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DNA is a universal language encrypted with biological instruction for life. In higher organisms, the genetic
information is preserved predominantly in an organized exon/intron structure. When a gene is expressed, the
exons are spliced together to form the transcript for protein synthesis. We have developed a complexity
reduction algorithm for sequence analysis (CRASA) that enables direct alignment of cDNA sequences to the
genome. This method features a progressive data structure in hierarchical orders to facilitate a fast and efficient
search mechanism. CRASA implementation was tested with already annotated genomic sequences in two
benchmark data sets and compared with 15 annotation programs (10 ab initio and 5 homology-based
approaches) against the EST database. By the use of layered noise filters, the complexity of CRASA-matched
data was reduced exponentially. The results from the benchmark tests showed that CRASA annotation excelled
in both the sensitivity and specificity categories. When CRASA was applied to the analysis of human
Chromosomes 21 and 22, an additional 83 potential genes were identified. With its large-scale processing
capability, CRASA can be used as a robust tool for genome annotation with high accuracy by matching the EST
sequences precisely to the genomic sequences.

[Supplementary material is available online at http://www.genome.org and http://crasa.sinica.edu.tw/
bioinformatics/Supplementary.htm.]

The entire human genome has been sequenced and anno-
tated separately by Lander et al. (2001) and Venter et al.
(2001). Altogether, 30,000 to 40,000 protein-coding genes
were annotated from the genomic sequence. This number,
roughly twice as many as in the worm or fly, deviates greatly
from the earlier high estimates (Ewing and Green 2000; Liang
et al. 2000; Roest Crollius et al. 2000). The exact gene number
in the human genome remains to be determined by accurate
annotation of the sequence data.

Genome annotation is based primarily on the ab initio
and homology methods. The ab initio approach predicts
genes directly from the genomic sequence using the compu-
tational properties of exons, introns, and other signature fea-
tures without referencing the experimental data. Numerous
ab initio prediction programs have been used extensively in
genome annotation, including FGENESH (Solovyev et al.
1995; Salamov and Solovyev 2000), GeneID (Parra et al.
2000), GeneMark.hmm (Lukashin and Borodovsky 1998),
GeneView (Milanesi et al. 1993), GENSCAN (Burge and Karlin
1997, 1998), Genie (Kulp et al. 1996; Reese et al. 2000), Grail
(Xu et al. 1994), GrailEXP_Perceval (Hyatt et al. 2000),
HMMgene (Krogh 1998, 2000), and MZEF (Zhang 1997).

The homology approach identifies genes with the aid of
experimental data. This approach exploits sequence align-

ment between the genomic data and known cDNA or protein
databases. Successful implementation of this method includes
AAT (Huang et al. 1997), FGENESH+ and FGENESH++ (Sal-
amov and Solovyev 2000), GAIA (Bailey et al. 1998), Gene-
Builder (Milanesi et al. 1999), GenomeScan (Yeh et al. 2001),
GrailEXP_Gawain (Hyatt et al. 2000), GeneWise (Birney and
Durbin 2000), ICE (Pachter et al. 1999), and Procrustes (Gel-
fand et al. 1996; Sze and Pevzner 1997; Mironov et al. 1998).
Among these programs FGENESH+ (and FGENESH++), Geno-
meScan, GeneWise, and Procrustes are combined tools of se-
quence homology and ab initio annotation.

Generally speaking, the ab initio approach tends to have
a higher rate of false-positive predictions (overprediction) in
annotating long genomic sequences with multiple genes
(Dunham et al. 1999). The homology-based approaches de-
mand high-performance computing and large storage space.
Furthermore, these methods require extensive manual inter-
ventions to curate true gene prediction from large sets of
matched data. The combination tools for sequence alignment
and ab initio annotation, although highly accurate, are not
robust in routine applications.

In this paper, we propose a new method, the Complexity
Reduction Algorithm for Sequence Analysis (CRASA), for glo-
bal alignment and annotation of the genomic sequence. The
method finds the exact match between the cDNA data and
genomic sequence; thus mapping the expressed genes directly
to it. By using a set of filters, the enormous data complexity is
reduced substantially. Thus, it provides an annotated frame-
work of expressed genes in the genome.
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The CRASA system restructures the cDNA data progres-
sively into a pattern-based pyramidal data structure in hier-
archical orders. The algorithm offers an automatic search of
the entire database efficiently and is amicable to the imple-
mentation of parallel processing (see Methods). In this paper,
CRASA was tested with two benchmark data sets, the SemiAr-
tificial Genomic (SAG) sequences provided by Guigó et al.
(2000) and the Real Genomic (RG) sequences generated ad
hoc from GeneBank of NCBI (National Center of Biotech-
nolgy Information). In general, CRASA was capable of deliv-
ering annotation accuracy better than the other 15 programs
tested in this study (see Results and Discussion).

