Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 25;92(9):3769–3773. doi: 10.1073/pnas.92.9.3769

A progesterone metabolite stimulates the release of gonadotropin-releasing hormone from GT1-1 hypothalamic neurons via the gamma-aminobutyric acid type A receptor.

M el-Etr 1, Y Akwa 1, R J Fiddes 1, P Robel 1, E E Baulieu 1
PMCID: PMC42043  PMID: 7731981

Abstract

The reduced progesterone metabolite tetrahydroprogesterone (3 alpha-hydroxy-5 alpha-pregnan-20-one; 3 alpha,5 alpha-THP) is a positive modulator of the gamma-aminobutyric acid type A (GABAA) receptor. Experiments performed in vitro with hypothalamic fragments have previously shown that GABA could modulate the release of gonadotropin-releasing hormone (GnRH). Using GT1-1 immortalized GnRH neurons, we investigated the role of GABAA receptor ligands, including 3 alpha,5 alpha-THP, on the release of GnRH. We first characterized the GABAA receptors expressed by these neurons. [3H]Muscimol, but not [3H]flunitrazepam, bound with high affinity to GT1-1 cell membranes (Kd = 10.9 +/- 0.3 nM; Bmax = 979 +/- 12 fmol/mg of protein), and [3H]muscimol binding was enhanced by 3 alpha,5 alpha-THP. mRNAs encoding the alpha 1 and beta 3 subunits of the GABAA receptor were detected by the reverse transcriptase polymerase chain reaction. In agreement with binding data, the benzodiazepine-binding gamma subunit mRNA was absent. GnRH release studies showed a dose-related stimulating action of muscimol. 3 alpha,5 alpha-THP not only modulated muscimol-induced secretion but also stimulated GnRH release when administered alone. Bicuculline and picrotoxin blocked the effects of 3 alpha,5 alpha-THP and muscimol. Finally, we observed that GT1-1 neurons convert progesterone to 3 alpha,5 alpha-THP. We propose that progesterone may increase the release of GnRH by a membrane mechanism, via its reduced metabolite 3 alpha,5 alpha-THP acting at the GABAA receptor.

