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Abstract

Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue
modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk
Management Systems (FRMS). The present study sought to validate the inner workings of one such model, Three Process
Model (TPM), on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any
sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and
sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen
computer device (iPhone, iPod or iPad) and used the TPM to predict sleepiness with varying level of complexity of model
equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM
predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be
improved and reduced to include only two-processes (S+C), with adjusted phases of the circadian process based on a single
question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates
of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions
for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness
in shift systems for safety applications.
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Introduction

Air transportation is the safest form of transportation per

kilometer travelled [1,2]. In the rare case of an accident, however,

the results are often devastating. Accidents in aviation rarely have

a single cause, and human errors are involved in the majority of

them [3].

In road transport, the link between human error and fatigue has

been established in several studies [4]. The main causes of

sleepiness and fatigue are 1) circadian phase, 2) time awake, and 3)

amount of prior sleep [5,6]. In addition, time on task may induce

fatigue when involving sustained attention [7]. Individual differ-

ences are likely to play a role in sleepiness and fatigue related

accidents [8], driving performance [9], as well as modify sleep

length [10] and performance during sleep deprivation [11].

Individual differences in the circadian type are among the most

systematically studied with several rating scales developed to assess

an approximate phase in individuals [12,13].

Also in aviation, human errors and improper decision-making

are influenced by sleepiness and fatigue [14]. Irregular working

hours, working hours at inconvenient times of day, as well as

frequent time zone crossings, characterize work life in aviation and

all have a negative impact on alertness [15] and may increase the

risk of accidents [16].

The problem of fatigue in pilots is almost as old as aviation itself

[17]. It was, however, not until the 1980s that Samn and Perelli

[18] developed a fatigue scale in order to subjectively measure

fatigue levels in pilots, starting the investigation of the effect of

multiple time zone crossings on pilot fatigue [19]. Since then,

several factors have been shown to play a role in pilot fatigue and

performance, including the highly automated work environment

of the cockpit [20], flying at night [21,22] as well as flight duration

[23,24], although it has been reported to be equally severe in short

haul, as in long haul operations [25,26].
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One way of counteracting fatigue in aircrew is through flight

and duty time limitations. However, regulatory bodies are

currently discussing how to incorporate sleep and performance

science directly into their fatigue risk management systems by

means of bio-mathematical sleepiness and fatigue modeling [27].

Several such models have been introduced over the past decades

[28]. Briefly, those include the two process model (2PM; [29]), the

three process model of alertness (TPM, the subject of the present

paper; [30]), the system for aircrew fatigue evaluation (SAFE;

[31]), the interactive neurobehavioral model (INM; [32]), the

sleep, activity, fatigue, and task effectiveness model (SAFTE; [33]),

the fatigue audit inter dyne (FAID; [34]), and the circadian

alertness simulator (CAS; [35]).

The key processes in those models (except FAID) include,

although with different parameters: 1) a homeostatic process that

describes the decline of alertness with time awake and its recovery

with time asleep 2) a circadian process that describes the diurnal

variation in alertness 3) a sleep inertia process that describes the

delay after wake up before alertness resumes. In addition, some

models estimate the decline of alertness with time on task (SAFE,

FAID, and CAS). As the generated fatigue output, most models

predict subjective alertness, except SAFTE (predicting perfor-

mance effectiveness) and FAID (predicting violations based on risk

threshold levels).

As Matschnigg et al. (2011) state (p10, chapter 4): ‘‘An

important question to ask about any model is whether it has been

validated against fatigue data from operations similar to those that

you are interested in.’’ To our knowledge, the only model that has

been extensively validated in many occupational settings is the

TPM, though the present study is the first attempt to validate it on

aircrew. Many shift work studies have shown accurate alertness

predictions at the group level [36–39]. Although SAFE and

SAFTE are specifically developed for use in aviation, those models

still lack peer-reviewed validation.

Since its inception in 1990, the TPM has been extended with an

extra component modeling a 12 h ultradian process [40] and a

‘‘brake’’ function that modifies homeostatic recovery during sleep

[41]. The added predictive power of these modifications have,

however, not been properly validated on empirical data. In

addition, the TPM has also used several different linear transfer

functions between the internal alertness score and empirical data

using the Karolinska Sleepiness Scale that may give very different

levels of sleepiness as the output. The TPM has also been extended

with a model based sleep generator that can be used to insert sleep

periods into the data when such data is not available [38,40]. This

sleep generator has been shown to predict sleep reasonably well in

one specific compressed shift sequence [40] but has otherwise not

been validated.

Objectives
A main objective of the present study was to validate the TPM

on a group of aircrewin real life situations, using observed sleep

and sleepiness data:

N Validate the predictive power of all individual components

and the ‘‘brake’’ function

N Validate the model based generated sleeps

N Estimate the best linear transformation function between

observed data and model

Our second objective with the present study was to extend the

model with estimates of individual differences and probability of

sleepiness for ecological estimates of risk:

N Estimate probabilities of any level of sleepiness

N Estimate the influence of individual differences over and

above the predicted group mean/median and calculate

reference limits accounting for 50, 75 and 90% of the

individuals

The circadian system is a large source of individual differences

that may be of particular importance for aircrews that often travel

across several time zones and become exposed to jetlag. Our third

objective was to explore the feasibility of adjustment of the

circadian phase according to circadian type and acclimatization to

a different time zone for improved predictions of aircrews:

N Can we improve predictions by adjusting the phase of the

circadian process based on a simple circadian type question?

N Can we improve the predictions after travelling to a

different time zone by gradually adjusting the phase of the

circadian process?

