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Abstract: What basic visual structures underlie human face detection and how can we extract such
structures directly from the amplitude of neural responses elicited by face processing? Here, we
address these issues by investigating an extension of noise-based image classification to BOLD
responses recorded in high-level visual areas. First, we assess the applicability of this classification
method to such data and, second, we explore its results in connection with the neural processing of
faces. To this end, we construct luminance templates from white noise fields based on the response of
face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification
images, our results reveal a family of simple but robust image structures subserving face representa-
tion and detection. Thus, we confirm the role played by classical face selective regions in face detection
and we help clarify the representational basis of this perceptual function. From a theory standpoint,
our findings support the idea of simple but highly diagnostic neurally-coded features for face detec-
tion. At the same time, from a methodological perspective, our work demonstrates the ability of noise-
based image classification in conjunction with fMRI to help uncover the structure of high-level percep-
tual representations. Hum Brain Mapp 34:3101–3115, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Extensive research has focused on mapping out the neu-
ral resources involved in face processing [Gauthier et al.,
2000; Haxby et al., 2000; Ishai et al., 2005; Kanwisher et al.,
1997; Rossion et al., 2003] and on exploring how these
resources enable various recognition tasks such as detec-
tion or individuation [Fox et al., 2009; Kriegeskorte et al.,
2007; Nestor et al., 2011; Pourtois et al., 2005; Winston
et al., 2004]. However, our understanding of the visual
representations underlying recognition is far more limited.
An obvious example in this sense is face detection: while
the face selectivity of certain cortical areas, such as the
fusiform face area (FFA), has been commonly associated
with detection [Avidan et al., 2005; Freiwald et al., 2009;
Loffler et al., 2005; Tong et al., 2000], it is still unclear how
these areas are able to perform this function. Theoretically,
uncovering the representational basis of face detection is
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critical in that detection precedes and constrains other face
processing tasks [Liu et al., 2002; Or and Wilson, 2010;
Tsao and Livingstone, 2008]. Methodologically though,
uncovering the structure of neural representations poses a
significant challenge.

A standard approach to exploring internal representa-
tions for visual recognition involves hypothesis-testing.
Specifically, one can select a biologically-plausible recogni-
tion schema, adopt it as a model of neural processing and
test its validity. For instance, a detection schema relying
on image fragments [Ullman et al., 2002] has been tested
with relative success as a model of neural face processing
[Harel et al., 2007; Nestor et al., 2008]. However, this
approach is limited by the specificity of the representa-
tional types assumed (e.g., do neural representations
encode actual image fragments?) and by the difficulty of
their interpretation (e.g., what properties of a fragment
underlie its diagnosticity for face detection?)

Another approach, more challenging but less restrictive
in terms of theoretical assumptions, involves reconstruct-
ing the relevant visual features rather than testing a spe-
cific class. Reverse correlation methods have been
extensively employed to this effect in neurophysiology
and behavioral research [Neri and Levi, 2006; Ringach and
Shapley, 2004]. A family of such techniques, known as
image classification [Abbey and Eckstein, 2002; Ahumada,
2002; Beard and Ahumada, 1998; Gold et al., 2000], achieve
this goal by combining noise fields into a unique template
based on the discrete responses they elicit. This template,
referred to as a ‘‘classification image’’ (CI), serves as an
approximation of the image structure that accounts best
for a given set of responses. As the elements entering the
construction of a CI are typically structure-free (e.g., white
noise fields), it is inferred that any significant structure
apparent in the CI lies with the source of the responses, be
that a single neuron or a behavioral subject. However, this
approach is costly in terms of the number of trials needed
and restrictive with respect to the type of features tar-
geted, i.e., prominent, robust, simple features.

Here, we derive face detection templates by applying
image classification to behavioral and neural responses
recorded in the human ventral cortex. To deal with the
challenge of applying noise-based image classification to
BOLD data, we consider several ways of optimizing the
quality of our neurally-derived CIs. First, we collected a
relatively large number of trials by testing each subject
across multiple scanning sessions (12–13). Second, we took
advantage of the continuous nature of the BOLD signal by
adapting a suitable version of image classification [Murray
et al., 2002] to our data (i.e., a version not restricted to bi-
nary responses). Third, we used slow event trials allowing
us to maximize the SNR of trial-specific BOLD responses.
Finally, we constructed CIs corresponding to face selective
regions as established by an independent ‘‘localizer’’. This
fact is important in that standard image classification is
based on a linearity assumption: the magnitude/likelihood
of a response increases linearly with the presence of a

particular image structure. Recent research shows that
face-selective areas, but not other high-level visual areas,
exhibit this property in response to faces [Davidenko
et al., in press; Horner and Andrews, 2009] warranting the
application of image classification to their responses.

