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We describe a comprehensive modeling approach to combining
genomic and clinical data for personalized prediction in disease
outcome studies. This integrated clinicogenomic modeling frame-
work is based on statistical classification tree models that evaluate
the contributions of multiple forms of data, both clinical and genomic,
to define interactions of multiple risk factors that associate with the
clinical outcome and derive predictions customized to the individual
patient level. Gene expression data from DNA microarrays is repre-
sented by multiple, summary measures that we term metagenes;
each metagene characterizes the dominant common expression pat-
tern within a cluster of genes. A case study of primary breast cancer
recurrence demonstrates that models using multiple metagenes com-
bined with traditional clinical risk factors improve prediction accuracy
at the individual patient level, delivering predictions more accurate
than those made by using a single genomic predictor or clinical data
alone. The analysis also highlights issues of communicating uncer-
tainty in prediction and identifies combinations of clinical and
genomic risk factors playing predictive roles. Implicated metagenes
identify gene subsets with the potential to aid biological interpreta-
tion. This framework will extend to incorporate any form of data,
including emerging forms of genomic data, and provides a platform
for development of models for personalized prognosis.

Genomic information, in the form of gene expression patterns,
has an established capacity to define clinically relevant risk

factors in disease prognosis. Recent studies have generated such
patterns related to lymph node metastasis and disease recurrence
in breast cancer (1–8), as well as in other cancers and disease
contexts (9–16). The challenge now is the integration of such
genomic information into prognostic models that can be applied in
a clinical setting to improve the accuracy of treatment decisions.

Achievement of this goal requires modeling approaches that
focus on the generation of predictions for the individual patient and
that can evaluate and combine multiple risk factors to produce
informed predictions. Gene expression profiles may indeed prove
to be powerful individual indicators of tumor behavior, but analysis
should not force a choice of one form of data over the other; rather,
analysis should evaluate and combine all forms of potentially
relevant information. This integrative view underlies our develop-
ment of clinicogenomic models and should underlie prognostic
systems in support of personalized health planning.

Consistent with this view, the example of breast cancer recur-
rence presented here highlights the predictive value of multiple
genomic patterns in models defining accurate predictions at the
individual patient level. This analysis uses integrative models that
combine clinical and genomic factors, such as multiple gene ex-
pression patterns, clinical risk factors, and treatment information,
and that predict recurrence for individual patients. The example
shows improved recurrence prediction accuracy at the individual
patient level based on multiple risk factors in combination and the
relevance of multiple summary measures of gene expression. Pre-
diction accuracy in the combined clinicogenomic models exceeds

that achieved by using either clinical data or single genomic
predictors alone, and the analysis highlights the importance of
representing and communicating uncertainties in prediction. The
analysis also identifies gene candidates that can now be studied to
shed light on potential regulatory pathways.

Methods
The example study involves 158 breast cancer patients at the Koo
Foundation Sun Yat-Sen Cancer Center in Taipei, with primary
tumor biopsies collected and banked between 1991 and 2001. The
patient sample represents a heterogeneous population, and sample
selection was enriched for high-risk cases for the purposes of this
example. Samples were collected under Duke (IRB no. 3157-01)
and Koo Foundation Sun Yat-Sen Cancer Center (September 21,
2001) Institutional Review Board guidelines. Summaries of clinical
risk factors, such as axillary lymph node status, estrogen receptor
(ER) status, age, tumor size and others, appear in Table 1, which
is published as supporting information on the PNAS web site.

Gene expression assays were performed with RNA extracted
from the banked tissue. Total RNA was extracted with Qiagen
RNeasy kits and assessed for quality with an Agilent Lab-on-a-Chip
2100 Bioanalyzer. Probes for hybridization were then prepared
according to standard Affymetrix protocols on the Human U95Av2
GeneChip. Affymetrix GeneChip scanning and analysis pro-
duced the Affymetrix MAS VERSION 5.0 expression signal intensity
estimates.