Methods

Subjects and procedure
Data collection took place in three waves over a two year time

period (in the years 2011–2012) using a crowd sourcing strategy

where interested aircrew signed up for participation in the study at

the website of Jeppesen AB. Data was collected by means of an

application (CrewAlert lite) running on a handheld touch screen

computer/phone device (Apple: iPhone, iPod or iPad) and was

submitted wirelessly over the Internet to a database at Jeppesen

AB.

Participants for the study were recruited via the Jeppesen

website, announcements of the upcoming data collection at

conferences, and a number of airlines and unions in turn

forwarding information to their crew. Crew was directed to a

web page where they signed up and was sent e-learning material

for self-studies that consisted of a document as well as a series of

video clips instructing how to use the device for data collection.

Briefly, participants were carefully instructed on how to enter their

working times, sleep times and how to rate their sleepiness levels

using the application. They could rate sleepiness at any time but,

instructions were also included to provide ratings at top of climb,

top of descent and whenever feeling sleepy. Crew also received a

survey-code (hidden inside the information material) to be used

when uploading the data. This provided some feedback that the

participants had watched the videos and a possibility of knowing

from which airline their data originated.

The application used to enter and submit data was equipped

with a convenience function that would suggest a sleep timing for

the user to confirm, or insert an automatically generated sleep if it

was completely missing, based on a proprietary algorithm. This

convenience function was always active unless the user had created

a custom sleep log for a specific time period where the timing of

sleeps was forced to be entered manually. To avoid circular

analyses and ensure that data was entered independently of any

sleep/sleepiness algorithm, we only selected data included in such

custom sleep logs for further analysis. Descriptive statistics of the

subjects participating in this study is presented for the whole

sample and the restricted sample in table 1.

Ethics statement
The participants were promised no other compensation than a

report of the aggregated results, and a small chance to win a hand

held touch screen computer (iPad) in a raffle among the half of
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crew providing the most valuable data (a weighting on the amount

of days and data points provided). Since all contact with the

participants where made electronically over the Internet, traditional

written consent was not feasible to obtain and participants indicated

informed consent to participate in the study by ticking a check-box

in the application (CrewAlert lite) used for collecting and submitting

the data. Participants were also required to include a survey code

hidden inside the information material giving some confidence that

they were well informed about the study. The study was approved

Table 1. Descriptives.

Variable Restricted sample Full sample

Home base time zone Any time zone

Subjects (n) 130 136 153

Age (mean years) 42 41 41

Age (sd years) 8 8 8

Gender (% males) 92% 91% 94%

Position

Captain 50% 49% 50%

First Officer 42% 42% 41%

Cabin crew 4% 4% 4%

Other 5% 4% 5%

Diurnal type

Extreme evening 2% 1% 1%

Evening 26% 26% 25%

Intermediate 44% 45% 45%

Morning 28% 27% 28%

doi:10.1371/journal.pone.0108679.t001

Figure 1. Observed ratings of subjective sleepiness on the Karolinska Sleepiness Scale (KSS) plotted against time of day (at home
base) with a LOWESS line indicating approximate means for home base time zone (left) and other time zones (middle) with the
overall distribution of time zones for all ratings (right). KSS ratings have had a random jitter applied to better illustrate the distribution at
different levels.
doi:10.1371/journal.pone.0108679.g001
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by the regional ethical review board of the Gothenburg region

(‘‘Regionala etiskprövningsnämnden i Göteborg’’).

Variables
The application used to enter data collected numerous variables

related to work, airline operations and sleep/sleepiness. These

included personal (i.e., between subject) variables: circadian type,

habitual sleep length, sleep quality in general, sleep termination,

snoring, melatonin and coffee use, gender, birth year, height,

weight, work position. It also included situational (i.e. within

subject) variables: describing duty and sleep periods, sleepiness

[42], fatigue [18] and a five minute test of psychomotor vigilance

[43]. Number of flights within the duty was entered, as well as the

type of duty (flight, dead head flight (as passenger), simulator

check, simulator instructing, standby, ground duty, or off duty).

Finally, the duration of briefing and debriefing were entered, as

well as the duration of in-flight sleep.

For the purpose of the present study, we only used a subset of

these variables described in more detail below:

We reported age (based on the indicated birth year), gender and

work position (Captain, first officer, cabin crew and other) as

descriptive statistics in table 1.

Circadian type was measured on a five point scale (Extreme

morning type, morning type, intermediate type, evening type,

extreme evening type). Instructions on how to assess your own type

(based on preferred sleep timing) was included in the instructional

videos.

For every duty (work shift), the first departure and last arrival

airport was entered as well as the corresponding times of first

departure and last arrival and the corresponding time zones.

Sleep/wake behaviour was entered by adding a sleep/wake log

period. Within those periods sleep start and end times were added

by the user.

The main variable in TPM is sleepiness, and it could be rated at

any time using the Karolinska Sleepiness Scale (KSS, 1 = ‘‘Ex-

tremely alert’’, 2 = ‘‘Very alert’’, 3 = ‘‘Alert’’, 4 = ‘‘Rather alert’’,

5 = ‘‘Neither alert nor sleepy’’, 6 = ‘‘Some signs of sleepiness’’,

7 = ‘‘Sleepy, but no effort to keep awake’’, 8 = ‘‘Sleepy, some effort

to keep awake’’, 9 = ‘‘Very sleepy, great effort to keep awake,

fighting sleep’’ [42]).

Data quality validation
The software application (CrewAlert) and procedure to collect

data featured advanced validation procedures to ensure the

veracity of the collected data:

N Work duties could only be entered in a consistent way

(departure before arrival, not overlapping each other,

consistent time-zone transitions). Too long/short duties

was also easily spotted at entry by the user through the

graphical representation on screen.