The annotated human Chromosomes 21 (Hattori et al.
2000) and 22 (Dunham et al. 1999), although incomplete, are
considered as standard benchmarks for genome annotation.
In the benchmark test of human Chromosomes 21 and 22,
CRASA’s filters were able to remove the massive noise from
matched hits, thus reducing the
complexity of genome analysis.
More significantly, our method
identif ied 83 additional EST
matches that were not annotated
previously. These 83 matches were
extracted and categorized into five
classes.

Our results indicate that
CRASA, with its capabilities of com-
plexity reduction, progressive data
transmission, and direct pattern
match, is a robust and effective new
method for genome annotation.
The simplicity of program imple-
mentation allows for unlimited
query size and parallel processing
on multiple processors. It is well
suited for annotating large ge-
nomic sequences.

RESULTS AND
DISCUSSION

Principle of CRASA
In principle, CRASA is a homology-
based approach for the alignment
between the genomic and cDNA se-
quences in the databases. Unlike
the other methods, CRASA imple-
mentation requires reconstructing
a cDNA database with pattern-
based CR processing and hashing
(or indexing) the processed data
with binary codes in a multilevel
pyramidal structure. Thus, the
cDNA data are organized hierarchi-
cally in coded bins to reduce the
complexity by a factor of 16 at each
level (Fig. 1; Methods). The original
data are fully conserved under a
new pyramidal scheme. One great
advantage of using the reconfig-
ured database is to reduce also the
computational time complexity,
when similarly processed genomic

sequence is searched directly against cDNA data addressed by
identical binary codes. It is an inherent nature of CRASA to
perform parallel processing of genomic sequences without
size limitation. We restructured the HGI database (The Insti-
tute for Genome Research, MD, USA) in CR pyramids up to
the level 7 (detailed in Methods).

Because the expressed gene sequence represents merely
2% of the human genome, we anticipated a very high degree
of noise in our database search. In the postprocessing of
matched data, two main filters were installed to ascertain
“true” hits: The matching sequence length is no less than 50
bp and the matched cDNA sequence is split into at least three
colinear fragments (i.e., three possible exons). An example is
given in Table 1 to illustrate the near exponential reduction of
CRASA matches. It is clear that CRASA efficiently filters out a
large amount of matched data with simple parameters.

CRASA was implemented by annotating the genomic se-

Figure 1 The principle CRASA’s pyramidal data structure. (A) An EST sequence with four gatc pattern
sites indicated in boxes. (B) A gate CR pyramid with a three-level data structure. Each bin in the matrices
from Level 1 to 3 is assigned with a binary code taken from both sides of the gate pattern base by base.
Partitioning of Sites 1–3 from Level 1 to 3 is shown here to illustrate the progression of binary codes and
data structure in a hierarchical order.
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quence of two benchmark data sets and of the human Chro-
mosomes 21 and 22 with the reconfigured HGI database. Its
performance on a 16-CPU Linux cluster was robust and effi-
cient, primarily because of its capability of parallel processing
in hardware configuration and programming (data not
shown). The filter sets greatly reduced the complexity of
matched data analysis. Potentially, CRASA is a new global
alignment method with high accuracy.

Alternative to the existing excellent EST-to-genome
alignment methods, such as BLAT (Kent 2002), SSAHA (Ning
et al. 2001), MegaBlast (Zhang et al. 2000), and sim-x (Chao et
al. 1995, 1997), the CRASA algorithm defines a different
model for viewing and searching data in the multileveled py-
ramidal structure. A pattern-associ-
ated binary code system is used to
process and manage the database
systematically and efficiently. In ad-
dition, it confers the flexibility of
building a new data structure selec-
tively high enough to decompose
the original data complexity.

Accuracy Test of
Genome Annotation
The accuracy of CRASA annotation
results from two benchmark data
sets and human Chromosomes 21
and 22 are presented and discussed
in this section. The details of the
CRASA system and test procedure are
described in Methods.

We tested the CRASA system on
two benchmark data sets, SAG and
RG, with well-annotated gene loca-
tions. The results were compared
with those obtained from 15 well-
known annotation tools. The accu-
racy tests, Sensitivity (Sn and ME)
and Specificity (Sp andWE) measure-
ments at the exon level, are de-
scribed briefly in Methods (Burset

and Guigó 1996). The predicted exon is regarded as a correct
one (i.e., true positive) only when the boundary on both sides
is predicted correctly.

