generated using methods from the R

library degreenet (Handcock, 2003). For each of the four datasets an identical procedure to

generate networks, outlined below, was followed.

5.2 Bayesian Model

Our goal is to generate networks comprised of a new population consistent with the sampled

data with regards to the degree distribution. Therefore, a model for the PPSNSD is necessary

to describe the degree distribution of the whole network. The MCMC procedure to generate

the networks used the method outlined in section 3.1.2.

Using equation (28) as our PPND, only the PPSNSD, where the sufficient network statistics

is the degree distribution, must be specified. As stated in section 4, nearly any PPSNSD

deemed to be appropriate can be used. In this example, it is assumed that the system has a

constraint on the maximum degree equal to eight–the maximum degree in the simulated

sampled data Y. Therefore, a multinomial likelihood for the degree distribution may be well

suited for the data. A maximum degree constraint may be appropriate in social networks due

to possible limitations on the number of stable social relationships an individual can

maintain, though this number is much larger than eight (Dunbar, 1993). As many real world

networks may exhibit a power-law distribution, a likelihood based on such a distribution

may be proper in certain settings.

As the model for the PPSNSD is at the discretion of the investigator, the following

likelihood and prior are proposed for modeling the PPSNSD:
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(29)

(30)

Therefore,

(32)

where α′ = α0 + Y. By substituting the probability distribution defined by equation (32) into

equation (28), the PPND evaluates to the following,

(33)

where . The PPND is proportional, and not equal, to the right hand side because

not all realizations of Ỹ from equation (32) are valid degree distributions. Since the methods

in section 2 are based on a Metropolis-Hasting algorithm, knowing the PPND up to

proportionality is sufficient. For the results presented in the following section the prior

distribution parameter α0 is set to {1, 1, 1, 1, 1, 1, 1, 1, 1}.

5.3 Results

Figure 1 depicts the marginal distribution for each value of the degree distribution from 0-8

for three joint distributions: the target distribution as specified in equation (32), the

simulated distribution using methods proposed in this paper, and the joint distribution from

the exponential random graph model. The solid black lines in figure 1 represent the marginal

distribution for the target PPSNSD, as specified in equation (32).

Using our proposed methods, the simulated joint distribution was constructed by generating

networks with the PPND and PPSNSD defined in equations (33) and (32), respectively.

100,100,000 networks (100,000 removed for burn-in) were generated and every 1,000th

network is used for analysis; the R package CCMnet used to generate these networks relies

heavily on the code in the R package ergm (Handcock et al., 2012). The marginal plots in

figure 1 is calculated by computing the degree distribution for each of the 100,000 simulated

networks. The solid red lines represent the simulated PPSNSD. The solid red line in the first

plot of figure 1 represents the proportion of nodes in all 100,000 simulated networks with

degree 0. The remaining plots 2-9 of figure 1, represent the density of the proportion of

nodes in all 100,000 simulated networks with degrees 1-8, respectively.

The joint distribution for the ERGM was based on a model with a parameter for each degree

between 0 and 8. The coefficients for the 9 ERGM parameters were fit using the mean

values from the Dirichlet-multinomial distribution in equation (32) restricted to valid degree

distributions. The marginal distribution of the degree distribution for the ERGM is depicted

in figure 1 as dashed red lines. The distribution is based on generating 100,100,000 networks
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(100,000 removed for burn-in) and using every 1,000th network for analysis. The ERGM

was fit and simulated using the R package ergm (Handcock et al., 2012).

Figure 1 demonstrates the closeness of simulated PPSNSD using the proposed methods to

the target PPSNSD, defined in equation (32) across all of the degrees between 0 and 8.

Although the method described in this paper matches the targeted distribution closely, care

still needs to be used when interpreting the collection of networks that are generated using

this method. The PPND applies to the congruence classes, and not all vectors Ỹ are valid

degree distributions, i.e. there exists at least one valid network, G, such that η(G) = Ỹ. Even

with this caveat, figure 1 provides clear evidence of attainment of our goal: the close match

between the simulated PPND and the PPND defined in equation (33).

The mean marginal values of the degree distribution simulated from the ERGM match the

mean values of the target PPSNSD closely, but the distributions are quite different– the joint

distribution associated with the ERGM is the distribution which maximizes the entropy.

Although the purpose of the ERGM, typically to provide inference on the generative

network process, and the methods proposed in this paper, sampling of networks, are

different, it may be useful to compare the results of simulated networks from an ERGM to

networks generated from the proposed method. The simulated networks drawn from the

ERGM are based on an ERGM where the parameter estimates are derived from a maximum

likelihood framework, and therefore only the mean values of the sufficient network statistics

are necessary to fit the ERGM. Since the number of samples used to estimate the mean

values are never considered when estimating or simulating from the ERGM, the simulated

networks from the ERGM do not take into account the uncertainty in these mean estimates;

therefore, the simulated networks may not accurately reflect the true underlying of

uncertainty. The simple random sample design in this example easily yields unbiased

estimates of the sufficient network statistics for the whole network. If additional complexity

exists in the sampling designs, advanced methods, such as methods proposed in Handcock &

Gile (2010) or Pattison et al. (2013), may be necessary to properly estimate ERGM

parameters. Recently there has been development of methods to estimate parameters of an

ERGM using Bayesian inference (Caimo & Friel, 2011); this approach allows for

uncertainty about model parameters. Koskinen et al. (2013) extended the Bayesian inference

methods to apply to partially observed network data. Our method could complement these

advances; by specifying the PPSNSD based on the posterior distribution of ERGM

parameters, networks can be generated consistent with the Bayesian estimates of ERGM

parameters.

6 Data Analysis

This section focuses on sampling realizations of networks on a new population using data

collected on multiple networks. In this setting, the uncertainty in sufficient network statistics

arises from the variation in network properties across the multiple networks that have been

observed. Methods for this setting may be very useful in predicting the effect of an

intervention on a new community after data has been collected on such effects in similar

communities.
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6.1 Add Health Data

To demonstrate how the network generation methods can be used to sample realizations

from the PPND in the setting wherein multiple networks have been observed, we make use

of data from the National Longitudinal Study of Adolescent Health (Add Health). Add

Health is a longitudinal study of a nationally representative sample of adolescents in grades

7-12 in the United States during the 1994-95 school year (Harris & Udry, 2012).

The data arose from a two-stage cluster design: the first stage developed a stratified, random

sample of all high schools in the United States, and the second sampled a set of students

from each school. The student's friendship networks were developed from a questionnaire in

which students were asked to name at most five male and five female friends. To ensure

results can be reproduced by all interested researchers, we use only the freely available

public data despite some limitations.2 The free ADD Health dataset contains information

from only a subset of students and schools available in the full dataset and the only available

mixing pattern is the proportion of mixing between genders. In the analysis presented below,

we ignore the fact that the data for each school is a subsample, and assume that the dataset

represents the complete information for the school; the previous section considered

subsampled networks. Therefore, the analytical tools are appropriate for researchers with the

full ADD Health dataset, but the results are reproducible by everyone.

The free ADD Health dataset provides the number of total friendships stated by each

individual and the proportion of those friendships that are between males and females. The

directed edges in the Health network data were converted to undirected edges by assuming

the existence of a friendship if either student named the other as a friend. The data for each

school s ∈ {1, …, J} used in the analysis include the degree distribution (number of

friendships) for each gender, Dmale (s) and Dfemale (s), and the proportion of mixing between

genders, MM(s).

The ADD Health data permits investigation of the proposed methods in the setting where it

is of interest to generate a ‘typical’ student friendship network based on the degree

distribution for each gender and the proportion of mixing between the genders. As the

degree distributions and the proportions of mixing between genders from the observed

schools vary, there is no single degree distribution that characterizes a ‘typical’ school.

However, some degree distributions are more plausible than others; for example, a school

with no friendships, D = (1,0,0, … ,0), would be highly unusual. Therefore, probabilities are

assigned to possible degree distributions for males and females and the proportion of mixing

between genders based on the observed schools.

To develop a probability distribution on student friendship networks the Bayesian

framework described in section 4 was used. The data from each of school consists of a

vector containing the proportion of males with number of friends ranging from 0-32, the

proportion of females with number of friends ranging from 0-32, and the proportion of

friendships between males and females.

2The authors would be glad to provide instructions and code to download and format the data to replicate results
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6.2 Bayesian Model

This section develops a model for the posterior predictive distribution, P(G̃|{G1, …,GJ}),

where J is the total number of observed schools. In this example it is of interest to model the

degree distribution for male and females, along with the proportion of friendships between

males and females. Let Y = {Y1, …, YJ}, where Yi is the sufficient network statistics for

school i, be the observed sufficient network statistics.

By using equation (28), the PPND can be expressed as the following,

(34)

To evaluate the PPSNSD only the values of the sufficient network statistics are necessary.

Therefore, the PPND can be rewritten as the following:

(35)

where P(Ỹ|Y1, …, YJ) is the PPSNSD for the sufficient network statistics that include the

degree distributions for males and females and the proportion of relationship between

genders. For the data analysis in this paper, two multivariate normal likelihoods are used to

model the proportions of numbers of friendships that take on values between 0 and 32

(maximum number of friendships observed in any school) for males and for females; a

normal likelihood is also used to model the proportion of relationships between males and

females. Therefore, the model needs to fit the joint distribution for 67 parameters (33 male

degrees, 33 female degrees, and 1 mixing parameter between the genders). The likelihood

for our Bayesian model is the following:

(36)

where

Let (μM, ΣM) and (μF, ΣF) denote the mean and covariance matrix for the degree

distributions corresponding to males and females, respectively, while (μMF, ) denotes

the mean and variance for the proportion of relationships between males and females. The

priors for our Bayesian model are the following:
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where NIW and NIG denote the normal-inverse-Wishart and normal-inverse-gamma

distribution. Therefore the PPSNSD for the above model is the following,

(37)

where the expressions for the parameters of the two multivariate Student t distributions and

the univariate Student t distribution can be found in Murphy (2007). By substituting the

probability distribution defined by equation (37) into equation (35) the PPND can be written

as the following,

(38)

Since equation (38) is defined for networks g ∈ , it is sufficient to define the PPSNSD only

on network statistics associated with valid congruence class. However, for many network

statistics it is not computationally feasible to identify all valid congruence classes, as is the

case in this example; therefore, it is often easier to define a probability distribution for Ỹ,

e.g. the PPSNSD, that has support over a larger domain; the PPSNSD defined in equation

(37) has support over ℛ67. The proposed methods induce a probability distribution for Ỹ
associated with valid congruence classes that maintains the probability ratios, i.e. the values

of P(Ỹ0|Y, μ0, γ0, Σ0, V0, μ1, γ1 , α1, β1)/P(Ỹ1|Y, μ0, γ0, Σ0, V0, μ1, γ1, α1, β1) for valid

network statistics Y0 and Y1, defined by the PPSNSD. Though the induced probability

distribution on valid congruence classes provides a convenient approach to assigning a

probability distribution by maintaining the relative ratios, caution is necessary as it is

possible for the probability distribution restricted to valid congruence classes to have

different characteristics compared to the PPSNSD.

6.3 Results

We illustrate our method by sampling networks consisting of 500 females and 500 males

based on equation (38). Figures 2 and 3 depict the 95% prediction intervals (PIs) for the

marginal distribution for each value of the degree distribution from 0-32 for females and

males, respectively. The red and blue bars in figure 2 represent the target PPSNSD and the

simulated PPSNSD for males, respectively. The open circle on each bar denotes the mean

value of the marginal distribution. Figure 3 shows similar information as figure 2 but for

females. Figure 4 depicts the marginal distribution regarding proportion of friendships

between the genders for the target PPSNSD and the simulated networks.
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The 95% PIs for the simulated networks are calculated by generating 500,500,000 networks

(500,000 removed for burn-in) and then sampling every 1,000th network to use for analysis;

the R package CCMnet used to generate these networks relies heavily on the code in the R

package ergm (Handcock et al., 2012). The degree distribution for each of the 500,000

simulated networks is computed to calculate the 95% PIs. The target PPSNSD represented

by equation (38) is equation (37) conditioned on Ỹ having a valid network realization.

Because it is challenging to verify which Ỹ are valid, we approximate the target PPSNSD by

looking at only the Ỹ for which all values are greater than -.005, as Ỹ must be positive, and

the sum of Ỹ to be between .995 and 1.005.

In figures 2 and 3, the mean values for the target PPSNSD and the simulated PPSNSD are

very close as are the 95% PIs. Figure 4 demonstrates that the entire marginal PPSNSD with

regards to mixing between genders for the target distribution and for simulated networks are

very close. These results show that the methods proposed in this paper can be used to model

a complex PPND with a large number of sufficient network statistics.

The PPSNSD represented by equation (38) and depicted in figures 2 and 3 shows wide

prediction intervals in the marginal distributions for many degrees for both males and

females. The width of the intervals provides evidence of large heterogeneity in the

friendship networks across schools; methods for network sampling must capture the

heterogeneity in friendships networks to make possible realistic simulations of school-based

interventions, such as smoking prevention programs. The PPSNSD can be made more

flexible, for example by incorporating the between-gender degree distribution correlation;

but with 67 parameters already in the model applied to only 132 schools, some simplifying

assumptions are necessary in this example. Incorporating a between-gender correlation

structure might result in greater correlation in width of prediction intervals between genders,

we do not think it likely that doing so would result in much more narrow intervals. To

generate networks that characterize only a subset of schools to simulate interventions geared

to such schools, specifying the PPSNSD by a regression model that controls for school-wide

covariates may narrow the prediction intervals. Regardless of whether interest lies in

generating networks representing specific types of schools or all of those in the sample, the

methods presented in this paper can accommodate different levels of heterogeneity across

networks.

7 Discussion

This paper presents novel methods to incorporate uncertainty in values of sufficient network

statistics in the generation of networks. The network properties of density, degree

distribution, mixing patterns and clustering are used to illustrate the approach. These

network properties have been shown to have great influence on processes operating on

diverse areas such as Internet connectivity, biological interactions, and spread of sexually

transmitted infections (STIs).

The proposed methods allow generation of collections of networks based on a user-defined

posterior predictive sufficient network statistic distribution. The examples in sections 5 and

6 used reasonably flexible models for the PPSNSD. However, the nature of social networks
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are complex; and it may be useful to take additional network properties into account, such as

degree assortativity and interactions between the male and female degree distributions. The

examples modeled the uncertainty that arises from sampling; but the methods can also be

used to incorporate uncertainty that results from errors in self-reported data, information

about which may be developed from inconsistencies in these data. The proposed methods

are well suited for modeling and analyzing data involving two large cluster randomized

controlled trials (CRCTs) supported by the US President's Emergency Plan for AIDS Relief

to study the impact of combination prevention packages on HIV incidence (Wang et al., in

press; Boily et al., 2012). Both CRCTs plan to collect information on network properties

that includes degree distribution (number of sexual partners) and demographics mixing

patterns. The goal of the studies includes not only measurement of the efficacy of the

intervention, but also provision of information that informs the development of realistic

models used to predict the potential benefits of the interventions in communities elsewhere

in Sub-Saharan Africa. One way to construct such models is through simulation of epidemic

processes on collections of contact networks. As it is unfeasible to collect detailed data from

new communities where the interventions may be deployed, it will be useful to generate

network collections that reflect plausible ranges of network properties for such communities.

This collection must not only capture the variation in network property values across the

observed study communities, but also permit investigation of the sensitivity of model-based

predictions to assumptions regarding these new communities. These assumptions must

reflect uncertainty in network properties that arises both in the characterization of networks

that have been studied, and in the degree to which networks in new communities may differ

from the observed networks. For example, the prior distribution of network properties may

be made more diffuse to reflect uncertainty about the comparability of networks that have

been studied and those that have not.

The ability to accommodate uncertainty in estimated network properties in the generation of

collections of networks allows investigators to assess the level of precision in these

estimates that is needed for reliable evaluation of the relative merits of different policy

options. Hence, these approaches can be useful in designing randomized trials of

community-level control strategies in settings where infections or behaviors diffuse over

social or sexual networks.

Further research is needed to expand this framework to include additional network

properties. Though the methods allow for great flexibility in specifying the PPSNSD, there

are limitations on the types of sufficient network statistics that can be accommodated. For

each sufficient network statistic one must be able to derive an expression for the ratio

f(Cgpt+1,Cgt)/f(Cgt, Cgpt+1) in equation (4). There may exist a general formulation of the ratio

for all or some sufficient network statistics, however none is currently known. In section 3,

we derive expressions for common sufficient network statistics, including the ones most

applicable to disease modeling. Further research is necessary to investigate the impact of the

degree of accuracy of approximations for network properties on performance of our

methods, in a variety of settings such as those with small network sizes.
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A promising area of further research is to use this framework in generating dynamic

networks. In many complex systems the variation of network properties over time may be

difficult measure, and therefore, need flexible models to handle uncertainty.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The black lines represent the target PPSNSD. The solid red lines represent the simulated

PPSNSD using the proposed methods; the red dashed lines represent the simulated degree

distribution for the ERGM.
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Fig. 2.
The red and blue bars represent the target PPSNSD and the simulated PPSNSD for males,

respectively. The open circle on each bar denotes the mean value of the marginal

distribution.
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Fig. 3.
The red and blue bars represent the target PPSNSD and the simulated PPSNSD for females,

respectively. The open circle on each bar denotes the mean value of the marginal

distribution.
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Fig. 4.
The marginal distribution regarding proportion of friendships between the genders for the

target PPSNSD and the simulated networks.
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