N All three possible sleep-states were registered by the

software: confirmed wake, confirmed sleep, and unknown

state. (typical design was to assume wakefulness if sleep was

non-present.). Sleep/wake logs were made impossible to

overlap each other and sleep periods outside sleep/wake

logs could not be entered.

N The user was taken directly to the data input screen when

the application was activated to encourage data submission

and shield the user from prior rating history to reduce any

bias due to anchoring.

N All data was manually inspected and uploads that were

missing both sleep/wake logs and sleepiness assessments

were discarded. The discarded data sets, presumably from

crew unwilling to follow-through on the data collection,

constituted less than 3% of the total number of uploads.

Figure 2. Observed sleep probability across time of day for the home base time zone and westward time zone shifts (left) and
eastward time zone shifts (right).
doi:10.1371/journal.pone.0108679.g002
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Any upload submitted without a valid survey code (see

above: subjects and procedure) was ignored.

The model equations
The main model parameters were estimated earlier [30] and

have been published before [40,44] but are briefly described

below.

Two constants are used in the equations describing the higher

(ha = 14.3) and lower (la = 2.4) asymptote of the internal alertness

scale for the homeostatic process that describe decline in alertness

as a function of wakefulness and recovery in alertness during sleep.

During wake, this process is called S (1.1). It also takes as input the

level of S at the time of awaking (sw) and calculates the decay in

alertness (d = -0.0353) as a function of time awake (taw).

S~laz sw{lað Þ � exp d � tawð Þ ð1:1Þ

During sleep there are three different functions describing the

homeostatic process. The first one is called S’ (1.2) and represents

the original process from 1990. It takes the level of S at the time of

falling asleep (ss) as input. Process S’ was later modified with a

‘‘brake function’’ that split the process into S’1 (1.3) for the part of

sleep with high homeostatic pressure defined by (S’,bl = 12.2) and

S’2 (1.4) for the last part of sleep with lower pressure. These

functions take another parameter (g = log((ha 214.0)/(ha - 7.96))/

8<-0.3813) to calculate the recovery of alertness as a function of

time asleep (tas) and use a calculation of the brake point in time

asleep (bt) to decide when there is a switch from S’1 to S’2 (1.5).

S0~ha{ ha{ssð Þ � exp g � tasð Þ ð1:2Þ

S01~ssztas � g � bl{hað Þ ð1:3Þ

S02~ha{ ha{blð Þ � exp g � tas{btð Þð Þ ð1:4Þ

bt~ bl{ssð Þ= g � bl{hað Þð Þ ð1:5Þ

The model also includes a sleep inertia function (process W) that

initially reduces alertness at the time of waking up (Wc = -5.72)

with an exponential recovery (Wd = -1.51) as a function of time

awake (taw).

W~Wc � exp Wd � tawð Þ ð1:6Þ

There are two processes related to time of day (tod). Process C

(1.7) has a period of 24 h with a default circadian phase (p = 16.8),

amplitude (Ca = 2.5) and mesor (Cm = 0). Process U (1.8) has a

period of 12 h with amplitude (Ua = .5) and a mesor (Um = -.5).

C~CmzCa � cos((2p=24) � tod{pð Þ) ð1:7Þ
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U~UmzUa � cos((2p=12) � tod{p{3ð Þ) ð1:8Þ

The model components are added together to produce a

combined alertness score that can be used to predict ratings on the

Karolinska Sleepiness Scale (KSS) using a linear transformation

function with one constant (a = 10.6) and one coefficient (b = -.6) as

described in equation 1.9 for the full model.

KSS~azb � SzCzUzWð Þ ð1:9Þ

The model also includes a sleep generator that may be used to

automatically insert sleep in data when no observed sleep is

available. The sleep generator is part of the legacy of TPM and is

in its current implementation based on the alertness score as well

as the proximity to duty and sleep periods. The threshold for

falling asleep is set by default to S+C+U,8.38 and the threshold

for waking up is S+C+U.11.38. There is no sleep allowed within

61 hour of a duty period and no sleep earlier than 2 hours after

waking up. Waking up will not occur during the first hour of sleep.

These restrictions were included to prevent flip/flop behavior of

repeatedly falling asleep and waking up in certain situations.

One objective was to test the hypothesis that acclimatization can

be made to different time zones by adjusting the phase of C (and

U). For this purpose we developed a new process ‘‘A’’ to keep track

of the acclimatized differences between the internal circadian

phase and home base time used by the model. We modeled

acclimatization to be made continuously, and to test our

hypothesis we assumed a default daily rate of half the difference

(daily = 50%) between the acclimatized time and local time as

suggested by [45]. The equation is presented below (1.10) with

‘‘T’’ describing time in days and ‘‘TZ’’ describing the difference

between local time and home base time and subscript describing

measurement points in time (t). Acclimatized predictions from the

model are obtained by adding A to the phase parameter (p) of

process C and U.

At~At{1z(1{(1{daily)(Tt{Tt{1)) � (TZt{At{1) ð1:10Þ

Data selection and model predictions
We implemented the equations for the alertness score and

model based generated sleep times in the R programming

language [46] and used the first sleep entered into the sleep logs

as a start for our algorithm, assuming that individuals fell asleep at

Figure 3. Residuals (observed ratings-predicted sleepiness) plotted against predicted KSS (left), time awake (middle) and time of
day (right) for the best model with assumed default phase of C (model 5c, top) and circadian type adjusted phases of CT (model 6d,
bottom) with a LOWESS line indicating potential systematic bias in predictions.
doi:10.1371/journal.pone.0108679.g003
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the level of alertness used by the default sleep generator (S+C+
U = 8.38). While such assumption is reasonable in many situations,

it will not accurately account for a complex sleep history. To give

the model reasonably accurate starting values we only analyzed

sleepiness data where there was a sleep history of at least two

sleeps. We also included all sleepiness ratings up until 16 h after

the last logged sleep had ended. This provided us with 964 sleep

logs containing 5443 sleeps (3515 after the second sleep) for 136

subjects and a total of 8040 ratings of sleepiness available for

analysis. Of these, 2296 ratings occurred in a time zone different

from the home base, leaving 5744 observations for the main

analysis. Sleepiness ratings plotted against time of day at home

base time zone and other time zones are presented in figure 1.

The purpose of the sleep generator is to enable predictions

when there is no information of sleeps available. However, to

make the data comparable with the analysis of sleepiness ratings

described above we used the first observed sleep in the log as a

starting point for the algorithm. This was based on the assumption

that the sleep started at the default alertness score used by the sleep

generator (S+C+U = 8.38) and ended at the hour indicated in the

log, and excluded it from subsequent analysis. We generated a

dataset with observed and generated sleep/wake status for every 5-

minute interval over the time period covered by the sleep log for

every individual for further analysis of sleep propensity across time

of day. The distribution of sleep propensity across time of day is

presented in figure 2.

Statistical analyses
To validate the individual components of TPM we fitted

multilevel mixed effect linear regression models with alertness

score (alert) as the independent variable and observed subjective

sleepiness ratings (KSS) as the dependent variable. The model also

included random intercepts to account for systematic variation in

sleepiness propensity between subjects. A linear equation describ-

ing the model with regression parameters (b), latent variables/

random effects (g) and residual error (e) including subscript for

individual observations (i) and subjects (j) is presented below (1.11).

The random intercept variance was used to calculate reference

limits accounting for 75% and 90% of the individuals in addition

to the mean (50% of individuals in the group).

KSSij~b0zb1 � alertijzg0jzeij ð1:11Þ

To estimate the optimal phase for process C in our data we

started with a simple alertness score from process S only (to

remove the effect of time awake on data), and added a standard

cosinor analysis to the model, with independent variables

describing a 24 h period sine (sin) and cosine (cos) function of

time of day (1.12). The phase was subsequently calculated as

(ARCTAN(b1/b2)*24)/2p + K+12, where K = 0, 12, 12 or 24

depending on the sign of the coefficients b1/b2 (+/+, +/2, 2/2

or 2/+), and the amplitude was calculated as sqrt(b1
‘2+ b2

‘2). To

estimate individual phases for all subjects we added random effects

for the sine and cosine functions and used the model to predict

empirical Bayes’ estimates of individual phases (1.13).

KSSij~b0zb1 � sinijzb2 � cosij

zb3 � alertijzg0jzeij

ð1:12Þ

Figure 4. Observed, predicted and generated sleep. The top
panel shows the proportion of observed 5 minute segments
(n = 577969 for 118 subjects with sleep data) with observed duty,
observed sleep, sleep generated by the TPM (with default thresholds)
and predicted sleep based on the fixed part of a multilevel mixed
effects logistic regression (equation 15) with observed sleep as the
dependent variable and generated sleep as the predictor. The middle
panel shows observed sleep for different circadian types. The bottom
panel shows the output from three different sleep generators. The
default sleep generator used a fixed phase of C (p = 16.8) for all subjects
and threshold of S+C+U at 8.38 for falling asleep and 11.38 for waking
up. Default sleep generator with adjusted phase use individually
adjusted phases (p = 14.61 h, 15.28 h, 15.95 h, 16.62 h) depending on
rated circadian type (morning type – extreme evening type). The new
sleep generator use adjusted phases of CT with a threshold for falling
asleep of S+C,8 and waking up S+C.13.
doi:10.1371/journal.pone.0108679.g004
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KSSij~b0zb1 � sinijzb2 � cosij

zb3 � alertijzg0jzg1j � sinijzg2j � cosijzeij

ð1:13Þ

The empirical Bayes’ estimates of individual phases were

subjected to a standard cross-sectional linear regression model

with one observation for each subject and circadian type as the

independent variable to get a predicted phase adjustment for

process C (and U) based on the circadian type question.

Figure 5. Predicted probabilities as a function of alertness score (SB+C+U) based on equation 17. Left panel shows probabilities for
specific outcomes (KSS = 6–9) and right panel shows probabilities for severe sleepiness (KSS$7) with reference limits accounting for 75% and 90% of
subjects (below the line) in addition to the average subject (i.e. 50% reference limit).
doi:10.1371/journal.pone.0108679.g005

Figure 6. Empirical Bayes’ estimates of all subjects circadian phase based on equation 13.
doi:10.1371/journal.pone.0108679.g006
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The model so far has been developed using linear statistical

models. And while such an approach is reasonable in many

situations, one cannot exclude a possible bias in the estimates if the

scale used to collect data (i.e. KSS) would violate some assumptions

behind linear models. For example, estimates could become biased

if the distances between categories on the scale differ systematically

so they are longer in one end of the scale. To address potential

concerns with linear models and to provide direct estimates of

probabilities instead of group means, we used a generalized

multilevel mixed model to fit an ordered (proportional odds) logistic

regression on data. The model is a generalization of the linear

model where the probability of observing outcome k or higher

depends on the linear predictor xb (i.e. the sum of the right hand side

of equations 1.11–1.13 excluding the error term eij) and a set of

parameters defining cut points (K) between all levels of the scale of

the dependent variable (1.14). The model is reduced to a binary

logistic regression model when there are no cut points (K) to be

estimated, and such equation was used to predict the probability of

observing sleep (sleep) as a function of automatically generated sleep

(xbij =b0+b1*generated sleepij+g0j) presented in equation 1.15.

Pr KSSwkDK ,xbij

� �
~

exp xbij{Kk

� �
= 1zexp xbij{Kk

� �� � ð1:14Þ

Pr sleep~1Dxbij

� �
~

exp xbij

� �
= 1zexp xbij

� �� � ð1:15Þ

Model testing was performed in a hierarchical way starting with

a null model, fitting only a constant as well as a baseline model

fitting a constant and a random intercept, to estimate the raw

mean and variance in data and then adding processes and

complexity step by step.

Most models fitted used equation 11 with a single parameter

describing the combined alertness score. This means that they

technically have the same number of parameters and that

differences in goodness of fit can be assessed in the log likelihood.

However, such an approach does not take into account the

complexity of the alertness score calculations that can be the result

of anything from one to more than ten equations with varying

number of parameters (assumed to be fixed and constrained to a

known value) and varying data requirements (e.g. observed sleep,

time-zones and circadian type).

To assess increase in model fit between two models using

equation 11 above, an approximate likelihood ratio testing

procedure was applied using a deviance statistic calculated as 2*-

log likelihood difference between two (nested) models. This statistic

can be used for likelihood ratio testing of two nested models with a

chi2 distribution and degrees of freedom equal to the difference in

the number of parameters between two nested models. For the

purpose of penalizing increased complexity by adding a process to

the model (S, C, U, W, A), a modification to a process (i.e. the

‘‘brake function’’ modifying process S) or adjusting the circadian

phase of C and U based on the circadian type question, we

assumed 2 degrees of freedom for each step giving a critical

deviance chi2<6 for approximate likelihood ratio testing with

a= .05.

All statistical analyses were performed using Stata 13 with the

procedures mixed and meologit to fit the models and predict to

generate empirical Bayes’ estimates [47].

Results

A summary of the models fitted is presented in table 2. Overall

model fit is summarized in the log likelihood statistics, the residual

(e) and subject level random effect (g) standard deviations, but

selected deviance statistics (2*2log likelihood difference between

two models) are also presented for approximate likelihood ratio

testing. Assuming a difference in complexity between two nested

models of df<2 would suggest a chi2.6 to provide significant (p,

.05) improvement of model fit.

Validating the TPM
There was a large increase in log likelihood (deviance chi2.97)

from the baseline random intercept model (1b) when process S (2a)

and S+C (3b) were added to the model, suggesting at least the two

processes S and C (3b) as a candidate model with a deviance

chi2 = 1718 compared to the baseline model (1b).

The ‘‘brake’’ function modifying process SB (2c) showed better

fit than process S without the brake (2b) with a deviance of

chi2 = 79 (p,.001). The brake was further evaluated in more

complex models comparing models without the brake (models 3–4,

table 2) to models with the brake (models 5–6, table 2) suggesting

increased fit and a highly significant deviance in favor of the

‘‘brake’’ function comparing the best fitted models (6d & 4d)

(chi2 = 67, df<2, p,.001).

Expanding the model further by adding process W decreased
goodness of fit (5b & 5d) but adding the ultradian process U

increased fit (5c) with a significant deviance statistic (chi2 = 32,

df<2, p = .001).

The validation suggests that the optimal model for predicting

sleepiness is based on process SB+C+U (model 5c). The optimal

Table 3. Model summary of varying daily acclimatization
rates.

daily rate Log likelihood

0% 215027.5

5% 215013.5

10% 215006.5

15% 215002.4

20% 215000.3

25% 214999.3

30% 214999.1

35% 214999.6

40% 215000.6

45% 215002.0

50% 215003.8

55% 215005.8

60% 215008.2

65% 215010.9

70% 215013.9

75% 215017.1

80% 215020.7

85% 215024.7

90% 215029.5

95% 215035.7

100% 215086.0

doi:10.1371/journal.pone.0108679.t003
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transfer function between the alertness score and observed KSS

includes a constant (a = 9.68) and a coefficient (b = 2.46)

multiplying the alertness score as described in equation 9 with a

residual error standard deviation of 1.42 and systematic variation

between subjects over the intercept with a standard deviation

of.84. Residual plots presented in figure 3 (top panels) suggest that

there might be some systematic bias in the model at very high and

very low levels of predicted sleepiness, but data is sparse at the

ends of the scale. There is some evidence of a systematic bias

related to time awake and time of day, suggesting that process S, C

and U may not be optimally estimated, but the magnitude of this

bias is relatively small. There was a small but clearly visible

deviation during the first hour awake consistent with sleep inertia.

However, sleep inertia as modeled by process W, provided a much

worse fit when added to the model, suggesting that the default

parameters of process W were exaggerated.

We also wanted to validate the model based sleep generator and

used it to generate sleep and wake status for all individuals and

five-minute segments in data. The generated sleep was submitted

to a multilevel mixed effect logistic regression model (equation

1.15) with observed sleep as the dependent variable for all

observed five-minute time segments (n = 577969) and 118 subjects

with observed sleep data. The result suggests a conditional

probability of being asleep at pr = .118 when there was no sleep

generated, with an increase to pr = .790 when there was sleep

generated. The odds ratio of observing a sleep when the TPM had

one generated was estimated at OR = 28 (95% CI: 27.6–28.4).

Observed, generated (TPM) and predicted sleep probability (based

on the logistic model), together with observed work probability is

presented in figure 4 (top panels).

When model based generated sleeps were used instead of

observed sleeps (7a) the residual error in the prediction increased

to e= 1.46. The deviance statistics comparing the model with

observed sleeps (5c) was relatively large (chi2<334), suggesting

that access to observed sleep will increase the accuracy of the

predictions.

Extending the model with probabilities, individual
differences and reference limits

Based on the estimates of model 5c we can extend the linear

transformation function presented in equation 1.9 to also include

individual differences and reference limits accounting for 90% and

75% of the subjects in addition to the group mean. The function is

presented below with the offset describing the inverse cumulative

normal distribution of the proportion of subjects below the

reference limit, multiplied by the standard deviation of g= .839

giving the offset = 1.07 for 90% and offset = .57 for 75% reference

limits.

KSS �~9:68{0:46 � SzCzUð Þzoffset ð1:16Þ

We also fitted a multilevel mixed effect ordinal logistic

regression model (1.14) to estimate the probability of observing

any level of sleepiness based on S+C+U. The equation for

predicting these probabilities is presented below (equation 17) with

cut points estimated at, K = (210.99, 28.95, 27.67, 26.66, 2

5.64, 24.30, 23.05, 20.58) for probabilities above KSS.k = (1,

2, 3, 4, 5, 6, 7, 8) respectively and a standard deviation of g
= 1.10, giving offset = 1.41 for 90% and offset = .74 for 75%

reference limits. The function is also illustrated in figure 5 showing

predictions for specific levels on KSS on the left and probabilities for

observing severe sleepiness (KSS$7) on the right, including the

reference limits. Note that probabilities for KSS = 6 initially increase

when alertness goes down but decrease when alertness is very low

because of increased probability of observing KSS = 7, 8 or 9.

Pr(KSSwkjK, SzCzUð Þ)~

exp {:599 � SzCzUð Þ{Kkzoffsetð Þ=

1zexp {:599 � SzCzUð Þ{Kkzoffsetð Þð Þ

ð1:17Þ

Exploring circadian type adjustment
As a first step towards adjusting the phases of C based of the

diurnal type question, we fitted a cosinor analysis to data to

empirically determine the phase of C in the data. The first model

(1.12) was estimated with a log likelihood of 210107.3, suggesting

a large improvement in model fit with a deviance compared to the

model with default C (5a) of chi2 = 413. Adding random effects to

the model (1.13) provided a highly significant improvement in fit

(chi2 = 442, df = 2, p,.001) and made it possible to estimate

individual phases of C for all subject. The sine and cosine

coefficients were estimated at. 6496.03 (standard error) and.

6316.03, respectively, suggesting a mean phase of p = 15 h in the

data with an amplitude of .91 (in the metrics of KSS). The random

effects were estimated with standard deviations of.47 and.54

respectively and were used to generate empirical Bayes’ estimates

of individual phases of C (figure 6). These phases were subjected to

a linear regression model with rated circadian type as the

independent variable. The result suggest a significant (p,.001)

relation between circadian type and the empirical Bayes estimate

of circadian phase with predicted phase of 16.626.43 h for

extreme evening types and 2.6696.20 h for each earlier level of

the scale corresponding to phases: 14.61 h, 15.28 h, 15.95 h,

16.62 h for the observed circadian type groups (morning type,

intermediate type, evening type and extreme evening type).

Predictions with an adjusted phase of C to p = 15 h (6a & 6b)

greatly increased fit compared to models with the default phase of

C (5a & 5c) with a deviance statistic of chi2 = 358–339. Adding

circadian type adjusted phases of CT (based on the circadian type

question) further increased the fit of the models with a deviance

statistic of chi2 = 88 for a model with S+CT (6d) and chi2 = 89 for

a model with SB+CT+U (6c). The simpler model (6d) with only

SB+CT provided better fit to data than the model with SB+CT+U

(6c). Residual plots suggest that most of the systematic bias

observed for model 5c (figure 3, top panel) was reduced or

eliminated for model 6d (figure 3, bottom panels), but evidence of

sleep inertia is still visible mainly in the first hour, and there seem

to be a slight underestimation of sleepiness at long wake hours and

high/low predicted sleepiness, though data is sparse in these areas.

The equation for predicting probabilities based on S+CT (model

6d) is presented below (1.18) with cut points estimated at, K = (2

11.29, 29.18, 27.82, 26.76, 25.67, 24.27, 23.00, 20.53) for

probabilities above KSS.k = (1, 2, 3, 4, 5, 6, 7, 8) respectively and

a standard deviation of g = 1.14, giving offset = 1.46 for 90% and

offset = .77 for 75% reference limits.

Pr(KSSwkjK, SzCTð Þ)~

exp {:578 � SzCTð Þ{Kkzoffsetð Þ=

1zexp {:578 � SzCTð Þ{Kkzoffsetð Þð Þ

ð1:18Þ
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Due to its dependence on the default phase of C (p = 16.8) the

sleep generator itself did not perform well with adjusted circadian

phases (compared to the standard settings presented above) as

indicated by a multilevel mixed effect logistic regression model

(1.15) suggesting a conditional probability of pr<.192 for an

observed sleep when no sleep was generated by TPM and pr<.659

when a sleep was generated and an odds ratio of OR = 8.0 (95%

CI: 7.9–8.1).