SAG Sequences
The first benchmark data set is SAG (SemiArtificial Genomic)
sequences generalized by Guigó et al. (2000). Two different
sets of SAG sequences were extracted according to protein
similarity: strong versus moderate similarity (see Methods).

Figure 2 shows the comparison of CRASA results with
those derived from GENSCAN, Procrustes, and GenWise re-
ported early by Guigó et al. (2000). In their work, the SAG
sequences were extracted and divided into two different sets,
the strong similarity group of 17 genomic sequences
(10�50 > BLASTX P-value > 10��) and the moderate similarity
group of 26 sequences (10�6 > BLASTX P-value > 10�50),
whereas the prediction accuracy of Procrustes and GenWise
depends highly on protein similarity to the reference se-
quences. CRASA annotation was determined solely by direct
sequence match between the SAG sequences and the EST da-
tabase, HGI (Human Gene Index; see Methods). As shown in
Figure 2, high accuracy of CRASA performance was observed
in both protein similarity ranges, as it stays consistently above
80% at the exon level. Although GeneWise and Procrustes
gave comparable results in the strong similarity group, CRASA
outperformed these three tools in the moderate range. Gene
prediction by GeneWise or Procrustes requires the input of a
candidate homologous protein sequence for BLASTX search
(Altschul et al. 1990, 1997) against the nonredundant (nr)
protein database, in which most genes in SAG are represented
(Guigó et al. 2000). The prediction accuracy of GeneWise and
Procrustes may drop significantly as the cutoff of protein
similarity relaxes (Yeh et al. 2001). On the contrary, our re-
sults indicate that CRASA is refractory to the arbitrary thresh-
olds of protein similarity defined for the SAG subgroups.

Figure 2 The exon-level accuracy of different annotation tools tested with the SAG data sets. The
strong (left panel) and moderate (right panel) similarity groups contain 17 and 26 sequences, respec-
tively. The Sn, Sp, and (Sn + Sp)/2 and measures of CRASA for the strong similarity data set are 0.88,
0.81, and 0.85, respectively, and for the moderate similarity dataset are 0.87, 0.79, and 0.83,
respectively.

Table 1. The Performance of Complexity Reduction
for CRASA

No. of
CRASA matches

Matching length Matched fragments
�20 bp 367,359,815
�30 bp 37,801,885
�40 bp 4,717,948
�50 bp 835,533

No. of ESTs (cach matched
fragment �50 bp) Matched ESTs

No. of fragments per EST �1 109,102
No. of fragments per EST �2 65,817
No. of fragments per EST �3 48,268
After removing repetitive elements 2880
No. of patched fragments per EST �3 1681
After removing the fragment
in inconsistent order 515

The query sequence is human Chromosome 21 (∼ 34 Mb).
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Also different from the Procrustes and GenWise methods
is that CRASA maps the expressed genes directly and exactly
to genomic sequences. It does not require the setting of
BLASTX P-value thresholds to select “optimal” candidate (or
target) proteins for gene prediction. In the CRASA algorithm,
finding the exact match between the expressed gene and the
genomic sequence is compromised only by the quality of
cDNAs or sequence variations without a priori selection of
candidate genes.

RG Sequences
Because the intergenic sequences of SAG are artificial and
most of these SAG sequences are longer than the length limi-
tation to some annotation tools, we created a dataset of real
genomic (RG) sequences (see Methods) randomly selected
from GeneBank of NCBI. All the annotation tools tested on
the RG data set below can be run directly on theWeb sites and
do not require any input of target sequences and P-value
thresholds. For this accuracy test, 13 well-known annotation
tools were included for comparative analysis: FGENESH,
GeneID, GeneMark.hmm, Genie, GENSCAN, GenView, Grail
II, GrailEXP–Perceval, HMMgene, MZEF (all ab initio ap-
proaches), AAT, GeneBuilder, and GrailEXP–Gawain (all ho-
mology-based approaches).

In addition to Sn and Sp, comparison of the accuracy mea-
sures also includes ME (the proportion of missing exons and
actual exons) and WE (the proportion of predicted wrong
exons and actual predicted exons). These accuracy measure-
ment parameters are described in Methods. The annotation
results of CRASA as well as the other 13 tools are illustrated at
the exon level in Figure 3. The sensitivity (Sn and ME) and
specificity (Sp andWE) values of CRASA clearly demonstrated
a better performance than other annotation tools. The mea-
sures of Sn, Sp, ME, and WE of CRASA (0.92, 0.79, 0.05, and
0.1, respectively) are far better than those of the mean values
of 13 other tools (i.e., 0.54, 0.47, 0.29, and 0.38, respectively).
Also noted is the (Sn + Sp)/2 values of CRASA run on the RG
(0.85), strong similarity (0.85), and moderate similarity SAG
(0.83) data sets. Thus, CRASA annotation performed consis-
tently under the present accuracy test condition.

