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Introduction

Klotho, a protein expressed in a wide variety of tissues 
including kidney,1,2 has a profound impact on aging and life 
span.3,4 The extracellular domain of Klotho may function as 
protease or hormone.5 Klotho deficiency results in severe growth 
retardation and accelerated aging eventually leading to early 
death.3 Klotho overexpression leads to substantial prolongation of 
life span.3,4 Klotho is required for the inhibitory effect of FGF23 
on 1,25(OH)
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 producing 1α-hydroxylase.2,4,6,7 1,25(OH)
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stimulates intestinal and renal Ca2+ and phosphate transport.8,9 In 
part due to excessive 1,25(OH)
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 formation, Klotho deficiency 

increases plasma Ca2+10 and phosphate9 concentration, resulting 
in vascular calcification,11 growth deficit,2 and rapid aging.2,6,7 
Klotho insufficiency further leads to hearing loss, cardiac 
arrhythmia, and sudden cardiac death.1 Moreover, Klotho 
deficiency enhances glucose tolerance.12

Hearing loss and cardiac arrhythmia may result from genetic 
defects of the K+ channel subunits KCNE1 or KCNQ1.13-15 
Moreover, KCNQ1 polymorphisms have been associated with 
diabetes.16,17 KCNQ1/KCNE1 is expressed in a variety of tissues 
including the heart,13,15 skeletal muscle,18 stria vascularis of the 

inner ear,19 renal proximal tubule,20 gastric parietal cells,21-23 
intestinal epithelia,20,22-26 and hepatocytes.27-29 KCNQ1 knockout 
mice suffer from deafness30,31 and impairment of gastric acid 
secretion,31,32 as well as intestinal electrolyte and substrate 
transport.33 KCNQ1 deficiency further impairs cell volume 
regulation.28,29,34-36 and affects cardiac repolarization.37

Besides its impact on 1,25(OH)
2
D

3
 formation, Klotho may 

regulate Na+, phosphate cotransport,38,39 Na+/K+ ATPase,40 
Ca2+ channels,41 and renal outer medullary K+ channels42 by 
more direct influence on the channels and transport proteins. 
The present study thus explored whether Klotho modifies the 
function of KCNQ1/KCNE1 channels. To this end, voltage-
gated current was determined in Xenopus oocytes expressing 
KCNQ1/KCNE1 with or without coexpression of Klotho, 
treatment with human recombinant Klotho protein or treatment 
with DSAL (d-saccharic acid-1,4-lactone), a β-glucuronidase 
inhibitor. Moreover, the effect of Klotho coexpression on 
KCNQ1/KCNE1 protein abundance at the cell membrane was 
quantified by chemiluminescence and visualized by confocal 
microscopy.
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Klotho is a transmembrane protein expressed primarily in kidney, parathyroid gland, and choroid plexus. The 
extracellular domain could be cleaved off and released into the systemic circulation. Klotho is in part effective as 
β-glucuronidase regulating protein stability in the cell membrane. Klotho is a major determinant of aging and life span. 
Overexpression of Klotho increases and Klotho deficiency decreases life span. Klotho deficiency may further result in 
hearing loss and cardiac arrhythmia. The present study explored whether Klotho modifies activity and protein abundance 
of KCNQ1/KCNe1, a K+ channel required for proper hearing and cardiac repolarization. To this end, cRNa encoding KCNQ1/
KCNe1 was injected in Xenopus oocytes with or without additional injection of cRNa encoding Klotho. KCNQ1/KCNe1 
expressing oocytes were treated with human recombinant Klotho protein (30 ng/mL) for 24 h. Moreover, oocytes which 
express both KCNQ1/KCNe1 and Klotho were treated with 10 µM DsaL (D-saccharic acid-1,4-lactone), a β-glucuronidase 
inhibitor. The KCNQ1/KCNe1 depolarization-induced current (IKs) was determined utilizing dual electrode voltage 
clamp, while KCNQ1/KCNe1 protein abundance in the cell membrane was visualized utilizing specific antibody binding 
and quantified by chemiluminescence. KCNQ1/KCNe1 channel activity and KCNQ1/KCNe1 protein abundance were 
upregulated by coexpression of Klotho. The effect was mimicked by treatment with human recombinant Klotho protein 
(30 ng/mL) and inhibited by DsaL (10 µM). In conclusion, Klotho upregulates KCNQ1/KCNe1 channel activity by “mainly” 
enhancing channel protein abundance in the plasma cell membrane, an effect at least partially mediated through the 
β-glucuronidase activity of Klotho protein.