The observed data suggest that the sleep pattern was dependent

on circadian type (figure 4 middle panel) and to address the misfit

of sleep patterns we developed a modified sleep generator

dependent on only S and CT and tested different thresholds for

falling asleep and waking up in 0.5 point steps on the alertness

scale. The best result was found with a threshold for falling asleep

of SB+CT,8 and a threshold for awakening of SB+CT.13. When

submitted to a multilevel mixed effect logistic regression model, the

conditional probability of observing a sleep was estimated at

pr<.087 when no sleep was generated and increased to pr<.798

when a sleep was generated and with an odds ratio of OR = 41.4

(95% CI: 40.8–42.1), outperforming the original sleep generator

with the default phase presented above (with OR = 28). Figure 4

bottom panel shows observed and generated sleep propensity for

all three sleep generators.

The predictions of sleepiness from the model with the new sleep

generator (8c) was greatly improved, with a deviance statistics of

chi2 = 382, compared to the one using the old thresholds (7a), but

the best fit to data was from the model with only process SB+CT,

individual phases and generated sleeps with the new thresholds (8c)

with fit statistics that were even better (chi2 = 112) than the

original SB+C+U model with information of observed sleeps and

assuming a single fixed phase at p = 16.8 presented above (5c).

Exploring acclimatization to different time zones
We fitted models that included the new acclimatization process

A (model 11a–11c) on an expanded dataset that also included time

zones other than the home base and observed increased fit for

models with acclimatization (chi2<47–57). A model with instant

acclimatization (A100%) to the new time zone (11a) performed

worse than no acclimatization at all (10a).

So far acclimatization has been assumed to equal the default of

50% the difference between acclimatized time and local time

suggested by Darwent et al. [45]. To explore a more optimal

acclimatization we fitted models with 0–100% adjustments in 5%

increments. The results presented in table 3 suggest an optimal

rate of ,30%, with a deviance statistic of chi2<10 compared to a

daily acclimatization of 50% and a deviance of chi2<57 compared

to a model (10a) without acclimatization.

Discussion

Main findings
The present study has validated the Three Process Model of

alertness (TPM), including extensions added since its inception in

1990. The result suggests that with an assumed default phase of

16.8 h for process C, an optimal model includes the processes SB+
C+U but not W. However, with an improved and circadian type

adjusted C (CT), process U is no longer part of the model,

questioning the validity of the ultradian component. We could also

validate the added predictive power of the ‘‘brake function’’ that

slows down process SB by making it linear for most of the sleep

period. Model based generated sleeps are feasible if observed

sleeps are not available but with significantly increased error in

predictions. Acclimatization of process CT to a different time zone

was also possible, but with an optimal rate of ,30% instead of the

assumed daily rate of 50% of the difference between local time and

internal acclimatized time. In addition, the TPM was extended

with reference limits to describe the influence of individual

differences in sleepiness propensity as well as a function to provide

probabilities of any level of sleepiness for assessment of risk in

safety applications.

Limitations
Before the results are discussed in detail some limitations of the

findings should be discussed. One limitation of this study is the use

of an application to collect data that has not been previously

validated against any independent source. The work and sleep

timing, background information (such as age, gender, position)

and circadian type, were assessed based on face validity, but the

sleepiness ratings was made using an established subjective

sleepiness scale (KSS) transferred to iOS software platform. We

have little reason to believe that this has had any negative effects

on the quality of the data compared to other established methods

(i.e. using pen and paper versions of validated scales) but believe

that the extensive validation of input performed by the application

(see methods section) may have reduced the error in reported sleep

and work timings.

Another main limitation of the present study is the crowd

sourcing based data collection and self-selection of participants.

There is no guarantee that participating individuals were who they

claimed to be (i.e. captains, first officers and cabin crew in airline

operations). However, the tailor made application for air crew

(CrewAlert) and the procedure to specifically target airline crew by

advertising on conferences and through official channels in airlines

and unions together with the survey code attached to data

submitted for analysis, does increase the likelihood that partici-

pants were active in airline operations. We cannot claim the study

population to be representative of all airline operations. However,

the main mechanisms of sleep regulation (the homeostatic process

‘‘S’’ and circadian process ‘‘C’’) studied in the present study is

present in all healthy humans suggesting, at least, a relatively high

internal validity for the model to predict sleepiness. We also

focused our analyses only on data contained in custom sleep logs,

which reduced the number of participants from 153 to 136. We

believe this decision was necessary to secure independent data for

analysis and avoid circular estimation.

Validation of the original TPM
The best-fitted model included processes SB+C+U with the

‘‘brake function’’ (i.e. SB) but residual plots indicate some

systematic bias in the model and explorative analyses suggested

(see below) that the phase of C was not optimal and that U should

not be part of the model. We could not validate that the sleep

inertia function (process W) adds to the model. This is probably

because sleep inertia is mainly in effect after forced awakening,

with a substantial partial sleep deprivation, and such situations

were not common in the present data. The residual analysis

suggests that an inertia function would fit the data if it were much

smaller in magnitude and it is possible that an adaptive function

that depends on sleep pressure at awakening would have been

more appropriate, but exploring such possibility was outside of the

scope of the present study.

Extending the model with probabilities and individual
differences for ecological risk estimates

We used multilevel mixed effect logistic models to account for

individual differences and provide functions for probabilities of all

levels of sleepiness based on the alertness score generated by TPM.
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Unlike earlier models developed to predict group means [30],

these functions can provide un-biased estimates in the presence

individual differences of non-linear effects and report metrics

useful for applications to calculate absolute and relative risks of any

level of sleepiness for individual work shifts, shift sequences and

whole schedules. The reported functions also add the ability to

assess risks accounting for a specified proportion of subjects (e.g.

50%, 75% and 90%) that may be used to adapt risk estimates to

varying safety requirements. To our knowledge, this is a unique

quality in sleepiness/fatigue modeling and we know of no other

models with similar features. For example, neurobiological

performance modeling is usually based on modeling mean data

aggregated at the group level [48], which might lead to bias in the

estimated parameters of non-linear effects in the presence of

individual differences [8,49], and provides no information about

individual variability around the mean (or median) predictions.

