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The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic,
biochemical, and physiological information. The metabolic reactions were compartmentalized between the
cytosol and the mitochondria, and transport steps between the compartments and the environment were
included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed
network, corresponding to 1035 metabolic reactions. Further, 140 reactions were included on the basis of
biochemical evidence resulting in a genome-scale reconstructed metabolic network containing 1175 metabolic
reactions and 584 metabolites. The number of gene functions included in the reconstructed network
corresponds to ∼ 16% of all characterized ORFs in S. cerevisiae. Using the reconstructed network, the metabolic
capabilities of S. cerevisiae were calculated and compared with Escherichia coli. The reconstructed metabolic
network is the first comprehensive network for a eukaryotic organism, and it may be used as the basis for in
silico analysis of phenotypic functions.

[Supplemental material is available online at www.genome.org. The detailed genome-scale reconstructed model
of Saccharomyces cerevisiae can be found at http://www.cpb.dtu.dk/models/yeastmodel.html or http://geneticcircuits.
ucsd.edu/organisms/yeast.html.]

Baker’s yeast, Saccharomyces cerevisiae, was the first eukaryotic
genome that was fully sequenced, annotated, and made pub-
licly available. (Goffeau 1997). Along with its industrial im-
portance, S. cerevisiae serves as a model organism for under-
standing and engineering eukaryotic cell function (Dujon
1996; Botstein et al. 1997). There have been many studies
aiming to unravel the function of orphan genes in the ge-
nome (Oliver 1998; Entian et al. 1999; Winzeler et al. 1999;
Hughes et al. 2000), and various functional genomics tech-
niques were first implemented in S. cerevisiae. The first ge-
nome-wide cDNA array study was designed for S. cerevisiae
(DeRisi et al. 1997), which subsequently resulted in a large
number of studies on expression profiling (Hughes et al.
2000). Large-scale studies have been conducted to investigate
the protein–protein interactions (Uetz et al. 2000), including
the use of two-hybrid systems (Ito et al. 2001). These studies
and a large body of biochemical literature now enable us to
functionally integrate the wealth of available genetic, molecu-
lar, and biochemical information for S. cerevisiae.

Integration of knowledge at different levels in the cas-
cade from genes to protein and further to metabolic fluxes in
a genome-scale network will be pivotal for understanding
how the individual components in the system interact and
influence overall cell function. The approach of analyzing a

complex process at different levels was illustrated in a recent
study in which expression profiles in different mutants were
compared with protein levels in order to unravel the structure
of the complex galactose (GAL)–regulon (Ideker et al. 2001).
This coordinated and multilevel effort may have significant
influence on designing metabolic engineering strategies
(Østergaard et al. 2000a,b). These interactions must now be
quantified through the use of a mathematical framework—
something that involves a significant research effort, but
which is believed to lead to fundamental new insights into
cellular function (Schilling et al. 1999; Endy and Brent 2001).
To gain insight into cell synthesis and the metabolic capabil-
ity through mathematical modeling, a natural first step is to
reconstruct the underlying metabolic network, as this is re-
sponsible for the synthesis capacity of the cell, and, as well, it
allows detailed analysis of the interactions between the indi-
vidual pathways functioning in the cell. Recently, genome-
scale metabolic networks were reconstructed for prokaryotic
cells (Edwards and Palsson 1999; Covert et al. 2001), and it
was demonstrated how such reconstructed metabolic models
allow direct correlation between the genomic information
and metabolic activity at the flux level. In these reconstructed
metabolic networks, which consist of several hundred reac-
tions and several hundred metabolites, it was possible to
simulate the phenotypic behavior under different genetic
conditions and physiological environments (Edwards et al.
2001).

Here, we present the reconstruction of the metabolic net-
work of S. cerevisiae, the first genome-scale in silico metabolic
network for a eukaryotic cell. Characteristics of eukaryotic
cells, such as compartmentation of reactions and involve-
ment of transport steps across cellular membranes, were con-
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sidered in the network. The structure and metabolic capabili-
ties of the metabolic network of S. cerevisiae were compared
with a genome-scale reconstructed metabolic network of Esch-
erichia coli (Edwards and Palsson 2000).