www.landesbioscience.com Channels 223

Results

The present study explored, whether Klotho modifies 
KCNQ1/KCNE1 channels. To this end, cRNA encoding 
KCNQ1/KCNE1 was injected into Xenopus oocytes without or 
with cRNA encoding Klotho. In KCNQ1/KCNE1 expressing, 
but not in water-injected Xenopus oocytes, outward currents 
(I

Ks
) were observed following depolarizing pulses (up to +80 

mV), applied from a holding potential of –80 mV (Fig. 1A). 
Additional expression of Klotho in KCNQ1/KCNE1 expressing 
oocytes was followed by a significant increase in the amplitude 
of the peak outward current (I

Ks
) at +80 mV (Fig. 1B and C). 

Plotting the amplitude of the peak outward current (I
Ks

) against 
the corresponding pulse potential revealed the typical slow-
delayed activation of KCNQ1/KCNE1 rectifier in the presence 
and absence of Klotho coexpression (Fig. 1C). Normalization of 
the peak outward current (I

Ks
) to the maximum peak outward 

current of each respective group dissipated the differences between 
oocytes coexpressing KCNQ1/KCNE1 with klotho and oocytes 
expressing KCNQ1/KCNE1 alone (Fig. 1C). Coexpression 
of Klotho did not significantly modify the KCNQ1/KCNE1 
activation threshold. The potential needed to reach the half-
maximal peak outward current was similar in Xenopus oocytes 
expressing KCNQ1/KCNE1 alone and in Xenopus oocytes 
coexpressing both KCNQ1/KCNE1 and Klotho (Fig. 1D).

Further experiments explored, whether the effect of Klotho 
coexpression could be mimicked by treatment of KCNQ1/
KCNE1 expressing Xenopus oocytes with recombinant human 
Klotho protein. As shown in Figure 2, treatment of KCNQ1/
KCNE1 expressing Xenopus oocytes with recombinant human 
Klotho protein (30 ng/mL) for 24 h was followed by a significant 
increase of the KCNQ1/KCNE1 peak outward current (Fig. 2B 
and C). Similar to what has been observed following coexpressing 
Klotho in KCNQ1/KCNE1 expressing Xenopus oocytes, the 

Figure 1. effect of Klotho coexpression on current in KCNQ1/KCNe1 expressing Xenopus oocytes. (A) Original tracings demonstrating outward K+ cur-
rents activated by depolarization from –120 to +80 mV in 20 mV steps from a holding potential of -80 mV in Xenopus oocytes injected with water (1), 
injected with cRNa encoding KCNQ1/KCNe1 (2), and in Xenopus oocytes injected with cRNa encoding KCNQ1/KCNe1 and Klotho (3). (B) arithmetic 
means ± seM (n = 16–57) of the normalized depolarization-induced K+ current at +80 mV in Xenopus oocytes injected with water (dotted bar), with cRNa 
encoding KCNQ1/KCNe1(white bar) or with cRNa encoding KCNQ1/KCNe1 and Klotho (black bar). *** indicates statistically significant (P < 0.001) differ-
ence of KCNQ1/KCNe1 and Klotho expressing Xenopus oocytes from Xenopus oocytes expressing KCNQ1/KCNe1 alone. (C) arithmetic means ± seM (n = 
16–57) of the normalized depolarization-induced K+ current as a function of voltage in Xenopus oocytes injected with water (gray triangles), with cRNa 
encoding KCNQ1/KCNe1 (white circles) or with cRNa encoding KCNQ1/KCNe1 and Klotho (black circles). *** indicates statistically significant (P < 0.001) 
difference of KCNQ1/KCNe1 and Klotho expressing Xenopus oocytes from Xenopus oocytes expressing KCNQ1/KCNe1 alone. (D) arithmetic means ± 
seM (n = 56–57) of the normalized depolarization-induced K+ current to the maximum peak current of each respective group as a function of voltage in 
Xenopus oocytes injected with cRNa encoding KCNQ1/KCNe1 (white circles) or with cRNa encoding KCNQ1/KCNe1 and Klotho (black circles).
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treatment of KCNQ1/KCNE1 expressing Xenopus oocytes 
with Klotho protein increased the peak outward current values 
(Fig. 2B and C) but did not significantly modify the KCNQ1/
KCNE1 activation threshold (Fig. 2D).