The core methodology uses statistical classification and predic-
tion tree models, and the gene expression data enter into these
models in the form of metagenes. As previously described (7, 17,
18), metagenes represent the aggregate patterns of variation of
subsets of potentially related genes. In this example, metagenes
were constructed as the first principal components (singular fac-
tors) of clusters of genes created by using k-means clustering.
Bayesian methods of analysis were used to fit multiple candidate
classification tree models, each candidate model based on varying
the selection of predictor variables, and trees were individually
generated by using a forward selection process. Predictions were
based on weighted averages across multiple candidate tree models,
and the combinations of genomic and clinical predictor variables
appearing in highly weighted tree models provide insights on the
interactions of risk factors determining the predictions. Full details
of the statistical approach appear in the supporting information.

Results
Combining Multiple Metagene Signatures Improves Accuracy of Re-
currence Prediction. Data summaries in terms of raw survival curve
and relative risk estimates illustrate the traditional view of strati-
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fying patients into high versus low risk of recurrence based on
clinical factors such as lymph node involvement (Fig. 1A). Similar
summaries using any one of a number of metagenes (Tables 2 and
3, which are published as supporting information on the PNAS web
site) indicate strong association with recurrence. Two closely re-
lated (negatively correlated) metagenes, Mg307 and Mg440, provide
strongly discriminating genomic signatures (Fig. 1B) and are able to
stratify individuals into significantly different risk categories, with
discrimination stronger than that defined by the key clinical pre-
dictor, lymph node status. This result is similar to a recent study (6)
employing a single 70-gene predictor that classified breast cancer
patients in risk categories based on a ‘‘good’’ or ‘‘poor’’ signature.
Although the prediction of low risk (good signature) was accurate,
the prediction of high risk (poor signature) was highly uncertain,
because individuals in this group had a 50�50 probability of

recurrence at 10 years. Either Mg307 or Mg440 alone is more
accurate, in this sense, and on a clinically much shorter (and more
challenging) 4- to 5-year time horizon, but this analysis only begins
the process of understanding personal-level recurrence risks. Fur-
ther factors may refine these risk categories toward personalized
prediction for the patient.

For example, some of the remaining heterogeneity in outcomes
within the two groups defined by the initial partition of Mg307 may
be resolved by additional genomic factors, as exhibited through
partitions of the ‘‘low Mg307’’ group based on Mg365 and of the
‘‘high Mg307’’ group based on Mg351 (Fig. 2). This effect of the
refinement on evaluating risk of recurrence (Fig. 1 D and E) shows
how the incorporation of additional metagenes changes the survival
estimates by partitioning into more homogenous subgroups. This
combination of multiple metagenes through the further categori-

Fig. 1. Kaplan–Meier survival curves for recurrence based on high-risk/low-
risk categorization of breast cancer patients. (A) Empirical survival estimates
based on lymph node involvement (low risk, 0–3 positive nodes; high risk, 4
or more positive nodes). (B) Empirical survival estimates based on partition
into two groups defined by a threshold in the gene expression pattern of
Mg307 and, separately, Mg440. (C) Empirical survival estimates showing
evidence of interaction between clinical factors (lymph node status) and
genomic factors (in this example, Mg307). (D) Refined empirical survival
estimates for two subgroups of the low Mg307 group, defined by a partition
on Mg365. (E) Refined empirical survival estimates for two subgroups of
the high Mg307 group, defined by a partition on an ER-related metagene,
Mg351.
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zation of patients into refined risk groups underlies the use of
statistical tree models. The same principle applies to combining
clinical factors with metagenes (Fig. 1C). Evidently, multiple met-
agenes are capable of playing significant roles in such analyses
(Tables 2 and 3), and it is clear that there is a resulting potential for
different models to generate different, even potentially conflicting,
predictions. Understanding this point is vital in developing an

appreciation of the true nature of the genomic state, reflected in
multiple, related measures of expression. Hence, there is a need to
consider multiple models that define successive partitions of patient
groups with a mechanism to formally compare, contrast, and
combine them.

Statistical Tree Models Using Multiple Metagenes to Predict Cancer
Recurrence. To explore multiple metagenes for optimal predictions,
we use classification trees (18–23) and Bayesian statistical methods
of tree model generation and evaluation. A single tree defines
successive partitions of the sample into more homogenous sub-
groups. At any node of the tree, the corresponding subset of
patients may be divided in two at a threshold on a chosen metagene
analogous to the standard low-risk�high-risk grouping already
discussed. The analysis shown in Fig. 2 represents one node of a tree
in which Mg307 splits the samples into two groups that are then
further split by additional metagenes. The logical extension is to tree
models with more levels and also to multiple trees. At any node, the
optimal metagene�threshold pair for dividing the sample in the
node is chosen by screening all metagenes and, for a range of
thresholds on any metagene, by testing for the significance of a split
of the data into two subgroups based on that metagene�threshold
pair. Splits deemed significant lead to growth of the tree; otherwise,
tree growth is restricted and ends when no metagene can be found
to define a significant split. Multiple possible splits generate copies
of the tree and so underlie the generation of forests of trees. The
specific statistical test used is a Bayes factor test (24) that is generally
conservative relative to standard significance tests and so tends to
generate less elaborate trees than do traditional tree programs.

A tree model involving several metagenes is shown in Fig. 3A,
where the development of branches involving additional metagenes
and the resulting predictions of recurrence within the population
subgroups are defined by each leaf. An individual patient is
successively categorized down the tree to a unique terminal node,
and the model-based survival probability in that node represents
the point estimate of her risk.

At any given node of a tree model, there may be several
metagenes defining significant subgroups, so it is important to
consider multiple tree models. A resulting set of tree models is
evaluated statistically by computing the implied value of the sta-
tistical likelihood function for each tree; the set of likelihood values
is then converted to tree probabilities by summing and normalizing
with respect to all selected trees. Predictions are based on all trees

Fig. 2. Use of successive metagene analyses to improve predictions of breast
cancer recurrence. (Upper) The expression pattern of the genes in Mg307
(ordered vertically by their weighted value in the metagene) on the entire
group of 158 patients. Samples are ordered (horizontally) by the value of
Mg307, and the vertical black line indicates the split of the patients into two
subgroups underlying the empirical survival curves in Fig. 1B. The two sub-
groups of patients defined by this split were then further split with two
additional metagenes. The low Mg307 subgroup is split based on Mg365, and
the high Mg307 group is split based on Mg351. (Lower) The subsequent
images show the patterns of genes within Mg365 (Left) and Mg351 (Right) for
the corresponding two subgroups of patients, arranged similarly within each
group and also indicating the second-level splits. These splits underlie the
refined survival curve estimates in Fig. 1 D and E.

Fig. 3. Predictive genomic and clinicogenomic tree models. (A) Metagene tree model. The left box at each node of the tree identifies the number of patients,
and the right box gives (as a percentage) the corresponding model-based point estimate of the 4-year recurrence-free probability based on the tree model
predictions for that group. (B) Clinicogenomic tree model in a format as described in A. Note the appearance of interactions between lymph node status and
Mg307 and Mg365, for example, in relation to the empirical survival curves and metagene expression images in Figs. 1 and 2.
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in combination, by means of weighted averages of predictions from
individual trees with the tree probabilities acting as weights. This
‘‘model averaging’’ is well known to generally improve prediction
accuracy relative to choosing one ‘‘best’’ model (25, 26), especially
when several or many models fit the data comparably.

Statistical Prediction Tree Models Combining Metagenes and Clinical
Risk Factors Predict Individual Breast Recurrence Most Accurately.
The tree models were extended to explore all forms of input
data, both genomic and clinical. Key clinical factors are lymph
node status (represented as 0, 1–3, 4–9, and 10 or more positive
nodes), ER status (represented as 0, 1, and 2 or more to reflect
intensity of staining), tumor size, and treatment factors. Fig. 3B
displays a highly significant tree contributing to the prediction of
recurrence. The key clinical variable identified by these trees is
nodal status; its appearance in highly weighted trees indicates
that it supersedes some of the metagene predictors selected in
the exclusively genomic analysis. ER status and tumor size also
define secondary aspects of some of the top trees. Of hundreds
of trees generated in the model search, others involve clinical
predictors and also treatment variables, although these trees
receive low relative statistical likelihood measures and resulting
tree probabilities. Treatment protocols closely follow the tradi-
tional clinical risk groups that are dominated by lymph node
status, and so the inclusion of nodal status substitutes for
treatments in some trees. Others include treatment variables, as
illustrated by the partition on the right branch in Fig. 3B into
subgroups of patients receiving no treatment (none) versus
combined chemotherapy and radiotherapy (ct�rt).