RESULTS AND DISCUSSION

Genome-Scale Metabolic Reconstruction
A genome-scale reconstruction of a metabolic network is cur-
rently a nonautomated and iterative decision-making process
that can easily require up to one man-year to assemble a sat-
isfying reaction list specifically collected for one organism.
Once a metabolic network is reconstructed, mathematical
methods, such as convex analysis and linear programming,
can be applied to analyze structural properties, such as con-
nectivity, etc., and simulation of cellular behavior under dif-
ferent genetic and physiological conditions can be conducted.
For example, results may be used for the development of
metabolic engineering strategies for the construction of
strains with desired and improved properties. The present
work focuses on the reconstruction of the metabolic network
of the yeast S. cerevisiae. Some structural properties of the net-
work and capabilities for biomass precursor and amino acid
production by the network were evaluated.

During the reconstruction process, a number of decisions
on each reaction needed to be taken (Fig. 1). Is an enzyme
present in the organism? Which reaction catalyzes the en-
zyme, and what is the stoichiometry of that reaction? If co-
factors are involved, is the reaction, for example, reduced
nicotinamide-adenine dinucleotide (NADH) or reduced nico-
tinamide-adenine dinucleotide phosphate (NADPH) depen-
dent, or can the enzyme use both cofactors? Is the reaction
reversible or irreversible? Where is the reaction localized? Fur-
thermore, for modeling purposes, information on the bio-
mass composition, and on growth and nongrowth-dependent
adenosine-5�-diphosphate (ATP) requirements has to be avail-
able. Once the metabolic pathways have been reconstructed
or a complete and satisfying reaction list is available, the
model can be used to simulate metabolic behavior. However,
before it can be applied, the validity of the reaction list for
modeling purposes has to be tested. For model validation, we
compared computed results of anaerobic and aerobic chemo-
stat cultivation at a dilution rate of 0.1 h�1 to experimental
results from Nissen et al. (1997) and Overkamp et al. (2000)
(data not shown).

A genome-scale reconstruction is based on a thorough
literature examination in order to extract the current state of
the art on known metabolic reactions. Here, online pathway

Figure 1 Reconstruction of the metabolic network of S. cerevisiae. Based on the available information from the genome annotation, biochemical
pathway databases, biochemistry textbooks, and recent publications, a genome-scale metabolic network of S. cerevisiae was designed. Additional
physiological constraints were considered and modeled, such as growth and nongrowth-dependent ATP requirements. Compartmentation was
included, and cofactor requirements of all model reactions were inspected carefully, thereby, reactions that created a net transhydrogenic effect
were additionally constrained. Regulatory information was not included. The picture of the pathway map was taken from the KEGG database
(www.genome.ad.jp).
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databases, biochemistry textbooks, and the annotated ge-
nome sequence have to be consulted, and, especially, extrac-
tion of information on metabolic reactions from journal pub-
lications is essential.

In detail, the reconstruction process for S. cerevisiae was
initiated by downloading a gene catalog from the KEGG
metabolic pathways database (http://kegg.genome.ad.jp/
dbget-bin/get_htext?S.cerevisiae.kegg+-f+T+w+C). The infor-
mation contained in this gene catalog is organized into tra-
ditional pathways, such as glycolysis, pentose phosphate
pathway, any amino acid biosynthetic pathway, etc., and was
used throughout the reconstruction process. Details are pre-
sented for the ORF name, gene name, enzyme name, EC num-
ber (if available), and SWISS-PROT entry name, and the KEGG
metabolic chart may be used to reconstruct specifically the
metabolic network for S. cerevisiae. The information on EC
numbers was used to search for the stoichiometry of the re-
actions using the Enzyme nomenclature database (http://
www.expasy.ch/enzyme/). To create a comprehensive reac-
tion list, the present information in the reconstructed net-
work was checked for whether genes were missing using the
MIPS Comprehensive Yeast Genome Database (CYGD)
(http://mips.gsf.de/proj/yeast/) and Saccharomyces Genome
Database (SGD) (http://genome-www.stanford.edu/
Saccharomyces/). The stoichiometry of a reaction in the En-
zyme nomenclature database and also in many pathway da-
tabases is often presented in a general form, such as, for ex-
ample, for NADH-dependent alcohol dehydrogenase, as
alcohol dehydrogenases generally accept a wide range of dif-
ferent aldehydes or alcohols as substrate. Hence, the stoichi-
ometry is found as follows: An aldehyde + NADH <�> An
alcohol + NAD_upper (+). For reconstruction and modeling
purposes, this information is insufficient, and through an ad-
ditional database and literature search, the S. cerevisiae-
specific substrates and products were identified, here, acetal-
dehyde and ethanol. Also, a large number of reactions involve
cofactors utilization, and for many of these reactions, the co-
factor requirements have not yet been completely elucidated,
for example, whether reactions only require either NADH or
NADPH as a cofactor or whether the enzyme can use both
cofactors. Some reactions are known to involve both cofac-
tors. For example, the mitochondrial aldehyde dehydroge-
nase encoded by ALD4 may use both NADH and NADPH as a
cofactor (Remize et al. 2000). In such cases, two reactions were
included in the reconstructed metabolic network.

Concerning localization, all reactions were localized into
the two main compartments, cytosol and mitochondria, as
most of the common metabolic reactions in S. cerevisiae take
place in these compartments. Reactions located in vivo in
other compartments, or reactions for which no information is
presently available on the localization, were assumed to be
cytosolic. Information on localization was mainly extracted
from CYGD and YPD. All corresponding metabolites were as-
signed appropriate localization, and a link between cytosol
and mitochondria was established through either known
transport and shuttle systems or through inferred reactions to
meet metabolic demands. To differentiate metabolites in the
mitochondria and cytosol, metabolites that were located in
the mitochondria for a specific reaction end with a small m
(see Web links).

Whether reactions are irreversible or reversible was ex-
tracted from pathway databases and additional literature (see
Methods). When no information was available, reactions
were initially defined to be reversible.

For enzyme complexes such as succinate dehydrogenase,
fatty acid synthase, and complexes of the electronic transport
chain, a single reaction for the corresponding genes was de-
fined.

Further considerations were taken into account to pre-
serve some unique features of the S. cerevisiae metabolism. S.
cerevisiae lacks a gene that encodes the enzyme transhydroge-
nase. Insertion of a corresponding gene from Azetobacter vine-
landii in S. cerevisiae has a major impact on its phenotypic
behavior, especially under anaerobic conditions (Nissen et al.
2001). As a result, reactions that create a net transhydrogenic
effect in themodel were either constrained to zero or forced to
become irreversible. For instance, the flux carried by NADH-
dependent glutamate dehydrogenase (Gdh2p) was con-
strained to zero to avoid the appearance of a net transhy-
drogenase activity through coupling with the NADPH-
dependent glutamate dehydrogenases (Gdh1p and Gdh3p).

Decisions also needed to be made as to whether a reac-
tion should be present in the reconstructed metabolic model,
although no corresponding confirmed gene function is avail-
able. Many reactions have shown experimentally that they
must be present in S. cerevisiae or they must simply be present
to allow the formation of biomass. A typical example for the
former case is the oxidative branch of the pentose phosphate
pathway, which is the main supplier of cytosolic NADPH. It is
not currently known whether the second step in the pentose
phosphate is driven nonenzymatically or enzymatically by
6-phosphogluconolactonase. Because the oxidative pathway
has to be active in S. cerevisiae and because the S. cerevisiae
genome contains at least four possible sites for a 6-phospho-
gluconolactonase (SOL1, SOL2, SOL3, SOL4), the correspond-
ing reactions were included in the model.

The reconstruction process led to a set of biochemical
reactions that might be used in constructing stoichiometric
models of metabolism using metabolite balancing (Stepha-
nopoulos et al. 1998; Edwards et al. 1999; Gombert and
Nielsen 2000). These models simply rely on mass balances
around metabolic intermediates and allow simulation of
steady state behavior, without inclusion of information on
regulatory and dynamics information. Further to the infor-
mation obtained on the stoichiometry, localization, and re-
versibility of the reactions as described before, knowledge on
the biomass composition needed to be computed as a drain of
precursors or building blocks into biomass. Table 1 shows the
biomass composition that was considered in the stoichiomet-
ric model and details on the calculation can be found at the
mentioned Internet links. Even though the biomass compo-
sition changes under different physiological conditions, it
may be assumed constant, as it has been demonstrated that a
change in biomass composition merely changes the simula-
tion results (Varma et al. 1993). Furthermore, information on
the growth-associated ATP requirements (Stouthamer 1979)
(maintenance of membrane potentials, turn-over of macro-
molecules, etc.) and on the ATP cost that is required for the
polymerization of amino acids and nucleotides needed to be
available.

