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In pancreatic β-cells, K
ATP

 channels 
consisting of Kir6.2 and SUR1 couple 

cell metabolism to membrane excitabil-
ity and regulate insulin secretion. Sulfo-
nylureas, insulin secretagogues used to 
treat type II diabetes, inhibit K

ATP
 chan-

nel activity primarily by abolishing the 
stimulatory effect of MgADP endowed 
by SUR1. In addition, sulfonylureas have 
been shown to function as pharmacologi-
cal chaperones to correct channel biogen-
esis and trafficking defects. Recently, we 
reported that carbamazepine, an anticon-
vulsant known to inhibit voltage-gated 
sodium channels, has profound effects on 
K

ATP
 channels. Like sulfonylureas, car-

bamazepine corrects trafficking defects 
in channels bearing mutations in the 
first transmembrane domain of SUR1. 
Moreover, carbamazepine inhibits the 
activity of K

ATP
 channels such that res-

cued mutant channels are unable to open 
when the intracellular ATP/ADP ratio is 
lowered by metabolic inhibition. Here, 
we investigated the mechanism by which 
carbamazepine inhibits K

ATP
 channel 

activity. We show that carbamazepine 
specifically blocks channel response to 
MgADP. This gating effect resembles 
that of sulfonylureas. Our results reveal 
striking similarities between carbamaze-
pine and sulfonylureas in their effects on 
K

ATP
 channel biogenesis and gating and 

suggest that the 2 classes of drugs may 
act via a converging mechanism.

Introduction

ATP-sensitive potassium (K
ATP

) chan-
nels are hetero-octameric complexes of 4 
pore-forming inwardly rectifying potas-
sium channel subunits, Kir6.1 or Kir6.2, 
and 4 regulatory sulfonylurea receptor 
subunits, SUR1 or SUR2.1 Collectively, 
K

ATP
 channels function as molecular 

sensors to convert metabolic signals into 
changes in membrane potential; they are 
important for a wide range of physiologi-
cal functions such as protection of cardiac 
and neuronal cells from ischemic injuries, 
control of vascular tone, and regulation of 
hormone secretion.2 Dysfunction of K

ATP
 

channels underlies a number of human 
diseases, including congenital hyperin-
sulinism, neonatal diabetes, DEND syn-
drome (Developmental delay, Epilepsy 
and Neonatal Diabetes), dilated cardio-
myopathy, and Cantu syndrome.3-8

In pancreatic β-cells, K
ATP

 channels 
composed of SUR1 and Kir6.2 play a key 
role in glucose-stimulated insulin secre-
tion.3,9 K

ATP
 channels are gated by intra-

cellular nucleotides. ATP interacts with 
the pore subunit Kir6.2 to inhibit chan-
nel activity in a non-hydrolysis dependent 
manner; whereas MgATP and MgADP 
interact with the nucleotide binding 
domains (NBDs) of SUR1 to stimu-
late channel activity.2,10,11 Regulation of 
SUR1 is thought to occur via hydrolysis of 
MgATP to MgADP, which induces a con-
formational change of the NBDs to open 
the Kir6.2 pore; an increase in MgADP 
concentration has a potent stimulatory 
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effect by stabilizing the NBDs in the post-
hydrolytic conformation.11 Thus, chan-
nel activity reflects the balance between 
nucleotide inhibition and Mg-nucleotide 
stimulation.2,3 When blood glucose lev-
els rise, the ATP/ADP ratio in β-cells 
increases to shift the balance toward chan-
nel closure, leading to membrane depo-
larization, opening of voltage-gated Ca2+ 
channels, and insulin secretion. As blood 
glucose levels fall, the ATP/ADP ratio 
decreases to favor K

ATP
 channel opening 

by MgADP and stop insulin secretion. 
Mutations that render channels less sensi-
tive to ATP inhibition, or more sensitive 
to MgADP stimulation, cause neonatal 
diabetes and in some cases also DEND 
syndrome.3,12-14 By contrast, mutations 
which render channels unresponsive to 
the stimulatory effect of MgADP result 
in loss of channel function and are fre-
quently found in patients with congenital 
hyperinsulinism, which is characterized 
by persistent insulin secretion despite life-
threatening hypoglycemia.15,16 Aside from 
gating defects, channel biogenesis and 
trafficking defects which prevent expres-
sion of functional channels in the β-cell 
plasma membrane are also major causes of 
congenital hyperinsulinism.17

Sulfonylureas such as tolbutamide and 
glibenclamide inhibit K

ATP
 channel activ-

ity to stimulate insulin secretion and are 
thus effective in treating type II diabetes 
as well as some cases of neonatal diabetes/
DEND syndrome caused by hyperactive 
K