Full text

PDF
3769

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akwa Y., Sananès N., Gouézou M., Robel P., Baulieu E. E., Le Goascogne C. Astrocytes and neurosteroids: metabolism of pregnenolone and dehydroepiandrosterone. Regulation by cell density. J Cell Biol. 1993 Apr;121(1):135–143. doi: 10.1083/jcb.121.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson S. M., De Souza R. J., Cross A. J. The human neuroblastoma cell line, IMR-32 possesses a GABAA receptor lacking the benzodiazepine modulatory site. Neuropharmacology. 1993 May;32(5):455–460. doi: 10.1016/0028-3908(93)90169-4. [DOI] [PubMed] [Google Scholar]
  3. Brann D. W., Putnam C. D., Mahesh V. B. Gamma-aminobutyric acidA receptors mediate 3 alpha-hydroxy-5 alpha-pregnan-20-one-induced gonadotropin secretion. Endocrinology. 1990 Apr;126(4):1854–1859. doi: 10.1210/endo-126-4-1854. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Corpéchot C., Young J., Calvel M., Wehrey C., Veltz J. N., Touyer G., Mouren M., Prasad V. V., Banner C., Sjövall J. Neurosteroids: 3 alpha-hydroxy-5 alpha-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993 Sep;133(3):1003–1009. doi: 10.1210/endo.133.3.8365352. [DOI] [PubMed] [Google Scholar]
  6. Donoso A. O., López F. J., Negro-Vilar A. Cross-talk between excitatory and inhibitory amino acids in the regulation of luteinizing hormone-releasing hormone secretion. Endocrinology. 1992 Sep;131(3):1559–1561. doi: 10.1210/endo.131.3.1354606. [DOI] [PubMed] [Google Scholar]
  7. Favit A., Wetsel W. C., Negro-Vilar A. Differential expression of gamma-aminobutyric acid receptors in immortalized luteinizing hormone-releasing hormone neurons. Endocrinology. 1993 Nov;133(5):1983–1989. doi: 10.1210/endo.133.5.8404645. [DOI] [PubMed] [Google Scholar]
  8. Fox S. R., Harlan R. E., Shivers B. D., Pfaff D. W. Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary. Neuroendocrinology. 1990 Mar;51(3):276–283. doi: 10.1159/000125350. [DOI] [PubMed] [Google Scholar]
  9. Gee K. W., Bolger M. B., Brinton R. E., Coirini H., McEwen B. S. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther. 1988 Aug;246(2):803–812. [PubMed] [Google Scholar]
  10. Gee K. W., Lan N. C. Gamma-aminobutyric acidA receptor complexes in rat frontal cortex and spinal cord show differential responses to steroid modulation. Mol Pharmacol. 1991 Dec;40(6):995–999. [PubMed] [Google Scholar]
  11. Groyer A., Robel P. DNA measurement by mithramycin fluorescence in chromatin solubilized by heparin. Anal Biochem. 1980 Jul 15;106(1):262–268. doi: 10.1016/0003-2697(80)90146-3. [DOI] [PubMed] [Google Scholar]
  12. Hadingham K. L., Wingrove P. B., Wafford K. A., Bain C., Kemp J. A., Palmer K. J., Wilson A. W., Wilcox A. S., Sikela J. M., Ragan C. I. Role of the beta subunit in determining the pharmacology of human gamma-aminobutyric acid type A receptors. Mol Pharmacol. 1993 Dec;44(6):1211–1218. [PubMed] [Google Scholar]
  13. Hales T. G., Kim H., Longoni B., Olsen R. W., Tobin A. J. Immortalized hypothalamic GT1-7 neurons express functional gamma-aminobutyric acid type A receptors. Mol Pharmacol. 1992 Aug;42(2):197–202. [PubMed] [Google Scholar]
  14. Harrison N. L., Majewska M. D., Harrington J. W., Barker J. L. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther. 1987 Apr;241(1):346–353. [PubMed] [Google Scholar]
  15. Ke F. C., Ramirez V. D. Membrane mechanism mediates progesterone stimulatory effect on LHRH release from superfused rat hypothalami in vitro. Neuroendocrinology. 1987 Jun;45(6):514–517. doi: 10.1159/000124784. [DOI] [PubMed] [Google Scholar]
  16. Kim K., Lee B. J., Park Y., Cho W. K. Progesterone increases messenger ribonucleic acid (mRNA) encoding luteinizing hormone releasing hormone (LHRH) level in the hypothalamus of ovariectomized estradiol-primed prepubertal rats. Brain Res Mol Brain Res. 1989 Nov;6(2-3):151–158. doi: 10.1016/0169-328x(89)90049-1. [DOI] [PubMed] [Google Scholar]
  17. Kim K., Ramirez V. D. In vitro LHRH release from superfused hypothalamus as a function of the rat estrous cycle: effect of progesterone. Neuroendocrinology. 1986;42(5):392–398. doi: 10.1159/000124477. [DOI] [PubMed] [Google Scholar]
  18. Kimura H., McGeer P. L., Peng F., McGeer E. G. Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science. 1980 May 30;208(4447):1057–1059. doi: 10.1126/science.6990490. [DOI] [PubMed] [Google Scholar]
  19. Lan N. C., Gee K. W., Bolger M. B., Chen J. S. Differential responses of expressed recombinant human gamma-aminobutyric acidA receptors to neurosteroids. J Neurochem. 1991 Nov;57(5):1818–1821. doi: 10.1111/j.1471-4159.1991.tb06388.x. [DOI] [PubMed] [Google Scholar]
  20. Levine J. E., Ramirez V. D. In vivo release of luteinizing hormone-releasing hormone estimated with push-pull cannulae from the mediobasal hypothalami of ovariectomized, steroid-primed rats. Endocrinology. 1980 Dec;107(6):1782–1790. doi: 10.1210/endo-107-6-1782. [DOI] [PubMed] [Google Scholar]
  21. Macdonald R. L., Olsen R. W. GABAA receptor channels. Annu Rev Neurosci. 1994;17:569–602. doi: 10.1146/annurev.ne.17.030194.003033. [DOI] [PubMed] [Google Scholar]
  22. Mahesh V. B., Brann D. W. Interaction between ovarian and adrenal steroids in the regulation of gonadotropin secretion. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):495–513. doi: 10.1016/0960-0760(92)90375-s. [DOI] [PubMed] [Google Scholar]