Once lymph node status is a candidate predictor, it defines key
aspects of predictive trees and reduces the number of metagenes
required to achieve accurate predictions. This result mainly reflects
colinearity of predictors, indicating metagenes related to nodal
status. ER status is a second clinical factor selected in some of the
top trees. Some trees involve Mg20 with ER; Mg20 defines a group
of genes related to the known risk factor Her-2-neu�Erb-b2 and
represents the gene expression-based measure of this risk factor.

Fig. 4 summarizes the clinicogenomic model predictor variables
selected. The figure indicates the predictor variables (columns) that
appear in the selected top trees (rows), and the levels (boxed

numbers) of the trees in which they define node splits. The
probability of each tree and the overall probability of occurrence of
each of the clinical and metagene factors across the set of trees are
also given. Metagene Mg307 and the clinical lymph node predictor
dominate the initial splits, with Mg440, a close correlate of Mg307,
defining the initial split of other trees. The two models, based on
genomic data alone and on the combined clinicogenomic data, thus
share features. However, the clinicogenomic model statistically
dominates the genomic data-only framework; the difference in
approximate log-model likelihoods is �7, a substantial weight of
evidence in favor of the clinicogenomic model. (The corresponding
weight of evidence of the clinicogenomic model to that based only
on clinical predictors is �26 units on the log-likelihood scale,
indicating the latter to be of no interest at all relative to the
clinicogenomic model.)

Predicting Risk of Recurrence Based on Tree Model Summaries.
Predictive accuracy assessment uses a one-at-a-time cross-
validation study in which the analysis is repeatedly performed:
holding out one tumor sample at each reanalysis and predicting the
recurrence time distribution for that holdout patient. With many
candidate predictors, the sensitivity of predictions to selection of
variables is usually important, because the subsets of variables
selected across cross-validation analyses can vary substantially (1, 3,
7, 22, 27, 28). Importantly, therefore, the entire model-building
process, selection of metagenes and clinical factors and their
combination in sets of trees to be weighted by the data analysis,
forms part of each reanalysis to understand how prediction accu-
racy is impacted by the selection process.

The predictive probability of survival beyond any time point
defines the predicted survival curve for an individual (Fig. 5). The
statistical uncertainty about the model parameters in terminal
nodes of a tree combined with the uncertainties across candidate
trees generates uncertainties about these predicted survival curves.
The estimated receiver operator characteristic (ROC) curves for 4-
and 5-year survival (Fig. 6, which is published as supporting
information on the PNAS web site) indicate the capacity to achieve
up to 90% sensitivity and 90% specificity in predicting recurrence
of disease even at such short time horizons. These figures are crude
summaries of overall prediction accuracy that neglect consideration
of uncertainties about predicted probabilities. Nevertheless, these
numbers serve to indicate a high degree of accuracy. Also, consis-
tent with the likelihood-based model-fit comparison, the combined
clinicogenomic analysis exceeds the cross-validation predictive ac-
curacy of the exclusively genomic analysis (�75% sensitivity to
achieve comparable specificity) and also that of proportional-
hazards-based analysis, which properly accounts for variable selec-
tion in model refitting for cross-validation predictions (�70%
sensitivity to achieve comparable specificity).

Patients with �4 years of follow-up appear in Fig. 7, which is
published as supporting information on the PNAS web site; their
status at 4 years is predicted conditionally on their observed time
of recurrence-free follow-up, again at the individual level.

Metagenes Can Predict and Substitute for Clinical Risk Factors. The
combined clinicogenomic predictive tree analyses reveal that lymph
node involvement appears in the key predictive trees, consistent
with the wide recognition of lymph node involvement as the most
significant clinical risk factor (1, 29–31). Because axillary node
dissection carries significant morbidity, we proposed previously that
a metagene analysis would be preferable to clinical lymph node
diagnosis (1). We see in these analyses that the metagene signatures
do indeed have some capacity to replace nodal counts, although the
latter still aids in the construction of the most significant models in
this study. As mentioned above, tree analysis without the use of
clinical factors has good predictive capability but is dominated, in
that predictive respect and in terms of statistical likelihood, by the
combined clinicogenomic model.