ATP
 channels.3 The inhibitory effect of 

sulfonylureas on K
ATP

 channel activity 
is largely attributed to an inhibition of 
channel response to MgADP.18 In addi-
tion to inhibiting channel activity, sulfo-
nylureas have been shown to act as K

ATP
 

channel pharmacological chaperones and 
correct trafficking defects caused by a 
subset of mutations in SUR1, specifically 
those in the first transmembrane domain 
TMD0.19,20 We have previously shown 
that mutant channels rescued to the cell 
surface by the high-affinity sulfonyl-
urea glibenclamide are unable to open in 
response to metabolic inhibition in intact 
cells as assessed by 86Rb+ efflux assays.19 
Closer examination by inside-out patch-
clamp recording revealed that the rescued 
channels failed to respond to MgADP, 
likely because the drug remained bound 
to the channel even after extensive wash-
out.19 However, a lower affinity sulfonyl-
urea tolbutamide could be washed out 
from rescued surface channels to recover 

channel response to MgADP and to allow 
channels to open upon metabolic inhibi-
tion in 86Rb+ efflux assays.19,20

In a recent study, we identified carbam-
azepine as a novel K

ATP
 channel ‘corrector’ 

able to rescue trafficking defects caused by 
the same set of TMD0 mutations rescued 
by sulfonylureas.21 Interestingly, func-
tional analysis of a SUR1-TMD0 traffick-
ing mutant, F27S, showed that channels 
rescued to the cell surface by carbamaze-
pine also failed to open upon metabolic 
inhibition.21 However, mutant channel 
activity gradually recovered as carbam-
azepine was washed out, with activity 
near the level observed in wild-type (WT) 
channels after 90 min washout.21 In this 
study, we investigated how carbamaze-
pine affects K

ATP
 channel gating to pre-

vent rescued channels from opening in 
metabolically stressed cells. We show that 
carbamazepine, like sulfonylureas, spe-
cifically suppresses channel response to 
MgADP such that channels are unable 
to open when the intracellular ATP/ADP 
was lowered by metabolic inhibition.

Results

The ability of K
ATP

 channels to respond 
to metabolic signals is critically dependent 
on their response to ATP and MgADP. 
We therefore determined the response 
of carbamazepine-rescued F27S mutant 
channels to ATP and ADP by inside-out 
patch-clamp recording. First, to verify that 
the mutation itself does not alter channel-
gating properties, we recorded mutant 
channels from cells not treated with the 
pharmacological corrector carbamaze-
pine. Note although the F27S mutation 
severely hinders channel trafficking to the 
cell surface, sufficient currents (~10% of 
averaged WT channel current amplitude) 
can be detected in a small number of cells 
to allow analysis of ATP and MgADP 
sensitivity. Compared with WT chan-
nels, mutant F27S channels exhibited 
comparable sensitivity to ATP inhibition 
and MgADP stimulation (Fig.  1), indi-
cating that the F27S mutation per se does 
not have a significant effect on channel 
response to intracellular nucleotides.

Next, we recorded F27S mutant chan-
nels from cells treated overnight with 

Figure 1. The F27S mutation in SUR1 does not alter KATP channel gating property. (A) Representative 
recordings testing MgADP responses of WT and F27S channels expressed in COSm6 cells without 
overnight carbamazepine treatment. (B) Quantification of the MgADP response. Currents in 0.1 mM 
ATP or 0.1 mM ATP plus 0.25 mM ADP were expressed as percent currents of those observed in 
K-INT. There is no statistical significance in MgADP response between F27S and WT channels.
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carbamazepine. As expected, carbam-
azepine markedly increased the current 
amplitudes detected in isolated membrane 
patches indicating increased mutant chan-
nel expression at the cell surface. However, 
although these channels displayed nor-
mal ATP sensitivity they showed greatly 
reduced MgADP response (Fig.  2) 
compared with channels from cells not 
treated with carbamazepine (Fig.  1). As 
the MgADP stimulatory effect is crucial 
for K

ATP
 channels to open upon glucose 

deprivation,15,16 this explains why carba-
mazepine-rescued F27S mutant channels 
were unable to open upon metabolic inhi-
bition, as observed in our previous study.21 
Interestingly, washout of carbamazepine 
by incubating cells in fresh media without 
the drug for 2 h prior to recording recov-
ered the channel’s response to MgADP, 
suggesting carbamazepine impairs 
MgADP response. This prompted us to 
test whether carbamazepine has the same 
effect on WT channels. As observed in 
the F27S mutant, WT channels recorded 
from cells treated overnight with carbam-
azepine also had little MgADP response; 
upon washout for more than 2 h, the 
MgADP response recovered to nearly the 
extent seen in channels not previously 
exposed to carbamazepine (Fig. 2). These 
results show that carbamazepine disrupts 
the ability of channels to respond to 
MgADP. In addition to the physiological 
activator MgATP/MgADP, K