Compared with the SAG data set, the greater exon den-
sity in RG is reflective of the fact that the average length of
annotated sequences is at least five times smaller in size (Table
2). Unlike SAG, the RG data set contains the actual genomic
sequences of multiple human genes and intergenic sequences.
The accuracies reported here for GENSCAN (Sn = 0.67 and
Sp = 0.48) and FGENESH (Sn = 0.68 and Sp = 0.62) are compa-
rable to the respective values of (Sn = 0.65 and Sp = 0.5) and
(Sn = 0.68 and Sp = 0.66) in the analysis of the BRCA2 1.4-Mb
region containing 20 verified genes of 168 exons (Couch et al.
1996; Salamov and Solovyev 2000). The BRAC2 contig of
Chromosome 13 may also be considered as an ideal data set
for testing annotation accuracy. Because the SAG sequences
share the same property (Guigó et al. 2000), these two bench-
mark data sets used in this paper are valuable and reliable for
practical evaluation and training of annotation tools.

While testing the RG data set, we made several interest-
ing observations. First, the homology-based approaches are
generally more time-consuming than the ab initio methods.
Secondly, as shown in Figure 3 for the ab inito approaches,
the sensitivity (Sn andME) is superior overall to the specificity
(Sp and WE) except for MZEF. Thirdly, the sensitivity of the
homology-based GeneBuilder is moderate, but its specificity is
rather poor, compared with the high specificity of AAT (e.g.,

for the WE measure, AAT was second in the 14 tools tested).
This result may reflect the difficulty in setting up suitable
criteria to validate the potential EST matches by homology-
based approaches.

Annotation of Human Chromosomes 21 and 22 and
Future Work
The annotated human Chromosomes 21 (Hattori et al. 2000)
and 22 (Dunham et al. 1999) contain, respectively, 284 genes
(127 known genes, 98 predicted or putative genes, and 59
pseudogenes) and 832 genes (339 known genes, 281 predicted
or putative genes, and 212 pseudogenes). These annotated
genes are classified into three sets in Table 3: (1) exon infor-
mation not available at the time of study; (2) genes with 1 or
2 exons; and (3) genes analyzed by CRASA in this study. In the

Figure 3 Comparison of the sensitivity and specificity of CRASA
with the other 13 annotation tools. (A) The sensitivity (Sn, closed
circle) and specificity (Sp, open circle) are computed from the anno-
tation results of the RG data set by the indicated homology- and ab
initio-based tools. (B) The exon-level accuracy in terms of missing
exon (ME, closed circle) and wrong exon (WE, open circle) is calcu-
lated from the same results described in A. The mean values of Sn, Sp,
ME, and WE of these 14 tools are, respectively, 0.54, 0.47, 0.29, and
0.38, whereas those of CRASA are 0.92, 0.79, 0.05, and 0.1.
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analyzed set, ∼ 83%, (130 + 305)/(177 + 347), of the genes (or
79% of the exons) were annotated by CRASA. Direct compari-
son of our results with Ensembl’s annotated Chromosomes 21
and 22 (http://www.ensembl.org/Homo_sapiens/) showed
that ∼ 17% of the annotated genes, mostly predictive, were
missed by CRASA. The missing 47 + 42 = 89 genes (or
375 + 762 = 1137 exons) are either predicted or pseudogenes
(i.e., Categories 2–5 defined by Hattori et al. 2000 at http://
hgp.gsc.riken.go.jp/ chr21/Genetable.html). Literally, CRASA
is capable of identifying all the known genes (i.e., Category 1)
reported by Hattori et al. (2000) and Dunham et al. (1999).

From the CRASA-annotated results of Chromosome 21,
we found that 46 ESTs had no matches to the genes of previ-
ous annotation (also termed the additional genes annotated
by CRASA) and that 130 annotated genes were matched to
469 (i.e., 515 � 46) ESTs (see Tables 1 and 3). The latter may
be attributed to data redundancy or splicing variants in the
HGI database. It is therefore of great interest to study splicing
variants with the CRASA algorithm in the future. More than
45,000 ESTs with at least three fragments matched to the
Chromosome 21 contigs contain repetitive elements (Table
1). Although these ESTs were excluded from the present com-
plexity reduction analysis, we believe that this observation
deserves further attention in order to understand better the
genome-wide transcription activities.