The polymerization cost was calculated by Verduyn et al.
(1991) to be 23.92 mmole ATP/g DW, and the growth-
associated ATP maintenance was found by fitting the recon-
structed model to the experimentally determined biomass
yield of 0.51 g DW/g glucose (Verduyn 1991). Hereby, this
contribution was estimated to be 35.36 mmole ATP/g DW.
Thus, the sum of these two contributions is 59.28 mmole
ATP/g DW, which was included in the stoichiometric model
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of S. cerevisiae. The ATP costs for the synthesis of building
blocks, which could be derived directly from the model, was
found to be 9.89 mmole ATP/g DW and, thus, the total ATP
requirement for biomass growth was estimated to be 69.2
mmole ATP/g DW, which falls into the range of experimen-
tally measured values (Verduyn et al. 1990; Verduyn 1991).
Finally, a nongrowth-associated ATP requirement of 1
mmole/g DW/h was assumed to be required (Stouthamer
1979; Verduyn et al. 1990).

At this step, a first model was designed that could be
applied to linear programming to simulate cellular behavior.
The model was used to minimize the glucose uptake rate at a
dilution rate of 0.1 h�1 for aerobic and anaerobic conditions,
and results were compared with experimental results (data
not shown). Initially, no agreement between computed and
experimental results could be found. However, through a rig-
orous investigation of flux distributions and shadow price
analyses, it was possible to adjust and correct the initial reac-
tion list until simulated results were in agreement for both
cases. At this step, the reconstruction process was considered
to be finished.

Characteristics of the Reconstructed Network
The metabolic reconstruction process resulted in a network
that consisted of 1175 metabolic reactions and 584 metabo-
lites (Table 2). A total of 708 metabolic ORFs were included in
the reconstructed network, to which 1035 reactions were as-
signed. Some 595 metabolic ORFs contained at least one en-
zyme commission (EC) number. This corresponded to ∼ 54%
of all ORFs that were assigned an EC number in the MIPS
database (595 of 1098 ORFs; Mewes et al. 1997). The remain-
ing 46% correspond mainly to protein kinases, protein phos-
phates, peptidases, and proteases, which have not been in-
cluded. Most of the enzymes are monofunctional, with 179

enzymes being multifunctional. Currently, the number of
protein-coding genes in the S. cerevisiae genome is estimated
by YPD (Costanzo et al. 2001) to be 6281, of which 4127
corresponding proteins were characterized by genetics or bio-
chemistry, and an additional 252 proteins were assigned func-
tions by homology searches. The total number of genes in-
cluded in the reconstructed metabolic network corresponded
to ∼ 16% of all characterized ORFs.

On the basis of the protein complex catalog of MIPS
(Mewes et al. 1997), 26 protein complexes, which catalyzed
88 reactions, were identified in the reconstructed metabolic
network. The metabolic network contained 193 ORFs coding
for isoenzymes, which catalyzed 239 reactions.

A total of 140 reactions were included on the basis of
biochemical evidence or physiological considerations, but
currently with no annotated ORF. More than 85% of these

Table 2. Network Characteristics of the Reconstructed
Metabolic Network of Saccharomyces cerevisiae

ORFs 708
Metabolites 584
Cytosolic metabolites 559
Mitochondrial metabolites 164
Extracellular metabolites 121

Reactions 1175
Mitochondrial reactions 124
Cytosolic reactions 702
Exchange fluxes 349
Cytosolic exchange fluxes 287
Mitochondrial exchange fluxes 62

Reactions with ORF assignments 1035
Reactions based on biochemical evidence or
Physiological considerations 140

Table 1. Biomass Composition

Metabolite mmole g DW Metabolite mmole g DW

Amino acids (Oura 1972) Mannan 0.808
Other carbohydrates 1.135Alanine 0.459
Ribonucleotides (Oura 1972)Arginine 0.161
AMP 0.046Asparagine 0.102
CMP 0.045Asparate 0.298
GMP 0.046Cysteine 0.007
UMP 0.060Glutamine 0.105
Deoxyribonucleotides (Vaughan-Martini and Martini 1993)Glutamate 0.302

Glycine 0.290 DAMP 0.004
Histidine 0.066 DCMP 0.002
Isoleucine 0.193 DGMP 0.002
Leucine 0.296 DTMP 0.004
Lysine 0.286 Lipids (Nurminen et al. 1975), Sterols (Hunter and Rose 1972),
Methionine 0.051 Phospholipids (Kaneko et al. 1976), Fatty acids (Schulze 1995)
Phenylalanine 0.134
Proline 0.165

Triacylglycerol 0.007

Serine 0.185
Ergosterol 0.001

Threonine 0.191
Zymosterol 0.002

Tryptophane 0.028
Phosphatidate 0.001

Tyrosine 0.102
Phosphatidylcholine 0.006

Valine 0.265
Phosphatidylethanolamine 0.004

Carbohydrates (Schulze 1995)
Phosphatidylinositol 0.005
Phosphatidylserine 0.002

Glycogen 0.519
Trehalose 0.023

(Schulze 1995) Details on the calculation of the biomass equation can be found under http://www.cpb.dtu.dk/models/yeastmodel.html and
http://geneticcircuits.ucsd.edu/organisms/yeast.html.
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reactions were transport reactions over the cytoplasmic or mi-
tochondrial membrane, other reactions were mainly involved
in amino acid, nucleotide, and vitamin metabolism (Table 3).
A total of 349 transport reactions were included in the model,
of which 287 were involved in transporting metabolites in or
out of the cell, and 62 transport reactions were involved in
interchanging metabolites between the cytosol and the mito-
chondria. Reversibility and irreversibility of reactions was
carefully accounted for in the reconstruction process, so that
approximately two-thirds of the reactions were assumed to be
irreversible.

A complete list of all included reactions can be down-
loaded at http://www.cpb.dtu.dk/models/yeastmodel.html or
http://gcrg/organisms/yeast.html.

The most frequently used metabolic intermediates in the
reconstructed network are presented in Table 4, showing that
the most connected metabolites were involved in energy me-
tabolism, such as ATP, etc., in redox metabolism, such as
NADPH, and in nitrogen metabolism, such as glutamine and
glutamate. The most frequently used metabolite was proton,
due to its participation in a high number of proton-coupled
transport reactions in the network. The number of reactions
involving proton was much higher than in metabolic net-
works of prokaryotic microorganism reconstructed previously
(Schilling 2000). This difference was mainly due to the larger
number of proton-driven transport systems in S. cerevisiae—
both in the cytosolic and in the mitochondrial membrane.
For comparison, the metabolic connectivity of three prokary-
otic organisms was examined (Table 4). In all 4 reconstructed
networks, the 12 most connected metabolites represented the
key intermediates of high-energy metabolism, redox carriers,
nitrogen metabolism, and 2- and 3-carbon intermediates. An-
other important topological property of the reconstructed
network was the number of metabolites that participate in
each reaction (Fig. 2). For all four networks, the most com-
mon number was 4, representing the conversion of a substrate
to a product concomitant with the conversion of a coupled
cofactor from one form to another. Most frequently, this con-
version involved ATP and ADP or the translocation of H+.

A total of 184 metabolites were not connected to the
overall metabolic network, showing that either reactions link-
ing these metabolites to the overall metabolic network have
not been identified yet, proteins may have been assigned
wrong functions in the annotation process, or S. cerevisiae has
lost some of its metabolic functions during evolution. This
result shows that the information on the metabolic network
in S. cerevisiae is currently still incomplete, however, the pre-
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Table 3. Distribution of 140 Metabolic Reactions
of S. cerevisiae With Currently No Annotated ORF
That Were Included in the Reconstruction Process
on the Basis of Physiological and Biochemical Evidence

Transport over Cytoplasmic Membrane 77
—Carbohydrates 18
—Nucleotides and Nucleosides 27
—Other 32

Transport over Mitochondrial Membrane 44
Amino Acid Metabolism 2
Metabolism of Cofactors, Vitamins, and Other Substances 10
Nucleotide Metabolism 2
Lipid Metabolism 3
Metabolism of Complex Lipids 1
Energy Metabolism 1
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sented reconstructed metabolic network may be useful in
guiding the assignment of orphan ORFs (Förster et al. 2002) or
the identification of erroneous assignments. An example of
an unlinked metabolite was formaldehyde. It appeared only
in one reaction in the metabolic network through the inclu-
sion of the gene SFA1, which codes for a formaldehyde dehy-
drogenase. It is as yet unknown which role formaldehyde
plays in the natural environment of S. cerevisiae. From the
observation that S. cerevisiae contains a formaldehyde as well
as formate dehydrogenases, it may be concluded that it either
encounters these C1 compounds in its natural environment
or generates them in its metabolic network (J. Pronk, pers.
comm.).