ATP
 channels 

can be activated pharmacologically by the 
potassium channel opener diazoxide via 
SUR1 in a Mg-nucleotide dependent 
manner. We found that both WT and 
F27S mutant channels from cells treated 
overnight with carbamazepine also exhib-
ited greatly reduced response to diazox-
ide; and again, after washout, diazoxide 
response recovered to the level comparable 
to that reported previously for WT chan-
nels (Fig. 3).

From the above experiments we can-
not necessarily conclude that carbam-
azepine interferes with channel response 
to MgADP directly, as prolonged drug 
incubation and washout could change the 
cellular environment to indirectly affect 
channel behavior. We therefore tested 
whether carbamazepine can block the 
stimulatory effect of MgADP when acutely 
applied to channels in isolated membrane 

patches. WT channels from cells not pre-
treated with carbamazepine were exposed 
to bath solutions containing various com-
binations of ATP, MgADP and carbamaze-
pine in inside-out patch-clamp recording. 
As shown in Figure 4A, addition of 0.25 
mM ADP to 0.1 mM ATP (free [Mg2+] 
~1 mM) antagonized the inhibitory effect 
of 0.1 mM ATP and stimulated channel 
activity (compare time points 1 and 2 in 
Fig. 4A). Subsequent exposure to a solu-
tion containing the same concentrations 
of ATP and ADP but with an additional 
10 µM carbamazepine led to a gradual 

decline in channel activity (compare time 
points 2 and 3 in Fig. 4A). Returning chan-
nels back to K-INT solution (time point 4) 
recovered channel activity to ~70–80% of 
the original currents observed in K-INT 
immediately after patch excision, which is 
in the range typically observed with WT 
K

ATP
 channels in solutions containing 

Mg2+ that causes rundown. Interestingly, 
exposure of the same patch to 0.1 mM 
ATP followed by 0.1 mM ATP plus 0.25 
mM ADP showed that the channels were 
now unable to respond to the stimulatory 
effect of MgADP, in contrast to that seen 

Figure 2. Channels from cells treated overnight with carbamazepine show diminished response 
to MgADP, an effect that is reversed after > 2-h washout of the drug. (A) Representative inside-out 
patch-clamp recordings testing MgADP responses of WT and F27S channels expressed in COSm6 
cells treated overnight with 10 µM carbamazepine with (right) or without (left) 2 h of washout prior 
to recording. (B) Quantification of MgADP response. Currents in 0.1mM ATP or 0.1mM ATP plus 
0.25mM ADP were expressed as percent of those observed in K-INT. Asterisks indicate statistical 
significance in MgADP response between no washout and > 2-h of washout of carbamazepine 
prior to recording (P < 0.05, n = 3) by 2-tailed, unpaired Student t test.
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in the first round of 0.1 mM ATP plus 
0.25 mM ADP exposure (compare time 
points 2 and 5). Further exposure to the 
solution containing 0.1 mM ATP, 0.25 
mM ADP and 10 µM carbamazepine 
caused the currents to decline even more 
(compare time points 5 and 6). These 
results show that carbamazepine exerts 
an acute inhibitory effect on the channel, 
rendering it unable to open in the pres-
ence of MgADP.

The effects of adenine nucleotides 
ATP and ADP on K

ATP
 channel activ-

ity in the presence of Mg2+, such as the 

scheme used in the above experiment, are 
complex due to both inhibition via Kir6.2 
and stimulation via SUR1. We there-
fore further examined how carbamaze-
pine affects channel response to another 
Mg-nucleotide, MgGTP, which has been 
reported to undergo hydrolysis at SUR1 
to stimulate channel activity but is much 
less potent than MgATP in inhibiting 
the channel via Kir6.2. We found that 
1mM MgGTP, a concentration previ-
ously reported to increase channel activ-
ity without significant inhibition on 
Kir6.2,22 stimulated WT channel activity 

by 23.5 ± 1.8% (i.e.123.5 ± 1.8% of con-
trol currents observed in K-INT solution), 
and 10µM carbamazepine abolished the 
stimulatory effect of MgGTP and caused 
further decline in channel activity below 
that observed in control K-INT solution 
(41.9 ± 2.1% of control) (Fig.  4B). This 
result further supports the notion that 
carbamazepine disrupts the ability of 
SUR1 to stimulate channel activity by 
Mg-nucleotides.