  23. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 May 23;232(4753):1004–1007. doi: 10.1126/science.2422758. [DOI] [PubMed] [Google Scholar]
  24. Martínez de la Escalera G., Choi A. L., Weiner R. I. Biphasic gabaergic regulation of GnRH secretion in GT1 cell lines. Neuroendocrinology. 1994 May;59(5):420–425. doi: 10.1159/000126687. [DOI] [PubMed] [Google Scholar]
  25. Martínez de la Escalera G., Choi A. L., Weiner R. I. Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1852–1855. doi: 10.1073/pnas.89.5.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Masotto C., Wisniewski G., Negro-Vilar A. Different gamma-aminobutyric acid receptor subtypes are involved in the regulation of opiate-dependent and independent luteinizing hormone-releasing hormone secretion. Endocrinology. 1989 Jul;125(1):548–553. doi: 10.1210/endo-125-1-548. [DOI] [PubMed] [Google Scholar]
  27. Mellon P. L., Windle J. J., Goldsmith P. C., Padula C. A., Roberts J. L., Weiner R. I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990 Jul;5(1):1–10. doi: 10.1016/0896-6273(90)90028-e. [DOI] [PubMed] [Google Scholar]
  28. Nett T. M., Akbar A. M., Niswender G. D., Hedlund M. T., White W. F. A radioimmunoassay for gonadotropin-releasing hormone (Gn-RH) in serum. J Clin Endocrinol Metab. 1973 May;36(5):880–885. doi: 10.1210/jcem-36-5-880. [DOI] [PubMed] [Google Scholar]
  29. Olsen R. W., Bergman M. O., Van Ness P. C., Lummis S. C., Watkins A. E., Napias C., Greenlee D. V. gamma-Aminobutyric acid receptor binding in mammalian brain. Heterogeneity of binding sites. Mol Pharmacol. 1981 Mar;19(2):217–227. [PubMed] [Google Scholar]
  30. Park O. K., Ramirez V. D. Pregnanolone, a metabolite of progesterone, stimulates LH-RH release: in vitro and in vivo studies. Brain Res. 1987 Dec 29;437(2):245–252. doi: 10.1016/0006-8993(87)91640-4. [DOI] [PubMed] [Google Scholar]
  31. Peduto J. C., Mahesh V. B. Effects of progesterone on hypothalamic and plasma LHRH. Neuroendocrinology. 1985 Mar;40(3):238–245. doi: 10.1159/000124080. [DOI] [PubMed] [Google Scholar]
  32. Pritchett D. B., Sontheimer H., Gorman C. M., Kettenmann H., Seeburg P. H., Schofield P. R. Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science. 1988 Dec 2;242(4883):1306–1308. doi: 10.1126/science.2848320. [DOI] [PubMed] [Google Scholar]
  33. Puia G., Santi M. R., Vicini S., Pritchett D. B., Purdy R. H., Paul S. M., Seeburg P. H., Costa E. Neurosteroids act on recombinant human GABAA receptors. Neuron. 1990 May;4(5):759–765. doi: 10.1016/0896-6273(90)90202-q. [DOI] [PubMed] [Google Scholar]
  34. Purdy R. H., Morrow A. L., Blinn J. R., Paul S. M. Synthesis, metabolism, and pharmacological activity of 3 alpha-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem. 1990 Jun;33(6):1572–1581. doi: 10.1021/jm00168a008. [DOI] [PubMed] [Google Scholar]
  35. Rupprecht R., Reul J. M., Trapp T., van Steensel B., Wetzel C., Damm K., Zieglgänsberger W., Holsboer F. Progesterone receptor-mediated effects of neuroactive steroids. Neuron. 1993 Sep;11(3):523–530. doi: 10.1016/0896-6273(93)90156-l. [DOI] [PubMed] [Google Scholar]
  36. Shingai R., Sutherland M. L., Barnard E. A. Effects of subunit types of the cloned GABAA receptor on the response to a neurosteroid. Eur J Pharmacol. 1991 Jan 25;206(1):77–80. doi: 10.1016/0922-4106(91)90149-c. [DOI] [PubMed] [Google Scholar]
  37. Tyndale R. F., Hales T. G., Olsen R. W., Tobin A. J. Distinctive patterns of GABAA receptor subunit mRNAs in 13 cell lines. J Neurosci. 1994 Sep;14(9):5417–5428. doi: 10.1523/JNEUROSCI.14-09-05417.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weiner R. I., Martinez de la Escalera G. Pulsatile release of gonadotrophin releasing hormone (GnRH) is an intrinsic property of GT1 GnRH neuronal cell lines. Hum Reprod. 1993 Nov;8 (Suppl 2):13–17. doi: 10.1093/humrep/8.suppl_2.13. [DOI] [PubMed] [Google Scholar]
  39. Wetsel W. C., Mellon P. L., Weiner R. I., Negro-Vilar A. Metabolism of pro-luteinizing hormone-releasing hormone in immortalized hypothalamic neurons. Endocrinology. 1991 Sep;129(3):1584–1595. doi: 10.1210/endo-129-3-1584. [DOI] [PubMed] [Google Scholar]
  40. Wisden W., Seeburg P. H. GABAA receptor channels: from subunits to functional entities. Curr Opin Neurobiol. 1992 Jun;2(3):263–269. doi: 10.1016/0959-4388(92)90113-y. [DOI] [PubMed] [Google Scholar]
  41. Zanisi M., Martini L. Interaction of oestrogen and of physiological progesterone metabolites in the control of gonadotropin secretion. J Steroid Biochem. 1979 Jul;11(1C):855–862. doi: 10.1016/0022-4731(79)90021-9. [DOI] [PubMed] [Google Scholar]
  42. el-Etr M., Akwa Y., Fiddes R. J., Robel P., Baulieu E. E. A progesterone metabolite stimulates the release of gonadotropin-releasing hormone from GT1-1 hypothalamic neurons via the gamma-aminobutyric acid type A receptor. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3769–3773. doi: 10.1073/pnas.92.9.3769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. el-Etr M., Cordier J., Glowinski J., Premont J. A neuroglial cooperativity is required for the potentiation by 2-chloroadenosine of the muscarinic-sensitive phospholipase C in the striatum. J Neurosci. 1989 May;9(5):1473–1480. doi: 10.1523/JNEUROSCI.09-05-01473.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES