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Abstract Ideally, any experienced investigator with the right
tools should be able to reproduce a finding published in a peer-
reviewed biomedical science journal. In fact, the reproducibil-
ity of a large percentage of published findings has been
questioned. Undoubtedly, there are many reasons for this,
but one reason maybe that investigators fool themselves due
to a poor understanding of statistical concepts. In particular,
investigators often make these mistakes: 1. P-Hacking. This is
when you reanalyze a data set in many different ways, or perhaps
reanalyze with additional replicates, until you get the result you
want. 2. Overemphasis on P values rather than on the actual size
of the observed effect. 3. Overuse of statistical hypothesis testing,
and being seduced by the word “significant”. 4. Overreliance on
standard errors, which are often misunderstood.

Introduction

Ideally, any experienced investigator with the right tools
should be able to reproduce a finding published in a peer-
reviewed biomedical science journal. In fact, the reproducibil-
ity of a large percentage of published findings has been
questioned. Investigators at Bayer Healthcare were reportedly

able to reproduce only 20–25 % of 67 preclinical studies
(Prinz et al. 2011), and investigators at Amgen were able to
reproduce only 6 of 53 studies in basic cancer biology despite
often cooperating with the original investigators (Begley and
Ellis 2012). This problem has been featured in a cover story in
The Economist (Anonymous 2013) and has attracted the atten-
tion of the NIH leaders (Collins and Tabak 2014).

Why can so few findings be reproduced? Undoubtedly,
there are many reasons. But in many cases, I suspect that
investigators fooled themselves due to a poor understanding
of statistical concepts (see Marino 2014, for a good review of
this topic). Here, I identify five common misconceptions
about statistics and data analysis, and explain how to avoid
them. My recommendations are written for pharmacologists and
other biologists publishing experimental research using com-
monly used statistical methods. Theywould need to be expanded
for analyses of clinical or observational studies and for Bayesian
analyses. This editorial is about analyzing and displaying data, so
it does not address issues of experimental design.

My experience comes from basic pharmacology research
conducted decades ago, followed by 25 years of answering
email questions from scientists needing help analyzing data
with GraphPad Prism,1 and authoring three editions of the text
Intuitive Biostatistics (Motulsky 2014a).

Misconception 1: P-Hacking is OK

Statistical results can only be interpreted at face value when
every choice in data analysis was performed exactly as
planned and documented as part of the experimental design.
From my conversations with scientists, it seems that this rule
is commonly broken in reports of basic research. Instead,
analyses are often done as shown in Fig. 1. Collect and analyze

1 http://www.graphpad.com/prism
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some data. If the results are not statistically significant but show a
difference or trend in the direction you expected, collect some
more data and reanalyze. Or try a different way to analyze the
data: remove a few outliers; transform to logarithms; try a
nonparametric test; redefine the outcome by normalizing (say,
dividing by each animal’s weight); use a method to compare one
variable while adjusting for differences in another; the list of
possibilities is endless. Keep trying until you obtain a statistically
significant result or until you run out of money, time, or curiosity.

The results from data collected this way cannot be
interpreted at face value. Even if there really is no difference
(or no effect), the chance of finding a “statistically significant”
result exceeds 5 %. The problem is that you introduce bias
when you choose to collect more data (or analyze the data
differently) only when the P value is greater than 0.05. If the P
value was less than 0.05 in the first analyses, it might be larger
than 0.05 after collecting more data or using an alternative
analysis. But you would never see this if you only collected
more data or tried different data analysis strategies when the
first P value was greater than 0.05.

Exploring your data can be a very useful way to generate
hypotheses and make preliminary conclusions. But all such ana-
lyses need to be clearly labeled, and then retested with new data.

There are three related terms that describe this problem:

& Ad hoc sample size selection. This is when you did not
choose a sample size in advance, but just kept going until
you liked the results. Figure 2 demonstrates the problemwith
ad hoc sample size determination. Distinguish unplanned ad
hoc sample size decisions from planned “adaptive” sample
size methods that make you “pay” for the increased versati-
lity in sample size collection by requiring a stronger effect to
reach “significance” (Kairalla et al. 2012; FDA 2010).