Of the 83 ESTs not matched to any annotated genes on
Chromosomes 21 and 22 (Table 3), we searched the translated
frames against the nr protein database of GenBank. Based on
the search results, each EST was assigned to one of the follow-
ing subcategories:

Category 1: Known Human Genes

Subcategory 1.1
The translated ESTs with 100% identity over essentially their
total length to a known gene.

Subcategory 1.2
The translated ESTs with 100% identity over their partial
length to a known gene.

Category 2: Similar to the Known Genes

Subcategory 2.1
The translated ESTs with similarities over essentially their to-
tal length to a known gene.

Subcategory 2.2
The translated ESTs with regional similarities to a known
gene.

Category 3: The Translated ESTs With No Significant Similarity to
Any Known Gene

Category 4: Pseudogenes

Category 5: EST Matches Only (Not Open)
All the CRASA-matched ESTs in Category 1 are genes verified
only after the original annotation work was published (Dun-
ham et al. 1999; Hattori et al. 2000). An additional 37 ESTs
with an open translation frame in Categories 2 and 3 are
potentially novel genes and need to be validated later. A de-
tailed description of these 83 ESTs is listed in Supplementary
Tables 4 and 5 (available online at http://www.genome.
org and at http://crasa.sinica.edu.tw/bioinformatics/
Supplementary.htm). It is true that new genes (10%–15% or
more) can still be extracted from the presently incomplete EST
databases.

In addition, the ab initio approaches remain viable and
very useful when the query genome has no known homology
of expressed information. As the ESTs continue to grow rap-
idly, homology-based approaches such as CRASA become
more easy to annotate the genome with the expression infor-
mation. In the present version, the single-exon ( ∼ 5%) and
two-exon (∼ 14%) genes were excluded from the assessment of
CRASA performance (Venter et al. 2001). It is well known that
the human genome is littered with many processed pseudo-
genes and that the single-exon genes can be accurately pre-
dicted by the ab initio approaches. We intend to develop the
next version of CRASA, capable of annotating the single- or
two-exon genes as well.

Table 2. Characteristics of the Benchmark Data Sets Used in This Study

Variable

SAG (BLASTX similarity)

RGStrong Moderate

No. of sequences 17 26 20
Mean sequence length (kb) 164 174 29
No. of genes 64 93 29
Mean gene length (bp) 4496 4589 10,486
No. of exons 385 477 191
Mean exon length (bp) 197 181 201
No. of exons/gene 6.02 5.13 6.59
No. of genes with one or two exons 18 24 3
Mean intron length (bp) 659 886 1640
No. of gene/Mb 22.92 20.47 49.64
Mean C + G % 40.01 39.56 51.82
Exon density (%) 2.73 1.89 6.54

Exon density provides the percentage of nucleotides that occur in coding regions.
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METHODS

CRASA Approach
CRASA is implemented with two major components: recon-
structing the cDNA database progressively to a multilevel py-
ramidal data structure in hierarchical orders (Fig. 4A) and an-
notating the genomic sequences (Fig. 4B). The latter includes
pattern processing and matching to cDNA data in the corre-
sponding pyramids. A stepwise description of CRASA annota-
tion scheme is given below.

Construction of a Pyramidal Data Structure
The main property of a pyramidal structure is multiresolution
(or progressive) transmission, which has been applied quite
extensively to other research areas of the computing sciences.
In multiresolution transmission, the original data are viewed
globally by partial transmission or processing only. By select-
ing different resolutions, massive data can be treated dynami-
cally, adaptively, and efficiently. The pyramidal data structure
used here represents a simple application to processing se-
quence information. Within the pyramid the higher the level
is, the finer the data resolution is achieved. We therefore con-
structed different pyramid levels to filter the noise and to
patch the matched exons.

A virtual gate pyramid with three levels of complexity
reduction (CR) is illustrated in Figure 1. An EST sequence is
scanned base by base from the 5� to the 3� end. Each 4-base
string is grouped as a pattern. In total, there are 44 = 256 pos-
sible patterns in the CRASA system. The pyramid is con-
structed by scanning the right and left neighbors of the iden-
tified pattern (Fig. 1B, “gatc”) one base by one base as binary
codes added to each level.