Additional experiments were performed to test, whether 
the effect of Klotho coexpression could be reversed by DSAL 
(d-saccharic acid-1,4-lactone), a β-glucuronidase inhibitor. As 
illustrated in Figure 3, treatment of Xenopus oocytes expressing 
both KCNQ1/KCNE1 and Klotho with the DSAL (10 µM) for 
48 h significantly blunted the effect of Klotho coexpression on 
the peak outward current (Fig. 3B and C).

In a final series of experiments chemiluminescence and 
confocal microscopy were employed to test, whether Klotho 
coexpression influenced the KCNQ1/KCNE1 protein abundance 

in the cell membrane. As illustrated in Figure 4B, coexpression 
of both Klotho and KCNQ1-Flag/KCNE1 was followed by a 
significant increase of KCNQ1-Flag/KCNE1 abundance in the 
plasma membrane as determined by chemiluminescence. The 
same effect was also visualized by confocal microscopy (Fig. 4A). 
The coexpression of Klotho thus increased KCNQ1/KCNE1 
channel protein abundance in the plasma membrane.

The effect of Klotho coexpression could again be mimicked 
by treatment of KCNQ1/KCNE1 expressing Xenopus oocytes 
with recombinant human Klotho protein. As shown in Figure 5, 
treatment of KCNQ1/KCNE1 expressing Xenopus oocytes with 
recombinant human Klotho protein (30 ng/mL) for 24 h was 
followed by a significant increase of the KCNQ1-Flag/KCNE1 
abundance in the plasma membrane.

Figure 2. effect of treatment with recombinant Klotho protein on current in KCNQ1/KCNe1 expressing Xenopus oocytes. (A) Original tracings demon-
strating outward K+ currents activated by depolarization from -120 to +80 mV in 20 mV steps from a holding potential of -80 mV in Xenopus oocytes 
injected with water (1), or injected with cRNa encoding KCNQ1/KCNe1 without (2) or with (3) a 24 h pretreatment with recombinant Klotho protein (30 
ng/mL). (B) arithmetic means ± seM (n = 4–17) of the normalized depolarization-induced K+ current at +80 mV in Xenopus oocytes injected with water 
(dotted bar), or with cRNa encoding KCNQ1/KCNe1 without (white bar) or with (black bar) a 24 h pretreatment with recombinant Klotho protein (30 ng/
mL). *** indicates statistically significant (P < 0.001) difference of Klotho-treated KCNQ1/KCNe1 expressing Xenopus oocytes from untreated KCNQ1/
KCNe1 expressing oocytes. (C) arithmetic means ± seM (n = 4–17) of the normalized depolarization-induced K+ current as a function of voltage in 
Xenopus oocytes injected with water (gray triangles), or with cRNa encoding KCNQ1/KCNe1 without (white circles) or with (black circles) a 24 h pretreat-
ment with recombinant Klotho protein (30 ng/mL). *** indicates statistically significant (P < 0.001) difference of Klotho-treated KCNQ1/KCNe1 expressing 
Xenopus oocytes from untreated KCNQ1/KCNe1 expressing Xenopus oocytes. (D) arithmetic means ± seM (n = 15–17) of the depolarization-induced K+ 
current (normalized to the maximum peak current of each respective group) as a function of voltage in Xenopus oocytes injected with cRNa encoding 
KCNQ1/KCNe1 without (white circles) or with (black circles) a 24 h pretreatment with recombinant Klotho protein (30 ng/mL).
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Discussion