The Reconstructed Metabolic Network of S. cerevisiae
Versus MIPS Entries and Enzyme
Commission Assignments
Throughout the reconstruction process, 595 ORFs have been
assigned an EC number, corresponding to 850 reactions. The
most abundant enzyme class is transferases followed by oxi-
doreductases, hydrolases, lyases, ligases, and isomerases (Fig.
2.) A similar tendency was found for a reconstructed meta-
bolic network of E. coli (Edwards and Palsson 2000), but this
network contains more lyases than hydrolases. The compari-
son of the number of ORFs with the number of reactions in
each enzyme category suggests that in S. cerevisiae, isomerases,
and transferases are less substrate specific (ratio of number of
reactions to number of ORFs) than any of the other enzyme
classes, whereas in E. coli transferases and hydrolases are the
least substrate-specific enzyme classes (Fig. 3).

The number of ORFs included in the metabolic recon-
struction of S. cerevisiae was also compared with the func-
tional categories as defined by MIPS. Not surprisingly, most of
the ORFs fall into two main classes, such as metabolism and
energy, followed by the classes of transport facilitation and
cellular transport and transport mechanism. Furthermore, for
∼ 430 ORFs, information about localization is available as
characterized by the functional category, cellular organiza-
tion (Table 5).

The large functional classes of metabolism and energy
were investigated in more detail (Fig. 4). Analyzing the func-
tional category metabolism (Fig. 4A) revealed that most ORFs
are involved in C-compound and carbohydrate metabolism,
followed by amino acid metabolism, lipid, fatty acid and iso-
prenoid metabolism, and nucleotide metabolism. Compari-

son with MIPS entries showed that the number of ORFs in-
cluded in the reconstructed network is different from the
MIPS database. This difference is either due to exclusion of
ORFs, which are involved in regulation, such as ORFs encod-
ing activators or negative regulators, or exclusion of ORFs,
which have assigned function based on similarity searches.
The second largest functional category classified by the MIPS
database is that of the lipid, fatty acid, and isopreniod me-
tabolism. However, during the metabolic reconstruction pro-
cess, more ORFs were included in the functional category,
amino-acid metabolism, than in the functional category,
lipid, fatty acid, and isoprenoid metabolism, based on a high
number of ORFs that have been assigned function using simi-
larity searches. This result is consistent with the fact that the
amino acid metabolism is currently still better understood
than the much more complex lipid metabolism.

Details of the functional class energy metabolism are
shown in Figure 4B, elucidating the fact that traditional path-
ways of the primary metabolism, such as glycolysis, gluconeo-
genesis, pentose-phosphate pathway, TCA cycle, and glyox-
ylate cycle are very well described. The functional classes of
respiration, fermentation, etc., contain a higher number of
proteins that are involved in regulation and transport. In ad-

Table 5. ORFs in the Saccharomyces cerevisiae Metabolic
Network Sorted Into Functional Categories According to the
Munich Information Center for Protein Sequences (MIPS)

Functional Category No. of ORFs

Metabolism 646
Energy 158
Cell Growth, Cell Division and DNA Synthesis 30
Transcription 2
Protein Synthesis 15
Protein Destination 43
Transport Facilitation 104
Cellular and Transport Mechanism 97
Cellular Biogenesis 23
Cellular Communication/Signal Transduction 10
Cell Rescue, Defense, Cell Death and Ageing 32
Ionic Homeostasis 42
Cellular Organization 434
Classification not yet Clear-cut 3
Unclassified Proteins 14

Figure 2 Reaction classification by number of participating me-
tabolites.

Figure 3 Number of reactions and ORFs included in the S. cerevisiae
metabolic network arranged by enzyme categories. For comparison,
data for an E. coli (Edwards and Palsson 2000) metabolic network is
shown. (EC 1) Oxidoreductases; (EC 2) transferases; (EC 3) hydro-
lases; (EC 4) lyases; (EC 5) isomerases; (EC 6) ligases.

Genome-Scale Reconstruction of S. cerevis iae

Genome Research 249
www.genome.org



dition, these categories contain a high number of ORFs that
have been assigned function by similarity searches and for
many cases, the function has not been fully elucidated.

Biosynthesis of Amino Acid and Precursor
Metabolites—Metabolic Capabilities of S. cerevisiae
All building blocks needed for synthesis of macromolecules
constituting cell mass can be generated from a set of 12 pre-
cursor metabolites (Stephanopoulos et al. 1998). The capabil-
ity of the reconstructed genome-based S. cerevisiae and E. coli
networks to produce these precursor metabolites using glu-
cose as the sole carbon source was computed by use of linear
optimization (Fell and Small 1986; Varma and Palsson 1993).
Similarly, the maximum production of the 20 common
amino acids was calculated for both organisms. In both cases,
S. cerevisiae was found to be more efficient in producing pre-
cursor metabolites and amino acids (Fig. 5A,B). This result is
somewhat surprising, as E. coli has been recognized and is
widely used as a host for industrial amino acid production.
Investigation of the corresponding flux distributions shows
that the difference is caused by the higher ATP maintenance

requirements in E. coli. If ATP maintenance requirements are
not considered, the S. cerevisiae and E. coli networks generate
similar systemic yields, except for acetyl-CoA, glutamate, glu-
tamine, and glycine. Thus, the analysis shows that S. cerevisiae
may be a suitable host for industrial amino acid production.

In conclusion, the metabolic network of S. cerevisiae was
reconstructed using a procedure based on information from
genomic databases, reaction databases, and a comprehensive
literature search on S. cerevisiae. Although it is incomplete,
given the number of orphan ORFs, it is a first step toward
cataloging and characterizing the entire metabolic portfolio
of a eukaryotic organism. This conclusion is supported by the
myriad of specific and insightful information derived from
the list of metabolic reactions. The potential of the recon-
structed model may further be used for the analysis of phe-
notypic behavior under different genetic and physiological
conditions (I. Famili, J. Förster, J. Nielsen, and B.Ø. Palsson, in
prep.) The reconstructed metabolic network of S. cerevisiae
represents a strong platform for reconstruction of metabolic
networks of higher organisms, such as plants, animal, and

Figure 4 ORFs sorted into the functional categories of MIPS, me-
tabolism (A) and energy (B). (AA) Amino-Acid Metabolism; (N2/S)
nitrogen and sulphur metabolism; (N) nucleotide metabolism; (P)
phosphate metabolism; (C) C-compound and carbohydrate metabo-
lism; (L) lipid, fatty-acid and isoprenoid metabolism; (V) metabolism
of vitamins, cofactors, and prosthetic groups; (S) secondary metabo-
lism; (EMP) glycolysis and gluconeogenesis; (PPP) pentose-phosphate
pathway; (TCA) tricarboxylic-acid pathway; (RES) respiration; (FER)
fermentation; (ER) metabolism of energy reserves (glycogen, treha-
lose); (GLYC) glyoxylate cycle; (OX) oxidation of fatty acids; (O) other
energy generation activities.

Figure 5 Maximum precursor and amino acid production in S. cer-
evisiae and E. coli including nongrowth-specific ATP maintenance
(A,B) (in mole/mole glucose). (3PG) 3-Phospho glycerate; (ACCOA)
acetyl-CoA; (AKG) 2-Oxoglutarate; (ALA) alanine; (ARG) arginine;
(ASN) asparagine; (ASP) aspartate; (CYS) cysteine; (E4P) eErythrose 4
-phosphate; (F6P) fructose 6-phosphate; (G6P) glucose 6-phosphate;
(GLN) glutamine; (GLU) glutamate; (GLY) glycine; (HIS) histidine;
(ILE) isoleucine; (LEU) leucine; (LYS) lysine; (MET) methionine; (OA)
oxaloacetate; (PEP) phosphoenolpyruvate; (PHE) phenylalanine;
(PRO) pProline; (PYR) pyruvate; (R5P) ribose 5-phosphate; (SER) ser-
ine; (SUCCOA) succinyl-CoA; (T3P1) glyceraldehyde 3-phosphate;
(THR) threonine; (TRP) tryptophane; (TYR) tyrosine; (VAL) valine.
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human. Such reconstructed metabolic networks will serve an
important role in systems biology, as the analysis of recon-
structed metabolic networks will facilitate the exploration of
metabolism for drug targets (Schuster et al. 1999), enable the
design of microbial strains with improved characteristics
through metabolic engineering (Nielsen 2001), and serve as a
tool in functional annotation (Selkov et al. 2000).

METHODS

Metabolic Reconstruction Process
The reconstruction process is shown in Figure 1 and is de-
scribed in detail in the main text. In brief, the reconstruction
process involves the collection of all known enzymatic reac-
tions in the metabolic pathways of S. cerevisiae. Tables 6 and 7
contain information on the online genome and pathway da-
tabases and key references used for the reconstruction process.
Furthermore, journal publications were used to identify spe-
cific information on the reactions.

Linear Programming
The reactions of the reconstructed metabolic model were for-
mulated as a stoichiometric model S � v = 0, as, for example,

described in Edwards et al. (1999) or Stephanopoulos et al.
(1998). This model describes cellular behavior under pseudo
steady-state conditions, and S is defined as the stoichiometric
matrix that contains the stoichiometric coefficients of inter-
nal (balanced) metabolite i in the jth reactions and v is the flux
vector that corresponds to the flux of the jth reaction. The
stoichiometric model was solved using linear programming,
an approach often referred to as flux balance analysis (Ed-
wards et al. 1999).

The linear programming problem was formulated by de-
fining an objective function Z:

Minimize Z = a � V

subject to

S � v = 0

vi,irr ∈ � +

vi,rev ∈ �,

in which a was a row vector containing weights of the indi-
vidual variables specifying the influence of the individual
fluxes on the objective function Z. The elements of the flux
vector v were constrained for the definition of reversible and
irreversible reactions, vi,rev and vi,irr, respectively. Uptake was
defined for glucose, sulfate, ammonia, phosphate, oxygen (for
aerobic growth), and ergosterol and zymosterol (for anaerobic
growth). Secretion was defined for all major metabolic prod-
ucts, such as ethanol, glycerol, succinate, acetate, pyruvate,
and for all amino acid, organic acids (see supplementary ma-
terial).

The consistency of the model was checked at anaerobic
and aerobic conditions at a dilution rate of 0.1 h�1 (objective
function Z = µ) and compared with experimental results from
Nissen et al. (1997) and Overkamp et al. (2000), respectively.

For the maximization of precursors or building blocks of
biomass, an additional reaction was defined in the model and
maximized for. The general format of the additional reaction
was as follows: precursor → precursorOut, and the objective
was the maximization of that particular reaction.

All calculations were carried out using the commercially
available software Lindo (Lindo Systems Inc.).

Shadow Prices
Shadow prices are derived from the dual variable of a linear
programming problem (see, for example, Bertsimas and Tsit-
siklis 1997). Its’ definition is:

�i =
− dZ
dbi

,

in which bi corresponds to a potential uptake or secretion rate
of metabolite i. Negative shadow prices describe metabolites

Table 6. Online Resources for the Reconstruction of the Metabolic Network of Saccharomyces cerevisiae

Database Link

Genome Databases
Munich Information Center for Protein Sequences Database (MIPS) http://mips.gsf.de/proj/yeast/
Saccharomyces Genome Database (SGD) http://genome-www.stanford.edu/Saccharomyces/
Yeast Proteome Database http://www.proteome.com/databases/YPD/YPDsearch-quick.html

Pathway and other databases
KEGG Database http://kegg.genome.ad.jp/kegg/kegg2.html
ExPASy Biochemical Pathways http:www.expasy.ch/cgi-bin/search-biochem-index
ExPASy Enzyme Database http://www.expasy.ch/enzyme/
ERGO http://www.integratedgenomics.com/
Swiss-Prot http://www.expasy.ch/sprot

Table 7. Key references consulted additionally to online
resources for the reconstruction of the metabolic network
of Saccharomyces cerevisiae

Metabolism Reference

Amino acid biosynthesis (Strathern et al. 1982)
Lipid synthesis (Daum et al. 1998)

(Parks 1978; Dickinson and
Schweizer 1998; Dickson
1998; Dickson and Lester
2000)

Nucleotide Metabolism (Strathern et al. 1982)
(Michal 1999)

Oxidative phosphorylation
and electron transport

(Verduyn et al. 1991)
(Overkamp et al. 2000)

Primary Metabolism (Zimmerman and Entian 1997)
(Strathern et al. 1982;
Dickinson and Schweizer
1998)

Transport over cytoplasmic
membrane

(Paulsen et al. 1998)
(André 1995; Regenberg 1999;
Wieczorke et al. 1999)

Transport over mitochondrial
membrane

(Palmieri et al. 2000a,b,c,d)
(Tzagoloff 1982; André 1995;
Pallotta et al. 1998; Paulsen
et al. 1998)
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that are demanded by the metabolic network and positive
shadow prices identify metabolites that the metabolic net-
work would like to excrete in order to improve the objective
value Z.

Preliminate versions of the reconstructed models were
unable to model cellular behavior; either the model did not
allow growth or growth reached infinity. In such cases, three
strategies were considered for identifying the missing or in-
correct information in the model during the reconstruction
process. First, investigation of the flux distribution, second,
investigation of shadow prices, and third, definition of new
linear programming problems, such as maximization of pre-
cursors or building blocks that are necessary to synthesize
biomass.
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