Discussion

Carbamazepine is a clinically used 
anticonvulsant and has been reported to 
modulate voltage-gated sodium chan-
nels,23 Ca2+ channels,24 and GABA

A
 

receptors.25 Our recent study showing that 
carbamazepine, within the concentration 
range currently used to treat epilepsy and 
trigeminal neuralgia, corrects a subset of 
trafficking-impaired K

ATP
 channels to the 

cell surface expands the pharmacological 
targets of this drug. The study presented 
here demonstrates that carbamazepine 
also exerts a potent effect on K

ATP
 channel 

gating by abolishing channel response to 
the physiological activator MgADP. Since 
the inhibitory effect was observed in WT 
channels in isolated membrane patches, 
we propose that carbamazepine interacts 
directly with the channel complex or 
another closely associated protein/lipid 
to modulate channel gating. The find-
ing that carbamazepine abolishes channel 
response to MgADP explains why mutant 
channels rescued by overnight carbam-
azepine treatment fail to open when cells 
are subjected to metabolic inhibition to 
mimic glucose deprivation, since the abil-
ity of K

ATP
 channels to open in response to 

glucose starvation relies on their ability to 
be activated by MgADP.

K
ATP

 channel stimulation by MgADP 
is conferred by SUR1. A prevailing model 
asserts that this regulation of Kir6.2 
activity is triggered by a conformational 
change in SUR1 consequent to MgATP 
hydrolysis to MgADP at the NBD2. Our 
results show that carbamazepine inhibited 
channel response to MgATP/ADP as well 
as response to diazoxide and MgGTP. 
MgGTP has been proposed to undergo 
hydrolysis by SUR1 to stimulate channel 

Figure 3. Overnight carbamazepine treatment also impairs channel response to diazoxide, but 
the effect is reversed upon extensive washout of carbamazepine. (A) Representative inside-out 
patch-clamp recordings testing diazoxide responses of WT and F27S channels expressed in cells 
treated overnight with 10 µM carbamazepine with (right) or without (left) 2 h of washout prior to 
recording. (B) Quantification of diazoxide response. Currents in 0.1 mM ATP or 0.1 mM ATP plus 0.2 
mM diazoxide were expressed as percent of those observed in K-INT. Asterisks indicate statistical 
significance in diazoxide response between no washout and > 2-h of washout of carbamazepine 
prior to recording (P < 0.05, n = 3) by 2-tailed, unpaired Student t test.
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activity22; and diazoxide as well as other 
potassium channel openers have also been 
proposed to stimulate channel activity 
by increasing ATPase activity of SUR.26 
Thus, it is possible that carbamazepine 
may affect SUR1 ATPase activity to block 

channel response to Mg-nucleotides and 
diazoxide. However, it is worth noting 
that the hydrolysis model remains con-
troversial.2 Recent studies by Ortiz et  al. 
argue that Mg-nucelotide hydrolysis may 
not be required for conformational change 

in SUR1.27,28 Also, neonatal diabetes-
causing mutations in the NBDs of SUR1 
have been reported to either increase or 
decrease SUR1 ATPase activity,29,30 sug-
gesting that the ATPase activity may not 
necessarily predict channel response to 

Figure 4. Carbamazepine acutely inhibits channel response to MgADP and MgGTP in isolated membrane patches. (Ai) Representative inside-out patch-
clamp recording from COSm6 cells expressing WT channels without overnight carbamazepine treatment. Channels were exposed sequentially to vari-
ous bath solutions as indicated by the bars above the recording. (Aii) Average currents at the various time points marked in the current trace shown in 
(Ai) are expressed as percent of those observed immediately after patch excision into K-INT solution. Asterisks indicate statistical significance (P < 0.05, n 
= 3) between the 2 time points using 2-tailed, paired Student t test. (Bi) Representative recording showing the stimulatory effect of 1 mM GTP and inhibi-
tion of this effect by carbamazepine. Note the patch was excised into K-INT solution and allowed to run down to a steady level before being exposed to 
1mM GTP (free [Mg2+]~1mM). (Bii) Quantification of channel activity in 1 mM GTP or 1 mM GTP plus 10 µM carbamazepine as % of currents observed in 
K-INT. * P < 0.05 by 2-tailed, unpaired Student t test, n = 6 and 3 for 1 mM GTP and 1 mM GTP plus 10 µM carbamazepine, respectively.
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Mg-nucleotides. Moreover, it is equally 
possible that carbamazepine inhibits 
response to Mg-nucleotides and diazox-
ide by disrupting their binding or trans-
duction steps required for coupling with 
Kir6.2. Clearly, additional studies are 
needed to sort out these possibilities.