The present study uncovers a novel function of Klotho, 
i.e., the upregulation of the slowly activating outward current 
generated by the heterotetrameric K+ channel KCNQ1/KCNE1. 
Coexpression of Klotho or treatment with the Klotho protein 
increased the abundance of channel protein and the respective 
K+ conductance. The effect may be due to direct influence of 
Klotho on the channel protein or due to influence of other 
oocyte molecules indirectly modifying KCNQ1/KCNE1 protein 
abundance in the cell membrane. Klotho may affect primarily 
the KCNE1 subunit, the KCNQ1 subunit or both ion channel 
subunits in parallel.

In the heart, stimulation of KCNQ1 is expected to accelerate 
repolarization, whereas KCNQ1 inhibition delays cardiac 
repolarization.43 KCNE1 determines the activation time course 
of the heterotetrameric channel.44 KCNE1/KCNQ1 channel 
activity is thus decisive for cardiac function.13-15 At least in theory, 
decreased stimulation of KCNQ1 in the heart could contribute 
to the occurrence of cardiac arrhythmia in Klotho hypomorphic 
mice.1

K+ channel activity is further a determinant of tubular 
transport. In the proximal renal tubule K+ channels provide the 
driving force for Na+-coupled transport of glucose and other 
substrates across the apical membrane and at the same time 
decreases electrogenic HCO

3
– exit across the basolateral cell 

membrane, thus influencing cytosolic pH and apical Na+/H+ 

Figure 3. effect of β-glucuronidase inhibitor (DsaL) on current in KCNQ1/KCNe1 and Klotho expressing Xenopus oocytes. (A) Original tracings demon-
strating outward K+ currents activated by depolarization from –120 to +80 mV in 20 mV steps from a holding potential of –80 mV in Xenopus oocytes 
injected with water (1), injected with cRNa encoding KCNQ1/KCNe1 alone (2), and in Xenopus oocytes injected with cRNa encoding both KCNe1/KCNQ1 
and Klotho in the absence of β-glucuronidase inhibitor (3), or in the presence of DsaL for 24 h (4) or 48 h (5). (B) arithmetic means ± seM (n = 9–23) of 
the normalized depolarization-induced K+ current at +80 mV in Xenopus oocytes injected with water (dotted bar), injected with cRNa encoding KCNQ1/
KCNe1 alone (white bar) or injected with cRNa encoding both KCNQ1/KCNe1 and Klotho in the absence of β-glucuronidase inhibitor DsaL (black bar), 
or in the presence of DsaL for 24 h (first gray bar) or 48 h (second gray bar). ** indicates statistically significant (P < 0.01) difference of Klotho and 
KCNQ1/KCNe1 expressing Xenopus oocytes from Xenopus oocytes expressing KCNQ1/KCNe1 alone. ## indicates statistically significant (P < 0.01) differ-
ence of DsaL-treated from untreated KCNQ1/KCNe1 and Klotho expressing Xenopus oocytes. (C) arithmetic means ± seM (n = 9–23) of the normalized 
depolarization-induced K+ current as a function of voltage in Xenopus oocytes injected with water (gray triangles), injected with cRNa encoding KCNQ1/
KCNe1 alone (white circles) and in Xenopus oocytes injected with cRNa encoding both KCNQ1/KCNe1 and Klotho in the absence of β-glucuronidase 
inhibitor DsaL (black circles), or in the presence of DsaL for 48 h (black triangles). ** indicates statistically significant (P < 0.01) difference of Klotho 
and KCNQ1/KCNe1 expressing Xenopus oocytes from Xenopus oocytes expressing KCNQ1/KCNe1 alone. (D) arithmetic means ± seM (n = 18–23) of the 
depolarization-induced K+ current (normalized to the maximum peak current of each group) as a function of voltage in Xenopus oocytes injected with 
cRNa encoding KCNQ1/KCNe1 and Klotho without treatment (white circles) or treated for 48 h with DsaL (black circles).
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exchanger.45 Accordingly, proximal renal tubular transport is 
compromised in animals lacking KCNQ1.20