& Hypothesizing after the result is known (HARKing; Kerr
1998). This is when you analyze the data in many different
ways (say different subgroups), discover an intriguing
relationship, and then publish the data so it appears that
the hypothesis was stated before the data were collected
(Fig. 3). This is a form of multiple comparisons (Berry
2007). Kriegeskorte et al. (2009) call this double dipping,

Fig. 1 The many forms of P-hacking. When you P-hack, the results cannot be interpreted at face value. Not shown in the figure is that after trying
various forms of P-hacking without getting a small P values, you will eventually give up when you run out of time, funds, or curiosity
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as you are using the same data both to generate a hypoth-
esis and to test it.

& P-hacking. This is a general term that encompasses dynamic
sample size collection, HARKing, andmore. It was coined by
Simmons et al. (2011) who also use the phrase, “too many
investigator degrees of freedom.” P-hacking is especially mis-
leading when it involves changing the actual values analyzed.
Examples include ad hoc sample size selection (see above),
switching to an alternate control group (if you do not like the
first results and your experiment involved two ormore control
groups), trying various combinations of independent variables
to include in a multiple regression (whether the selection is
manual or automatic), and analyzing various subgroups of the
data. Reanalyzing a single data set in various ways is also P-
hacking but will not usually mislead you quite as much.

My suggestion for authors:

& For each figure or table, clearly state whether or not the
sample size was chosen in advance, and whether every
step used to process and analyze the data was planned as
part of the experimental protocol.

& If you use any form of P-hacking, label the conclusions as
“preliminary.”
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Fig. 2 The problem of ad hoc sample size selection. I simulated 10,000
experiments sampling data from a Gaussian distribution with means of 5.0
and standard deviations of 1.0, and comparing two samples with n=5 each
using an unpaired t test. The first column shows the percentage of those
experiments with a P value less than 0.05. Since both populations have the
samemean, the null hypothesis is true and so (as expected) about 5.0% of the
simulations have P values less than 0.05. For the experiments where the P
value was higher than 0.05, I added five more values to each group. The
middle column (“n=5+5”) shows the fraction of P values where the P value
was less than 0.05 either in the first analysis with n=5 or after increasing the
sample size to 10. For the third column, I added yet another 5 values to each
group if the P value was greater than 0.05 for both of the first two analyses.
Now 13 % of the experiments (not 5 %) have reached a P value less than
0.05. For the fourth column, I looked at all 10,000 of the simulated experi-
ments with n=15. As expected, very close to 5% of those experiments hadP
values less than 0.05. The higher fraction of “significant” findings in the n=
5+5 and n=5+5+5 is due to the fact that I increased sample size only when
the P value was high with smaller sample sizes. In many cases, when the P
value was less than 0.05 with n=5, the P value would have been higher than
0.05 with n=10 or 15, but an experimenter seeing the small P value with the
small sample size would not have increased sample size

Fig. 3 The problem of hypothesizing after the results are known
(HARKing) from http://xkcd.com/882/
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Misconception 2: P values convey information about effect
size

To compute a P value, you first must clearly define a null
hypothesis, usually that two means (or proportions or
EC50’s…) are identical. Given some assumptions, the P values
are the probability of seeing an effect as large as or larger than
you observed in the current experiment if in fact the null hypo-
thesis was true. But note that the P value gives you no informa-
tion about how large the difference (or effect) is. Figure 4 de-
monstrates this point by plotting the P values that result from
comparing two samples in experiments with different sample
sizes. Even though the means and standard deviations are iden-
tical for each simulated experiment, the P values are far from
identical. With n=3 in each group, the P value is 0.65. When
n=300 in each group, the P value is 0.000001.

The dependence of P values on sample size can lead to two
problems.

A large P value is not proof of no (or little) effect

The top two rows of Table 1 presents the results of two
simulated experiments. The two P values are both about 0.6,
but the two experiments lead to very different conclusions.

In experiment A (from Table 1), the difference between means
in the experimental sample is 10, so the difference equals 1 % of
the mean of treatment 1. Assuming random sampling from
Gaussian populations, the 95 % confidence interval for the differ-
ence between the two populationmeans ranges from−30 to 50. In
other words, the data are consistent (with 95% confidence) with a
decrease of 3 %, an increase of 5 %, or anything in between. The
interpretation depends on the scientific context and the goals of
the experiment, but in most contexts, these results can be

summarized simply: The data are consistent with a tiny decrease,
no change, or a tiny increase. These are solid negative data.