The inhibitory effect of carbamaze-
pine on channel activity represents a 
challenge in the quest to harness the chap-
erone effect of the drug to treat congenital 
hyperinsulinism caused by K

ATP
 channel 

trafficking defects. A potential solution to 
this problem lies in the reversibility of this 
inhibitory effect. Our results show that 
although inhibition by carbamazepine is 
not reversed quickly in the time course 
(seconds) of the patch-clamp recording 
experiments (see Fig.  3), it is reversible 
after the drug has been removed from the 
culture medium for an extended period 
of time (30 min–2 h) as we have shown 
previously by 86Rb+ efflux and here by 
electrophysiology, much like what we have 
observed before for the reversible sulfo-
nylurea, tolbutamide. The same revers-
ibility is observed for diazoxide response. 
Interestingly, we previously observed that 
diazoxide facilitated functional recovery of 
carbamazepine-rescued mutant channels 
in response to metabolic inhibition such 
that some channel activity was recovered 
without washout prior to the efflux assay.21 
Likely diazoxide and metabolic inhibition 
act additively or synergistically to reverse 
the inhibitory effect of carbamazepine. 
Thus, it is worth exploring the possibility 
of corrector and potentiator combination 
therapy in recovering channel function 
loss due to trafficking mutations.

The gating effect of carbamazepine on 
K

ATP
 channels could also potentially be 

exploited to treat diseases caused by over-
active channels seen in neonatal diabetes, 
DEND syndrome and Cantu syndrome, 
much like the way sulfonylureas have been 
utilized successfully to treat some cases 
of neonatal diabetes/DEND syndrome 
caused by gain-of-function K

ATP
 channel 

mutations. One question regarding the 
use of sulfonylureas to treat DEND syn-
drome is how efficiently the drugs can 
pass the blood-brain-barrier.31 Having 
another channel inhibitor that has been 
used to treat disease of the central nervous 

system such as carbamazepine may pro-
vide an alternative.

In conclusion, our study shows that in 
addition to correcting K

ATP
 channel traf-

ficking defects, carbamazepine inhibits 
K

ATP
 channel activity by disrupting chan-

nel response to MgADP. The remarkable 
similarities between carbamazepine and 
sulfonylureas with respect to their effects 
on K

ATP
 channel biogenesis/trafficking 

and activity suggest they may modulate 
channel behavior via a common structural 
mechanism.

Methods

Molecular Biology
Rat Kir6.2 cDNA and hamster SUR1 

cDNA constructs were in pCDNAI/Amp 
and pECE plasmids, respectively. Site-
directed mutagenesis was performed using 
the QuikChange kit from Stratagene 
and mutations were confirmed by direct 
sequencing as described previously.21

Patch-clamp recording
COSm6 cells were transfected with 

SUR1 and Kir6.2 cDNAs along with 
cDNA encoding the green fluorescent 
protein to identify transfected cells. Cells 
were re-plated onto coverslips 24 h post-
transfection and treated with carbam-
azepine or the vehicle control DMSO 
(0.1% final concentration) overnight. 
Cells were subjected to inside-out patch 
voltage-clamp recording with or without 
2-h washout of the drugs prior to record-
ing. Micropipettes were pulled from non-
heparinized Kimble glass (Fisher) on a 
horizontal puller (Sutter Instrument) with 
resistance typically ~1–2 megaohms. For 
MgADP or diazoxide response, the bath 
(intracellular) and pipette (extracellular) 
solutions were K-INT: 140 mM KCl, 10 
mM K-HEPES, 1 mM K-EGTA, pH 7.3. 
ATP and ADP were added as the potas-
sium salt. In solutions containing 0.1mM 
ATP, 0.1mM ATP and 0.25mM ADP 
or 0.1mM ATP and 0.2mM diazoxide, 
MgCl

2
 were added to yield free [Mg2+] 

of ~1mM. For GTP stimulation, GTP 
was added as the sodium salt, with the 
corresponding pipette solution contain-
ing the same concentration of NaCl. Free 
[Mg2+] was ~1mM. Carbamazepine was 
made in DMSO and diluted in recording 

solution to a final DMSO concentration 
of 0.1%. Recording was performed at 
room temperature and currents were mea-
sured at a membrane potential of -50mV. 
Inward currents were shown as upward 
deflections.
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