KCNQ1 is further expressed in liver,27-29 skeletal muscle,18 and 
several epithelia.21-26,33 In the liver, for instance, KCNQ1 governs 
cell volume and thus cell volume-sensitive functions including 
glucose uptake.46 Beyond that KCNQ1 is important for a variety 
of functions including hearing,30,31 gastric acid secretion,31,32 as 
well as intestinal and renal transport.33

K+ channels are decisive for cell volume regulation.47,48 K+ 
channels further influence cellular K+ loss during apoptosis and 
thus participate in the machinery of suicidal cell death.49-53 By 
influencing HCO

3
– exit K+ channel activity influences cytosolic 

pH, which in turn influences caspase activation54 and glycolysis.55

In conclusion, the present observations point to a novel 
effect of Klotho, i.e., the upregulation of the slowly activating 
heterotetrameric K+ channel KCNQ1/KCNE1. At least in theory, 
loss of this effect may contribute to the consequences of Klotho 
deficiency.

Materials and Methods

Xenopus oocytes were explanted from adult Xenopus 
laevis (NASCO). Xenopus laevis frogs were anesthetized by a 
0.1% Tricain solution. After confirmation of anesthesia and 
disinfection of the skin, a small abdominal incision was made 
and oocytes were removed, followed by closure of the skin by 
sutures. All animal experiments were conducted in accordance 
with the Helsinki Declaration of 1975 and according to the 
German law for the welfare of animals. The surgical procedures 
on the adult Xenous laevis were reviewed and approved by the 
respective government authority of the state Baden-Württemberg 
(Regierungspräsidium) prior to the start of the study (Anzeige 
für Organentnahme nach §6).

Constructs
For generation of cRNA, constructs were used encoding wild-

type human KCNQ1/KCNE156 wild-type human KCNQ1-Flag 
carrying an extracellular Flag tag epitope57 and wild-type mouse 

Klotho.38 The constructs were used for the generation of cRNA 
as described previously.58,59

Voltage clamp in Xenopus oocytes
Xenopus oocytes were prepared as previously described.60,61 

cRNA encoding KCNQ1 (3.5 ng) and 1.5 ng cRNA encoding 
KCNE1 were injected with or without 10 ng of cRNA encoding 
Klotho62 on the next day of preparation of the Xenopus oocytes. 
All experiments were performed at room temperature 3 d after 
injection.63,64 The oocytes were maintained at 17 °C in ND96 
solution containing: 88.5 mM NaCl, 2 mM KCl, 1 mM MgC1

2
, 

1.8 mM CaC1
2
, 5 mM HEPES, tetracycline (Sigma, 0.11 mM), 

ciprofloxacin (Sigma, 4 μM), gentamycin (Refobacin, 0.2 mM), 
and theophylin (Euphylong, 0.5 mM) as well as sodium pyruvate 
(Sigma, 5 mM) were added to the ND96, pH was adjusted to 
7.5 by addition of NaOH. The control superfusate (ND96) 
contained 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl

2
,1 mM 

MgCl
2
, and 5 mM HEPES; pH was adjusted to 7.4 by addition 

of NaOH. Where indicated, recombinant human Klotho protein 
(30 ng/mL, R&D Systems) and d-saccharic acid 1,4-lactone 

Figure 4. effect of Klotho coexpression on KCNQ1/KCNe1 protein abundance in the cell membrane of Xenopus oocytes. (A) Confocal microscopy of the 
KCNQ1/KCNe1 protein abundance in Xenopus oocytes injected with water (left), injected with cRNa encoding KCNQ1/KCNe1 alone (middle) or express-
ing KCNQ1/KCNe1 together with Klotho (right). The images are representative for 3 independent experiments. (B) arithmetic means ± seM (n = 55–76) 
of the chemiluminescence of KCNQ1-Flag/KCNe1 protein abundance in Xenopus oocytes injected with water (dotted bar), injected with cRNa encoding 
KCNQ1-Flag/KCNe1 alone (white bar), or expressing KCNQ1-Flag/KCNe1 with Klotho (black bar). * (P < 0.05) indicates statistically significant difference 
from the protein abundance in Xenopus oocytes expressing KCNQ1-Flag/KCNe1 alone.