Fig. 4. Predictor variables in top clinicogenomic tree models. Summary of
the level of the tree in which each variable appears and defines a node split.
The numbers on the y axis simply index trees, with probabilities (in parenthe-
ses) indicating the relative weights of trees based on fit to the data. On the x
axis, probabilities (in parentheses) associated with clinical or metagene pre-
dictor variables are sums of the probabilities of trees in which each occurs and
so define overall weights, indicating the relative importance of each variable
to the overall model fit and consequent recurrence predictions.
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Metagene Mg307 and, to a lesser extent, its close correlate Mg440
appear as candidates for initial splits in some of the top trees, with
an initial lymph node risk categorization defining the initial split of
other top trees. Also clearly of interest are Mg315 and Mg351, two
of several metagenes that correlate strongly with ER status and
involve genes within the estrogen pathway (7, 18); these metagenes
now apparently substitute for ER status in the genomic data-only
analysis.

A further metagene that appears with ER status in the combined
model, Mg20, is based on 15 genes that define the Her-2-neu�
Erb-b2 metagene cluster (Table 4, which is published as supporting
information on the PNAS web site). Her-2-neu�Erb-b2 has previ-
ously been defined as a risk factor primarily among ER-negative
cases (32), so its appearance here within a subset of ER-positive
cases implicates Her-2-neu�Erb-b2 more broadly.

Prediction of Recurrence to Achieve Personalized Prognosis. The
4-year survival probability predictions in Figs. 5 Upper and 7 are
taken from the full survival distributions that result from the
statistical model analysis. At each terminal leaf of each tree, the
analysis estimates a full survival time distribution that represents
the survival characteristics of individuals assigned to the subpopu-
lation with predictors defining that leaf. Formal predictions for an
individual are based on averaging these survival distributions across
tree models, each tree weighted by its corresponding data-based
probability. The analysis also provides assessments of uncertainty
about predicted survival curves; communicating these uncertainties
along with estimates is critical to interpretation and assessment of
survival prospects at an individual level. Fig. 5 Lower displays the
resulting predictions for four example patients. Each panel gives the
predicted survival curve for one patient. At a number of time points,
the vertical intervals represent �95% uncertainty intervals for the
predicted survival probabilities at those time points. Cases 48 and
158 are examples in which the confidence of prediction, whether for
early recurrence or longer-term survival, is high, indicated by the
narrow intervals around the predicted survival curve. The two
additional cases are examples where uncertainty is higher.

Discussion
The breast cancer example shows the capacity of this analysis
framework to evaluate the relative contributions of multiple forms
of data, both clinical and genomic, in predicting disease outcomes.
This study shows what is possible, in principle and by example, in
terms of refining predictions to be specific for individual patients.
Multiple, related metagene patterns have predictive value in asso-
ciation with breast cancer recurrence. Several key metagenes are
each individually interesting risk factors, but, when combined in
predictive models, small sets of metagenes together define im-
proved predictions in the overall model that mixes over generated
classification trees.

Prediction accuracy can be improved by combining clinical
factors with genomic data. Key metagenes can, to a degree, replace
traditional risk factors in terms of individual association with
recurrence, but the combination of metagenes and clinical factors
currently defines models most relevant in terms of statistical fit and
also, more practically, in terms of cross-validation predictive accu-
racy. The resulting tree models provide an integrated clinico-
genomic analysis that generates substantially accurate, cross-
validated predictions at the individual patient level.

The models deliver formal predictive survival assessments, in
terms of estimates of survival distributions for future patients and
current patients being followed-up, together with measures of
uncertainty about the predictions. The latter are critical in guiding
clinical decisions. A point prediction of a survival probability, such
as a 4-year-recurrence probability, is only part of the story; it is
critical to also communicate how uncertain that probability esti-
mate is, as measured by an interval estimate that integrates uncer-
tainty due to sample size and sampling fluctuations together with
uncertainty arising from potentially conflicting predictors. The
specific approach using tree models highlights the latter issue,
helping to identify individual patients for whom there is evidence
of conflict within or between the genomic and clinical predictors;
this conflict is reflected in increased uncertainty about the resulting
recurrence predictions.