Suppose that the gatc pattern is processed as (Fig. 1A):
Four gatc patterns are found in the sequence. We then con-
struct the gatc pyramid by scanning the neighbors of each
gatc pattern. For the first level of the gate pyramid, the left
and right neighbors of the first three gatc patterns are all g and
c, and the binary code of the fourth pattern is c and g. Hence,
we define the gatc Sites 1–3 as g/c and the Site 4 as c/g at Level

1 of the data pyramid. Each site at Level 1 is thus 1 + 4 + 1 = 6
bp in length. The related location information of each site
including the position and EST accession number (e.g.,
HGI_6.0 contains >388,000 ESTs) is recorded in the corre-
sponding coordinate (bin) of Level 1 of a 4 � 4 matrix (Fig.
1B). In the given example, Sites 1–3 are recorded in the g/c
bin, whereas Site 4 is in the c/g bin. Similarly, the location
information of these sites is recorded individually as binary
codes at Levels 2 (16 � 16 matrix) and 3 (64 � 64 matrix) in
the gatc pyramid. Level l can be regarded as a 4l � 4l matrix
with 42l bins. As illustrated in Figure 1B, Sites 1–3 are indis-
tinguishable at Level 1 for sharing the same binary code. How-
ever, they are addressed in three separate bins with different
binary codes at Level 3. Conversely, data complexity is re-
duced by a factor of 16 from one level to the next within a
pyramidal structure. Also noted is the data reversibility and
inheritability between levels.

Extending from the three-level-pyramid skeleton shown
in Figure 1B, a massive amount of sequence data can be pro-
cessed andmaintained systematically by CRASA. The depth of
levels to be constructed in a CR pyramid is often dictated by
the size of databases. For the present study, we constructed
merely the 3rd and 7th levels in our system. The entire EST
database (HGI_6.0) is 1-base-shift scanned, and the location
information of each pattern site is addressed to the corre-
sponding bin in a 4-base patterned pyramid. Each bin in-
cludes the corresponding EST accession number and the lo-
cation of 4-base pattern sites for each EST. For saturated re-
configuration, a total of 256 pyramids is constructed for the
HGI database to minimize the effect of sequence quality. It is
apparent that a higher order of progressive level may reduce
the complexity further, however, at the expense of longer
construction time and greater data storage space.

Annotating the Genomic Sequences

Pattern Matching
The querying genomic sequence was similarly processed by
CRASA and mapped to the corresponding HGI pyramids and

Table 3. Results of CRASA for Human Chromosomes 21 and 22 Compared With the Annotated Genes

Chr21 Chr22

No. of annotated genes (including pseudogenes) 284 832
(1) No. of genes not available 9 3
(2) No. of genes with 1 or 2 exons 98 482
(3) No. of genes (exons) analyzed 177 (1677) 347 (3763)
(3.1) No. of genes (exons) annotated by CRASA 130 (1302) 305 (3001)
(3.2) No. of genes not annotated by CRASA 47 42
(3.2.1) No. of putative or predicted genes 45 32
(3.2.2) No. of nonfunctional pseudogenes 2 10

No. of additional genes annotated by CRASA 46 37
C1. Identical to known genes 15 10
C.1.1. Total length 13 8
C1.2. Partial length 2 2

C2. Similar to known genes 4 6
C2.1. Total length 3 2
C2.2. Partial length 1 4

C3. Not similar to any known genes 16 11
C4. Pseudogenes 4 0
C5. EST match only 7 10

The genes that are not available means the mRNA sequences are not offered by the Consortium. The genes with 1
or 2 exons include 42 (or 341) functional genes and 56 (or 141) pseudogenes (processed or nonfunctional pseu-
dogenes) on Chromosome 21 (or 22). The EST match only means the matched EST fragments are not open or the
translated sequences <50 amino acids. The 1302 (or 3001) exons of Chromosome 21 (or 22) annotated by CRASA
include 1145 (or 2556) exons both of whose boundaries are correctly matched and 157 (or 445) exons that are only
partially matched to the actual exons.
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bins. At the 7th level, each bin contains pattern sites of 18
bases in length (7 + 4 + 7 bases). By direct mapping, the
matched 18-bp pattern sites between the query and EST se-
quences were identified. The entire process of pattern match-
ing is likely to be very fast, because the time complexity is
O(m) if the query length is m bp.

Pattern Sites Assembly
After pattern matching, the 18-bp pattern sites of matched
ESTs are sorted along with the corresponding positions on the
query sequence and assembled into the longest and nonover-
lapping fragments. Throughout our system, the time cost is
binding to the sorting process. If the total number of the
matched 18-bp pattern sites is k, then the time complexity is
O(k log k). Presumably, k becomes larger as the query length
increases.