Figure  5. effect of treatment with recombinant Klotho protein on 
KCNQ1/KCNe1 protein abundance in the cell membrane of Xenopus 
oocytes. arithmetic means ± seM (n = 70–72) of the chemiluminescence 
of KCNQ1-Flag/KCNe1 protein abundance in Xenopus oocytes injected 
without (dotted bar) or with cRNa encoding KCNQ1-Flag/KCNe1 with-
out (white bar) or with (black bar) a 24 h pretreatment with recombinant 
Klotho protein (30 ng/mL). *** (P < 0.001) indicates statistically signifi-
cant difference from the protein abundance in Xenopus oocytes express-
ing KCNQ1-Flag/KCNe1 alone.
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monohydrate (DSAL, 10 µM, Sigma) were added. In 2-electrode 
voltage-clamp experiments KCNQ1/KCNE1 channel currents 
were elicited every 10 s with 3 s depolarizing pulses up to +80 mV 
applied from a holding potential of –80 mV. Pulses were applied in 
20 mV increments. The data were filtered at 2 kHz and recorded 
with a Digidata 1322A A/D-D/A converter and ClampexV 
0.9.2 software for data acquisition (Axon Instruments).65,66 The 
analysis of the data was performed with Clampfit 9.2 (Axon 
Instruments) software.

Chemiluminescence
For detection of KCNQ1-Flag cell surface expression, the 

oocytes were first incubated with primary monoclonal mouse 
anti-Flag antibody (1:200, Sigma Aldrich) and subsequently 
with secondary, HRP-conjugated anti-mouse IgG antibody 
(1:2500, GE Healthcare Life Sciences). Individual oocytes were 
placed in 96 well plates with 20 µL of SuperSignal ELISA Femto 
Maximum Sensitivity Substrate (Pierce) and chemiluminescence 
of single oocytes was quantified in a luminometer (Walter Wallac 
2 plate reader, Perkin Elmer) by integrating the signal over a 
period of 1 s. Results display normalized relative light units. 
Integrity of the measured oocytes was assessed by visual control 
after the measurement to avoid unspecific light signals from the 
cytosol.64,67

Immunocytochemistry
To visualize KCNQ1 cell surface expression the oocytes were 

fixed in 4% paraformaldehyde for 2 h at room temperature. 
After washing with PBS, the oocytes were cryoprotected in 30% 
sucrose, frozen in mounting medium and placed on cryostat. 
Sections were collected at a thickness of 8 µm on coated slides 
and stored at –20 °C. For immunostaining, sections were dried 
at room temperature, fixed in aceton/methanol (1:1), washed 

in PBS, and blocked for 1 h in 5% bovine serum albumin in 
PBS. The primary antibody (rabbit polyclonal directed to the 
KCNQ1-Carboxyterminal end, 1:250, Abcam) was incubated 
overnight at 4 °C. Binding of primary antibody was visualized 
with a goat anti-rabbit-FITC conjugated IgG antibody (1:1000, 
Invitrogen, Molecular Probes). Then, oocytes were analyzed by 
a fluorescence laser scanning microscope (LSM 510, Carl Zeiss 
MicroImaging GmbH) with A-Plan 40×/0.25.68 Brightness and 
contrast settings were kept constant during imaging of all oocytes 
in each injection series.

Statistical analysis
Data are provided as means ± SEM, n representing the 

number of experiments. All oocyte experiments were repeated 
with at least 3 batches of oocytes; in all repetitions qualitatively 
similar data were obtained. Data were tested for significance 
using ANOVA 1-way, and results with P < 0.05 were considered 
statistically significant.
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