Experiment B is very different. The difference between
means is larger, and the confidence interval is much wider
(because the sample size is so small). Assuming random
sampling from Gaussian populations, the data are consistent
(with 95 % confidence) with anything between a decrease of
18 % and an increase of 28 %. The data are consistent with a
large decrease, a small decrease, no difference, a small increase,
or a large increase. These data lead to no useful conclusion at
all! An experiment like this should not be published.

A small P value is not proof of a large effect

The bottom two rows of Table 1 presents the results of two
simulated experiments where both P values are 0.001, but
again two experiments lead to very different conclusions.

In experiment C (from Table 1), the difference between
means in the experimental sample is only 2 (so the difference
equals 2 % of the mean of treatment 1). Assuming random
sampling from Gaussian populations, the 95 % confidence
interval for the difference between the two population means
ranges from 0.8 to 3.2. In other words, the data are consistent
(with 95 % confidence) with anything between an increase of
0.8 % and an increase of 3.2 %. How to interpret that depends
on the scientific context and the goals of the experiment, but in
most contexts, this can be summarized simply: The data
clearly demonstrate an increase, but that increase is tiny.

Experiment D is very different. The difference between
means is 35 (so 35% of the control mean), and the confidence
interval extends from an increase of 23.7 % to an increase of
46.3 %. The data clearly demonstrate that there is an increase
that is (with 95 % confidence) substantial.

My suggestions for authors:

& Always show and emphasize the effect size (as difference,
percent difference, ratio, or correlation coefficient) along
with its confidence interval.

& Consider omitting reporting of P values.

Misconception 3: statistical hypothesis testing and reports
of “statistical significance” are necessary in experimental
research

Statistical hypothesis testing is a way to make a crisp decision
from one analysis. If the P value is less than a preset value
(usually 0.05), the result is deemed “statistically significant” and
you make one decision. Otherwise, the result is deemed “not
statistically significant” and youmake the other decision. This is
helpful in quality control and some clinical studies. It also is
useful when you rigorously compare the fits of two scientifically
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Fig. 4 P values depend upon sample size. This graph shows P values
computed by unpaired t tests comparing two sets of data. The means of the
two samples are 10 and 12. The SD of each sample is 5.0. I computed a t
test using various sample sizes plotted on the x-axis. You can see that the P
value depends on sample size. Note that both axes use a logarithmic scale
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sensible models to your data, and choose one to guide your
interpretation of the data and to plan future experiments.

Here are five reasons to avoid use of statistical hypothesis
testing in experimental research:

& The need to make a crisp decision based on one analysis is
rare in basic research. A decision about whether or not to
place an asterisk on a figure does not count! If you are not
planning to make a crisp decision, the whole idea of
statistical hypothesis testing is not helpful.

& Statistical hypothesis testing “does not tell us what we
want to know, and we so much want to know what we
want to know that, out of desperation, we nevertheless
believe that it does!” (Cohen 1994). Statistical hypothesis
testing has even been called a cult (Ziliak and McCloskey
2008). The question we want to answer is: Given these
data, how likely is the null hypothesis? The question that a
P values answers is: Assuming the null hypothesis is true,
how unlikely are these data? These two questions are
distinct, and so have distinct answers.

& Scientists who intend to use statistical hypothesis testing
often end up not using it. If the P value is just a bit larger
than 0.05, scientists often avoid the strict use of hypothesis
testing and instead apply the “time-honored tactic of cir-
cumlocution to disguise the nonsignificant result as some-
thing more interesting” (Hankins 2013). They do this by
using terms such as “almost significant,” “bordered on
being statistically significant,” “a statistical trend toward
significance,” or “approaching significance.” Hankins
lists 468 such phrases he found in published papers!

& The 5% significance threshold is oftenmisunderstood. If you
use a P value to make a decision, of course it is possible that
youwill make the wrong decision. In some cases, theP value
will be tiny just by chance, even though the null hypothesis of
no difference is actually true. In these cases, a conclusion that
a finding is statistically significant is a false positive and you
will have made what is called a type I error.2 Many scientists

mistakenly believe that the chance of making a false
positive conclusion is 5 %. In fact, in many situations,
the chance of making a type I false positive conclusion is
much higher than 5 % (Colquhoun 2014). For example, in
a situation where you expect the null hypothesis to be true
90 % of the time (say you are screening lightly
prescreened compounds, so expect 10 % to work), you
have chosen a sample size large enough to ensure 80 %
power, and you use the traditional 5 % significance level,
the false discovery rate is not 5 % but rather is 36 % (the
calculations are shown in Table 2). If you only look at
experiments where the P value is just a tiny bit less than

2 In contrast, a type II, or false negative, error is when there really is a
difference but the result in your experiment is not statistically significant.