Filtering of Matched ESTs
To assess the efficiency of the filtering process, we analyzed
the ESTs matched to the query sequences from human Chro-
mosome 21. Table 1 shows that the number of matched frag-
ments is reduced about 1 log for every 10-bp increment of
matching length (e.g., from 3.7 � 108 [length � 20 bp] to
8.4 � 105 [length � 50 bp]). Only matched fragments �50 bp
are considered for further analysis. It is known that <20% of
human genes have one or two exons and that the average
number of exons per gene is 7.8 (Venter et al. 2001). To fur-
ther reduce the analysis complexity, ESTs with one or two
split fragments matched to query sequences were removed in
this study. As indicated in Table 1, the number of matched
ESTs was reduced from 109,102 to 48,268. Although the defi-
nition of a gene is better represented by the interrupted co-
linear genomic fragments, it is possible that an EST with one
or two fragments matched to a genome query is derived from

a true gene, because the 3� cDNA sequences
are overrepresented in the databases. Addi-
tionally, matched ESTs with repetitive ele-
ments present in the genomic sequences, as
shown in Figure 5A–C, are filtered out to
further reduce the complexity substan-
tially.

Small Fragment Matching
Because of the quality of cDNA sequences
in the EST database, matched fragments
shorter than 50 bases may be interrupted
and excluded from the annotation process.
A default value of 10 bases is thus set to
recover small fragments. These 10-bp to 49-
bp fragments are patched to the neighbor-
ing matches at Level 3 of CR pyramids (step
2 in Fig. 5D).

Gap Patching
A gap-patching rule is defined below to de-
termine if the gap between successive EST
fragments can be patched by the high-
quality genomic sequence.

Gap-patching Rule:

dE and dG � 100 bp and | dE − dG| � 10 bp,
(1)

where dE and dG stand for the position dif-
ferences of two successive fragments, re-
spectively, on the EST and the correspond-
ing query sequence. As in step 2 of Figure
5D, Gap 2 is patched with its genomic se-
quence, whereas Gap 1 is not by the gap-
patching rule (step 3 in Fig. 5D). In this case

EST_7 is matched to the query genomic sequence in four frag-
ments.

After gap patching, 1681 ESTs are matched to Chromo-
some 21 queries (Table 1). One additional filter is installed to
remove ESTs with matched fragments in a physical order in-
consistent to the genomic sequence. The overall performance
of CRASA annotation for Chromosome 21 in complexity re-
duction is >99.5%, as the number of matched ESTs is reduced
from the original 109,102 to 515 (Table 1). Finally, the stan-
dard signatures of a gene, such as the initiation/stop codons
and splicing signals, are used to determine the exact exon
boundaries and coding region in the matched fragments.

Annotation Tools Tested in This Study
In this study 15 presently well-known annotation tools were
tested along with CRASA, which include the ab initio (or sta-
tistic-based) and homology-based approaches. All these tools
tested are the newly updated versions. Their Web sites are
listed below.

Ab Initio Approaches

1. FGENESH: http://www.softberry.com/nucleo.html.
2. GeneID (v.1): http://www1.imim.es/geneid.html.
3. GeneMark.hmm (v. 2.2a): http://genemark.biology.gatech.

edu/GeneMark/ hum.cgi.
4. Genie: http://www.fruitfly.org/seq_tools/genie.html.
5. GENSCAN: http://genes.mit.edu/GENSCAN.html.
6. GenView: http://l25.itba.mi.cnr.it/ ∼ webgene/wwwgene.

html.
7. Grail II (Gene Recognition and Assembly Internet Link

v.1.3): http://compbio.ornl.gov/Grail-1.3/.

Figure 4 An overview of the CRASA system. (A) The construction of CR pyramids. (B) CRASA
annotation of the genomic sequences, which includes the pattern matching, pattern sites
processing, and data filtering.
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8. GrailEXP-Perceval (v.3.0): http://grail.lsd.ornl.gov/
grailexp/.

9. HMMgene (v.1.1): http://www.cbs.dtu.dk/services/
HMMgene/.

10. MZEF: http://argon.cshl.org/genefinder/human.htm.

Homology-Based Approaches

11. AAT (Analysis and Annotation Tool): http://genome.cs.
mtu.edu/aat.html.

12. GeneBuilder: http://l25.itba.mi.cnr.it/ ∼ webgene/
genebuilder.html.

13. GeneWise (or Wise2, v.2.1.20): http://www.sanger.ac.uk/
Software/Wise2/.

14. GrailEXP – Gawain (v3.0): http://grail.lsd.ornl.gov/
grailexp/.

15. PROCRUSTES (v.4.0): http://www-hto.usc.edu/software/
procrustes/qpn.html.

In our tests, the parameters used were the default values
defined by the host sites except for GeneWise and PRO-
CRUSTES (references in Guigó et al. 2000) and AAT (using the
HGI instead of the UniGene database).

cDNA Database
The cDNA database used here is the HGI (Human Gene Index)
version 6.0 (184 Mb for 388,006 sequences), which was kindly
provided by TIGR (The Institute for Genomic Research). Com-
pared with the recent UniGene version (102 Mb for 96,109
sequences) of NCBI (National Center for Biotechnology Infor-
mation), HGI 6.0 appears to contain more expressed gene

information. Interested readers
may obtain a licensing agreement
on the HGI database at http://
www.tigr.org/tigr-scripts/license/
new.pl?genre=gi. The CR pyramids
will be updated continually as the
new version of HGI is released.

