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Spatial compartmentation of the 
photosynthetic process between 

bundle sheath (BS) cells and mesophyll 
cells is one of the features that increase 
the productivity of C4 plants. To 
introduce C4 photosynthesis into 
C3 plants therefore calls for the 
identification of factors that control 
BS cell fate and promoter sequences 
that confer gene expression specifically 
in the BS and mesophyll cells. We 
recently demonstrated that 3 GRAS 
family transcription factors, SHORT-
ROOT (SHR), SCARECROW (SCR) 
and SCR-LIKE 23 (SCL 23), are 
required for BS cell fate specification 
in Arabidopsis thaliana. Homologs 
to these genes are present in other 
plant species, C3 and C4, suggesting a 
conserved mechanism for BS cell fate 
specification. Interestingly, initially 
SCR and SCL23 are expressed uniformly 
in BS cells, but at later stages of leaf 
development SCR expression becomes 
restricted to the BS cells associated 
with the phloem, whereas SCL23 is 
preferentially expressed in the BS cells 
abutting the xylem. Characterization of 
the functions and expression patterns 
of SHR, SCR and SCL23 homologs in 
other plants, especially C3 crops, will 
not only advance the knowledge about 
BS cell development but also provide 
new tools for manipulating the number 
and physiology of BS cells, a critical 
prerequisite for C3-to-C4 engineering.

Since the emergence of terrestrial 
plants, the global atmosphere has 
undergone many remarkable changes 
including CO

2
 depletion and increase 

in O
2
 concentration. As a result 

of acclimation, some flowering 
plants evolved C4 photosynthetic 
mechanisms, resulting in increase in 
carbon assimilation and reduction in 
photorespiration.1,2 Studies have shown 
that transferring the C4 pathway into C3 
crops could increase water-use efficiency, 
reduce the need for fertilizer, and boost 
yields significantly, particularly in dry 
and hot environments.3 As a consequence, 
there has been considerable interest in C4 
engineering to increase photosynthetic 
efficiency in C3 crops.4-6

Bundle sheath (BS) cells are a leaf cell 
type that forms a tightly packed layer 
surrounding the veins. In 2-cell C4 plants, 
the division of the photosynthetic process 
into the BS and mesophyll cells is one of 
the most significant features that make 
photosynthesis more efficient. Therefore, 
to achieve C4 photosynthesis in C3 
plants requires a good understanding of 
the mechanisms that control BS cell fate 
and physiology.

BS cells are considered analogous to 
endodermis, because they both surround 
the veins.7 It is known that SHR and 
SCR are necessary for endodermis cell 
fate specification in root.8-10 It is therefore 
likely that these 2 genes also play a role 
in BS cell fate specification. Supporting 
this hypothesis, it has been shown that 
SCR is expressed specifically in the BS 
cells.11,12 SHR and SCR are also required 
for the formation of the starch sheath cell 
layer, which is also positioned around 
the vascular tissue in the hypocotyl 
and inflorescence stem.12 Although the 
mechanisms underlying BS cell fate 
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specification remain elusive, it has been 
suggested that signals derived from 
the vascular tissue play a pivotal role in 
determining the position of the BS cell 
layer.13,14 SHR could be the signaling 
molecule, because it is expressed in the 
vascular tissue and the SHR protein moves 
into the neighboring cells.15,16 Taken 
together, these observations suggest that 
similar mechanisms are used to determine 
the cell fate of the endodermis, starch 
sheath and BS cells, in which SHR and 
SCR are central players.

To determine whether SHR and SCR 
control BS cell fate, we examined the 
cell pattern in the leaves of shr and scr 
mutants. As expected, the small, compact, 
and rectangular-shaped BS cell layer was 
missing in the shr mutant. However, the 
BS cells remained largely intact in the 
scr mutant. This surprising result has led 
to our further finding that SCL23, the 
closest paralog to SCR, was also required 
for BS cell fate determination. Another 
surprising finding is that the cell pattern 
in the shr and scr scl23 mutants was still 
normal, which suggests that SHR and 
SCR function differently in the leaves 
than in other organs. Remarkably, 
although SCR and SCL23 are expressed 
uniformly in the BS cells in young leaves 
and act redundantly in determining the 
BS cell fate, their expression and function 
become diverged at later stages of leaf 
development. While SCR is preferentially 
expressed in the phloem-associated BS 
cells and plays a role in sugar transport, 
SCL23 is more strongly expressed in the 
xylem-associated BS cells and is involved 
in mineral transport. This result also 
suggests that there are 2 types of BS cells 
with distinct functions.

In maize, mutations in SCR results in 
proliferation of BS cells as well as abnormal 
differentiation of BS chloroplasts.17 
Because maize is a C4 monocot, whereas 
Arabidopsis is a C3 dicot, this result 
suggests different mechanism may be 
used in C3 and C4 plants in BS cell fate 
specification. However, multiple copies 
of homologs to SHR and SCR have been 
identified in other plants, including 

maize.18-20 It is therefore equally possible 
that BS cell fates are controlled by the 
same set of genes but individual homologs 
function differently or redundantly. To 
distinguish these possibilities, we need 
to identify and functionally characterize 
SHR, SCR and SCL23 homologs in other 
plants. Gene functional analysis with 
organisms with a large genome has been 
hindered by the lack of efficient gene 
targeting methods, but this has been 
changed with the development of several 
powerful genome-editing technologies, 
such as the TALENs method and the 
CRISPER-Cas system.21-25

Our identification of genes that 
control BS cell fate in Arabidopsis not 
only has advanced the understanding 
of the mechanisms underlying BS cell 
development, but also provides new 
tools for C3-to-C4 engineering. As 
transcription factors, these BS cell fate 
determination factors can be used to 
increase the number of BS cells, which 
is also critical to C4 photosynthesis. To 
introduce C4 photosynthesis into C3 
crops, some genes involved in the Calvin-
Benson cycle need to be silenced in 
mesophyll cells but expressed specifically 
in BS cells.26 Moreover, because the 2 
populations of BS cells associated with 
the phloem or xylem have different 
functions, as suggested by our study, 
they need to be modified separately. This 
calls for cell-type specific promoters and 
the SCR and SCL23 promoters are the 
only regulatory sequences known so far 
that have such specificity. Unlike the BS 
cell-type specific promoters previously 
isolated, the promoters of SCR and 
SCL23 or their homologs are unlikely 
to be affected by cellular metabolites 
and thus expected to confer similar and 
robust expression pattern across species.
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