Table 2 The false discovery rate when P<0.05

P<0.05 P>0.05 Total

Really is an effect 80 20 100

No effect (null hypothesis true) 45 855 900

Total 125 875 1,000

This table tabulates the theoretical results of 1,000 experiments where the
prior probability that the null hypothesis is false is 10%, the sample size is
large enough so that the power is 80 %, and the significance level is the
traditional 5 %. In 100 of the experiments (10 %), there really is an effect
(the null hypothesis is false), and you will obtain a “statistically signifi-
cant” result (P<0.05) in 80 of these (because the power is 80 %). In 900
experiments, the null hypothesis is true but you will obtain a statistically
significant result in 45 of them (because the significance threshold is 5
and 5 % of 900 is 45). In total, you will obtain 80+45=125 statistically
significant results, but 45/125=36 % of these will be false positive. The
proportion of conclusions of “statistical significance” that are false dis-
coveries or false positives depends on the context of the experiment, as
expressed by the prior probability (here 10 %).

If you do obtain a small P value and reject the null hypothesis, you will
conclude that the values in the two groups were sampled from different
distributions. As noted above, theremay be a high chance that youmade a
false positive conclusion due to random sampling. But even if the con-
clusion is “true” from a statistical point of view and not a false positive
due to random sampling, the effect may have occurred for a reason
different than the one you hypothesized. When thinking about why an
effect occurred, ignore the statistical calculations, and instead think about
blinding, randomization, positive controls, negative controls, calibration,
biases, and other aspects of experimental design.

Table 1 Identical P values with very different interpretations

Treatment 1 (mean±SD, n) Treatment 2
(mean±SD, n)

Difference between means P value 95 % CI of the difference
between means

Experiment A 1,000±100, n=50 990.0±100, n=50 10 0.6 −30 to 50
Experiment B 1,000±100, n=3 950.0±100, n=3 50 0.6 −177 to 277

Experiment C 100±5.0, n=135 102±5.0, n=135 2 0.001 0.8 to 3.2

Experiment D 100±5.0, n=3 135±5.0, n=3 35 0.001 24 to 46

Experiments A and B have identical P values, but the scientific conclusion is very different. The interpretation depends upon the scientific context, but in
most fields experiment Awould be solid negative data proving that there either is no effect or that the effect is tiny. In contrast, experiment B has such a
wide confidence interval as to be consistent with nearly any hypothesis. Those data simply do not help answer your scientific question

Similarly, experiments C and D have identical P values, but should be interpreted differently. In most experimental contexts, experiment C demonstrates
convincingly that while the difference is not zero, it is quite small. Experiment D provides convincing evidence that the effect is large
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0.050, the probability of a false positive rises to 79 %
(Motulsky 2014b). Ioannidis (2005) used calculations like
these (and other considerations) to argue that most pub-
lished research findings are probably false.

& The word “significant” is often misunderstood. The prob-
lem is that “significant” has two distinct meanings in
science (Motulsky 2014c). One meaning is that a P value
is less than a preset threshold (usually 0.05). The other
meaning of “significant” is that an effect is large enough to
have a substantial physiological or clinical impact. These two
meanings are completely different, but are often confused.

My suggestions for authors:

& Only report statistical hypothesis testing (and place signif-
icance asterisks on figures) when you will make a decision
based on that one analysis.

& Never use the word “significant” in a scientific paper. If
you use statistical hypothesis testing to make a decision,
state the P value, your preset P value threshold, and your
decision. When discussing the possible physiological or
clinical impacts of a finding, use other words.

Misconception 4: the standard error of the mean
quantifies variability

Pharmacology journals are full of graphs and tables showing
the mean and the standard error of the mean (SEM).

A quick review. The standard deviation (SD) quantifies
variation among a set of values, but the SEM does not. The
SEM is computed by dividing the SD by the square root of
sample size. With large samples, the SEM will be tiny even if
there is a lot of variability.