Benchmark Data Sets
Genomic sequences in the SAG and
RG data sets were used to evaluate
the annotation tools in this paper.
The SAG (semiartificial genomic)
sequences were generated and of-
fered generously by Guigó et al.
(2000). In the SAG data set, a set of
annotated gene sequences was arbi-
trarily placed in the background of
random intergenic DNAs and
the length was generated artifi-
cially by normal distribution. For
testing the accuracy of gene predic-
tion, two separate groups with
strong and moderate sequence
similarity were extracted from the
SAG sequences. Each gene in the
strong similarity group has a
BLASTX P-value < 10�50), whereas
the BLASTX P-value of the moder-
ate similarity sequences is between
10�50 and 10�6.

We have also created a set of
RG (real genomic) sequences se-
lected randomly from GenBank. In
the RG data set, each sequence con-
tains annotated gene(s) and “real”
intergenic sequence. Because of the
limitation on query size for some
annotation tools (e.g., 50 kb for Ge-
neBuilder and 200 kb for MZEF),

each sequence in the RG set is no longer than 50 kb. Table 2
lists the general features of these three benchmark data sets
used for the evaluation of annotation tools in this study.

Accuracy Evaluation
To determine the performance of exon-based alignment by
CRASA annotation, all the tested tools were evaluated for ac-
curacy at the exon level. The standardized measures for accu-
racy evaluation used in this paper were defined previously by
Burset and Guigó (1996), and are described briefly below.

Sensitivity

Sn =
Number of Correct Exons
Number of Actual Exons

(2)

and

ME =
Number of Missing Exons
Number of Actual Exons

(3)

Specificity

Sp =
Number of Correct Exons
Number of Predicted Exons

(4)

and

WE =
Number of Wrong Exons
Number of Predicted Exons

(5)

Figure 5 Four possible scenarios of ESTs matched to a genomic sequence by CRASA. (A) Multiple
ESTs match to the same region of genomic sequence. (B) Several internal segments of an EST match
to the same region of a genomic sequence. (C) One segment within an EST matches to several regions
of a genomic sequence. (D) The potential coding region of a genomic sequence matches colinearly to
an EST in split segments and the processes of small fragments matching and gap patching. Step 1:
EST_7 has three segments matched to the genomic sequence, which are at least 50 bp in length. Step
2: Small fragment matching: the small matched fragments (10–49 bp) are shown (open box). Step 3:
Gap patching with the genomic sequence: While Gap 1 stays independently as a match, Gap 2,
corrected by the gap-patching rule, is patched contiguously to the matched fragment downstream.
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For Sn and Sp, the larger the values are, the more accurate
the annotation tool is. On the contrary, the smaller the values
of ME and WE are, the more accurate the annotation tool is.
Measures of annotation results are computed at the exon level
for all the query sequences. A correct exon is scored only
when both ends of its boundary are annotated correctly.

Program Implementation
Two main CRASA programs, the construction of CR pyramids
and the annotation processes, were written in Fortran, which
allow parallel processing in a distributed memory computing
system. The users’ interface and the control scripts for pro-
gram execution were written in Python. These programs are
compiled (using Portland Group’s PGF77 and MPICH) and
executed on a 16-node Linux PC cluster. Each node has a 1
AMD K7 900 MHz processor and 512 Mb of RAM.

Practically, it takes ∼ 6 h to construct and 2.5 Gb of HD
space to store the HGI database (version 6.0) at the 7th level
of 256 CR pyramids. The time and storage requirements are
dependent on the database size and the level depth in the
pyramid. It is clear that the construction of CR pyramids is a
preprocessing of the cDNA database. On the other hand, the
execution performance (EP) for CRASA annotation is a func-
tion of the number of PC nodes in a Linux cluster (EP ≅ 2
log2 z � 2 kb/sec, where z is the used number of nodes). For
instance, annotating the 34-Mb human Chromosome 21 se-
quences by CRASA takes ∼ 3 h of runtime for both DNA
strands.

Data and Program Availability
Both the strong similarity and moderate similarity data sets of
SAG sequences are at http://www1.imim.es/databases/
gpecal2000/ (Guigó et al. 2000). The RG sequences and the
related information, including the source code of CRASA, are
available from http://crasa.sinica.edu.tw/bioinformatics/
bioinformatics.html. The Web-based package of CRASA is
presently in preparation.
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