Exploring circadian type adjustment and a new phase of C
Explorative analyses indicate that the default phase of process C

(p = 16.8 h) was not optimal and suggested a phase ,1.8 h earlier

(p<15 h) than default. The reason for this discrepancy is not clear

but there are a few possibilities. We have to consider bias in the

estimates due to sampling (very few samples at night). The relative

lack of data at night can be seen as a missing data problem and the

models used in the present study are robust against missing data as

long as it is missing at random (MAR). This assumption means

that missing data will not bias estimates as long as the model can

predict the probability of missing data as a function of alertness

and this should reduce the potential bias to a minimum in the

present study.

Another possibility is that aircrew might constitute a selection of

individuals with more morning tendency than the average

individual. However, our data show that this is an unlikely

explanation since there was a relatively even distribution of

evening-morning types. The linear prediction of individual phases

also suggests that even extreme evening types would have an

average phase earlier (p<16.6) than the assumed default phase

(p = 16.8), although the data for this analysis was sparse (only 2

subjects rated themselves as extreme evening types) and the

estimated range of phases illustrated in figure 6 does suggest some

individuals with phases as late as p<20–21 h. It should be

recognized that we used empirical Bayes’ estimates (also known as

BLUP, Best Linear Unbiased Predictors, in linear models) to assess

individual phases. Such estimates are shrunken towards the group

mean, with more shrinkage in extreme individuals and few

observed data points, to reduce error of the individual subject

estimate. Thus, estimates of circadian phases were optimized for

unbiased predictions of individuals, but may represent a conser-

vative estimate of the true variance in the group. Also, we did not

use individually determined phases when we fed this information

back to our model for prediction of sleepiness; instead, we used the

estimated group average for different circadian types. This would

make model adjustments conservative for the more extreme

individuals within each circadian type.

A potential problem with the TPM-model is that the shape of

the circadian rhythm could be poorly approximated by a cosine

function. For example, if the trough of the circadian rhythm would

be flatter, a sleepiness peak would be observed significantly later

because of increased sleepiness due to time awake (process S) over

time. With the standard cosine function, such an increase in S is

immediately countered by a steep rise in C. It is also possible that

sleepiness peaks in studies where individuals are awake all night

may be affected by a simultaneous shift in the circadian phase.

Such delayed phase after nighttime wakefulness/sleep deprivation

has been demonstrated in laboratory conditions [50] and would

suggest a momentary delaying of the phase before, and likely also a

partial advancing, after, the trough, mainly as a result of light

exposure during the sensitive part of the phase response curve

[51,52]. Such mechanism has, to our knowledge, never been

explicitly studied in a real life situation but seems plausible given

that normal indoor lighting seems to be sufficient to shift the phase

[52] and that there is an observed tendency to phase delay sleep

and sleepiness patterns after working night shifts [53,54]. Our data

showed limited exposure to full night shifts so the circadian phase

would mainly be estimated on non-night work where the phase

seems to be stable at an earlier hour.

Individual empirical Bayes’ estimates of circadian phases were

validated against the circadian type question and by adjusting the

models according to rated circadian type with a large increase in

model fit. The best models with adjusted phases of CT did not

include process U questioning the validity of a 12 h-ultradian

component in sleepiness regulation. The results suggest that

process U was part of the model only to adjust some of the misfit

from the original process C. This finding suggests that the main

mechanisms of sleep and sleepiness regulation could be reduced to

the original two processes, S and C, and likely also with a modified

(adaptive) process W as discussed above.

Exploring a new model based sleep generator
The original sleep generator did not work well with the adjusted

phases (CT) due to its dependency on the default phase of C. But

the new sleep generator developed in the present study provided

better predictions of sleep than the original generator. The

improvement of the sleep generator was so large that the new

model without knowledge of sleep even outperformed the original

model with knowledge of sleep in predicting sleepiness (the best

model over-all, however, was the new model with knowledge of

observed sleep timings). This suggests a large potential improve-

ment in evaluating work schedules where information of sleep

times may not be available. However, it is possible that the sleep

generator developed in the present study is specific to this group

and such modifications need to be validated on other data and

tested for feasibility in different situations. Also, other work on

sleep prediction suggests that sleep timing may be the effect of two

circadian processes: one is the endogenous rhythm (i.e. process CT)

and the other is an exogenous social rhythm [45]. The latter is

particularly important for sleep when traveling to different time

zones since the social rhythm is instantaneously shifted to local

time without the need for acclimatization. The sleep-generating

algorithm in TPM is based on a compromise between these two

rhythms.

Exploring acclimatization to different time zones (jetlag)
with process A

We could validate the feasibility of acclimatization to different

time zones with the new process A, both after returning home

from a different time zone with jetlag and in a more general setting

when flying east or west. These results give strength to the

conclusion that the TPM could be improved by a dynamic

adjustment to different time zones for aircrew and travelers. The

optimal daily adjustment rate seems to be slower than has been

previously been suggested [45] and was found to be ,30% in the

present study.

Conclusions
The present study has validated the internal processes of TPM

on aircrew and explored potential large improvements to the
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parameters and sleep generator based on a question of circadian

type. We have also extended the model to include individual

differences, reference limits accounting for 50%, 75% and 90% of

the population as well as a direct prediction of probabilities of any

level of sleepiness for absolute and relative risk assessment of work

schedules in safety applications. The explorative findings and

extension made to the model need further validations in

independent studies, ideally with large representative samples to

provide normative data on model parameters.
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