The technical modeling framework represents an approach that
builds on standard classification trees (21, 23) and utilizes Bayesian
methods in forward tree generation. These methods rely on pre-
specification of grids of potential thresholds for splitting nodes on
chosen predictor variables and on the use of statistical approxima-
tions in inference on hyperparameters (see the supporting infor-
mation). This approach represents a simplification and approxima-
tion to what is theoretically a fully Bayesian analysis, which is
possible, in principle, with simulation methods (19, 20). The de-
velopment of such an analysis is a major computational and

Fig. 5. Predictions from a clinicogenomic tree model. (Upper) Estimates
and approximate 95% confidence intervals for 4-year survival probabilities
for each patient. The survival probability of each patient is predicted in an
out-of-sample cross-validation based on a model completely regenerated
from the data of the remaining patients. Each patient is located on the x
axis at the recorded recurrence or censoring time for that patient. Patients
indicated in blue are the 4-year recurrence-free cases, and those in red are
patients with symptoms that recurred within 4 years. The interval estimates
for a few cases that stand out are wide, representing uncertainty due to
disparities among predictions from individual tree models that are com-
bined in the overall prediction. (Lower) Summary of predictive survival
curves and uncertainty estimates for four patients whose clinical and
genomic parameters match four actual cases in the data set (cases indexed
as 48, 158, 98, and 135).
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technical challenge in problems like this one, when the number of
potential predictor variables (clinical data and metagenes) is more
than a few and research advances in statistical computation are
needed to anticipate its implementation. The current analysis
represents a first-step approximation to Bayesian posterior infer-
ence in the full theoretical framework; progress on computational
aspects may lead to improvements with practical implications.

Our use of aggregate expression summaries, metagenes, follows
our earlier work with empirical factors based on screened gene
subsets (3, 7), then termed ‘‘supergenes.’’ Principal components (or
singular factors) as aggregate measures of expression of sets of
genes have been used in a number of recent studies in molecular
phenotyping, whether applied to a full array profile or to selected
gene subsets (3, 7, 33) or in the ‘‘gene shaving’’ framework (34),
which aims to identify genes with coherent patterns of expression
and large variation across samples (and which also, independently,
used the term ‘‘supergene’’). Our use of metagenes derived from
direct clustering of genes into a larger number of gene subsets aims
to reduce dimension while capturing key patterns, or ‘‘factors,’’ in
the full set of genes across samples. This method is closely related,
although somewhat reciprocal, to the use of ‘‘eigengenes’’ (33) to
cluster genes according to common patterns. The goals of metagene
construction are more closely allied to the method of gene shaving
(34) that develops sequences of nested clusters of genes that
successively remove from consideration genes apparently contrib-
uting little to the evaluation of dominant principal components. In
contrast, however, our direct construction uses all genes and aims
to construct larger numbers of clusters of generally smaller numbers
of genes; the key goals are to reduce dimension (from thousands of
genes to hundreds of metagenes) while keeping clusters relatively
small, with a view to maintaining more homogenous patterns within
each cluster so that the resulting, dominant principal component
within each is properly representative of the cluster. Improvements
in statistical methods for clustering and large-scale factor analysis
(35) can be expected to refine and improve the specific method of
metagene construction, the current cluster-based method being

clearly very empirical and representing an initial step toward
model-based improvements.

Key metagenes that provide predictive power also define sets of
genes suggestive of biologically relevant pathways associated with
clinical phenotypes. Of note are the primary metagenes Mg307 and
Mg440, which involve a number of genes identifying growth-
signaling pathways that are altered in a variety of oncogenic
settings, as well as genes implicated in predicting lymph node status
(1) that are generally associated with tumor immunosurveillance,
which may relate to the involvement of processes associated with
immunological response to the tumor. Additional implicated met-
agenes, including Mg109, Mg133, and Mg162, contain further on-
cogenes and genes involved in growth-signaling, and a number of
ER-related metagenes, as already described, are identified in
predictive trees. Thus, multiple metagenes represent patterns of
expression related to multiple, distinct biological properties, sug-
gesting that different aspects of biology are contributing to the
prediction and ultimately reflecting the heterogeneity of the disease
process.

The modeling process provides a framework for future studies in
which other forms of clinical data (such as improvements in clinical
phenotyping) as well as new forms of genomic data (DNA struc-
ture, protein patterns, metabolic profiles, single nucleotide poly-
morphisms, and haplotype data) will likely make significant con-
tributions to the ultimate prediction of outcome. As technologies
evolve to generate data that might better describe the clinical state,
technology-independent models will provide mechanisms to eval-
uate such new information. This adaptability is immediately rele-
vant in the context of developing extended studies that aim to refine
and evolve our understanding of multiple forms of data relevant to
moving genomic analysis through clinical trials to clinical practice.
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