One problem with plotting or displaying the mean±SEM is
that some people viewing the graph or table may mistakenly
think that the error bars show the variability of the data. A
second problem with reporting means with SEM is that the
range mean±SEM cannot be rigorously interpreted. The SEM
gives information about how precisely you have determined
the population mean. So the range mean±SEM is a confi-
dence interval, but the confidence level depends on sample
size. With large samples, that range is a 68 % CI of the mean.
When n=3, that range is only a 58 % CI.3

My suggestions for authors:

& If youwant to display the variability among the values, show
raw data (which is not done often enough in my opinion). If

showing the raw data would make the graph hard to read,
show instead a box-whisker plot, a frequency distribution, or
the mean and SD.

& If you want readers to see how precisely you have deter-
mined the mean, report a confidence interval (95 % con-
fidence intervals are standard). Figure 5 shows a dataset
plotted using all of these methods.

& When reporting results from regression, show the 95 %
confidence interval of each parameter rather than standard
errors.

Misconception 5: you do not need to report the details

The methods section of every paper should report the methods
with enough detail that someone else could reproduce your
work. This applies to statistical methods just as it does to
experimental methods.

My suggestions for authors:

& When reporting a sample size, explain exactly what you
counted. Did you count replicates in one experiment

3 Computed using this Excel formula: = (1-T.DIST.2T (1.0,2)). The first
argument (1.0) is the number of SEMs (in each direction) included in the
confidence interval, and the second argument (2) is the number of degrees
of freedom, which equals n-1.
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Fig. 5 Standard error bars do not show variability and do a poor job of
showing precision. The figure plots one data set six ways. The leftmost
lane shows a scatter plot of every value, so is the most informative. The
next lane shows a box-and-whisker plots showing the range of the data, the
quartiles, and the median (whiskers can be plotted in various ways, and do
not always show the range). The third lane plots the median and quartiles.
This shows less detail, but still demonstrates that the distribution is a bit
asymmetrical. The fourth lane plots mean with error bars showing plus or
minus one standard deviation. Note that these error bars are, by definition,
symmetrical so give you no hint about the asymmetry of the data. The next
two lanes are different than the others as they do not show scatter. Instead,
they show how precisely we know the population mean, accounting for
scatter and sample size. The fifth lane shows the mean with error bars
showing the 95 % confidence interval of the mean. The sixth (rightmost)
lane plots the mean plus or minus one standard error of the mean, which
does not show variation and does a poor job of showing precision
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(technical replicates), repeat experiments, the number of
studies pooled in a meta-analysis, or something else?

& If you eliminated any outliers, state howmany outliers you
eliminated, the rule used to identify them, and a statement
whether this rule was chosen before collecting data.

& If you normalized data, explain exactly how you defined
100 and 0 %.

& When possible, report the P value up to at least a few
digits of precision, rather than just stating whether the P
value is less than or greater than an arbitrary threshold. For
eachP value, state the null hypothesis it tests if there is any
possible ambiguity.

& When reporting a P value that compares two groups, state
whether the P value is one- or two-tailed. If you report a
one-tailed P value, state that you recorded a prediction for
the direction of the effect (for example increase or de-
crease) before you collected any data and what this pre-
diction was. If you did not record such a prediction, report
a two-tailed P value.

& Explain the details of the statistical methods you
used. For example, if you fit a curve using nonlinear
regression, explain precisely which model you fit to
the data and whether (and how) data were weighted.
Also state the full version number and platform of
the software you use.

& Consider posting files containing both the raw data and the
analyses so other investigators can see the details.

Summary

The physicist E. Rutherford supposedly said, “If your
experiment needs statistics, you ought to have done a
better experiment4.” There is a lot of truth to that
statement when you are working in a field with a very
high signal-to-noise ratio. In these fields, statistical anal-
ysis may not be necessary. But if you work in a field
with a lower signal-to-noise ratio, or are trying to com-
pare the fits of alternative models that do not differ all
that much, you need statistical analyses to properly
quantify your confidence in your conclusions.

I suspect that one of the reasons that the results reported in
many papers cannot be reproduced is that statistical analyses
are often done as a quick afterthought, with the goal to
sprinkle asterisks on figures and the word “significant” on
conclusions. The suggestions I propose in this commentary

can all be summarized simply: If you are going to analyze
your data using statistical methods, then plan the methods
carefully, do the analyses seriously, and report the data,
methods, and results completely.

Open Access This article is distributed under the terms of the Creative
Commons Attribution NoDerivatives 4.0 International License which per-
mits re-use and distribution of the original version in any medium provided
that inter alia the original author(s) and the source are credited. The license
does not allow the distribution of modified versions of the article.
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