Of note, face detection is a suitable domain for assessing
the application of image classification to BOLD data. Faces,
as a visual category, are remarkably homogeneous and,
thus, likely to contain a few highly diagnostic detection
features [Sinha, 2002]. The presence of such features and
the robustness of their encoding are key factors in being
able to derive meaningful visual features from BOLD data.
Supporting this idea, a number of recent electroencepha-
lography (EEG) and behavioral results [Hansen et al.,
2010; Rieth et al., 2011; Smith et al., 2012] suggest that
image classification is a viable and promising approach to
the study of face perception (see Discussion).

As far as the regions targeted by our investigation are
concerned, the FFA naturally holds particular interest.
This is due not only to the prominent role played by the
FFA in face perception [Kanwisher and Yovel, 2006] but
also to its sensitivity to unconsciously processed face stim-
uli [Jiang and He, 2006] and even to stimuli erroneously
expected to contain faces [Righart et al., 2010; Zhang et al.,
2008]. These latter results are particularly relevant in that
the ability of noise-only trials to elicit activation in the
FFA is critical for the application of image classification to
FFA responses. At the same time, we note that it is impor-
tant to extend such investigations, insofar that it is possi-
ble, beyond the FFA to other high-level visual areas (and
to other face-selective regions in particular).

In short, our work explores the representational basis of
face detection associated with neural face processing. In
this context, the use of noise-based image classification
serves a twofold purpose by allowing us to uncover the
basic image structures underlying face detection and,
more generally, by providing the opportunity to assess the
applicability of this method to fMRI.

METHODS

Subjects

Two young adults, EC and EA (both female, 22 years
old), volunteered to participate in the experiment in
exchange for payment. Subjects were right-handed, with
normal (or corrected-to-normal) vision and no history of
neurological disorder. Both subjects provided written con-
sents. All procedures were approved by the Institutional
Review Board of Brown University.

Stimuli

An average face base image was constructed by combin-
ing multiple frontal-view faces from the Max Plank Insti-
tute, Tübingen (MPIK) face dataset (the current version is
available at http://faces.kyb.tuebingen.mpg.de)—see
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Figure 1. The database contains 200 Caucasian faces of dif-
ferent individuals with neutral expressions collected under
consistent lighting conditions. We converted all faces to
grayscale, cropped them, and normalized them with the
position of the eyes and the nose. The base image was
obtained by averaging individual faces along with their
mirror symmetric versions and subsampling the resulting
image to 38 � 32 pixels. The contrast of the base image
was separately adjusted for each subject as described
below (see Experimental paradigm).

Experimental stimuli were constructed half of the time
by adding white Gaussian noise to the base image and
half of the time from noise only (see Fig. 1 for examples).
Noise had a fixed root-mean-square (RMS) Weber contrast
of 27%. The size of the contrast was maximized under the
constraint that all pixel luminance values within two
standard deviations of the mean fall within a displayable
range. Values outside this interval were discarded and
resampled on each trial. The stimuli subtended a visual
angle of 4.4� � 5.2� after tripling the size of the images by
pixel replication.

We note that the effective resolution of our stimuli is rel-
atively low allowing us to minimize the size of the search
space. While this restricts the use of high-level frequencies
in performing the task, it is unlikely to affect face detection
in a critical manner given that the optimal band for face
recognition in humans lies under 16 cycles per face width
[Costen et al., 1996; Näsänen, 1999; Peli et al., 1994].

Stimulus design and presentation relied on Matlab 7.5
(Mathworks, Natick, MA) and the Psychophysics Toolbox
3 [Brainard, 1997; Pelli, 1997] running on an OS X Apple
Macintosh.

Imaging Methods

Each subject was scanned for 12 (EC) and 13 (EA) 1-h
sessions completed on separate days. Scanning was carried
out using a Siemens 3T TIM Trio magnet with a 32-chan-
nel phased-array head coil. Functional images were
acquired with an echo-planar imaging (EPI) pulse
sequence (1.5 s TR; 36 ms TE; 90� flip angle; 2.23 mm
voxels; 193.6 � 193.6 � 39.6 mm FOV; 18 oblique slices

covering the ventral stream). To maximize similarity in
brain coverage across sessions, an anatomical landmark
was selected for the top slice of the partial volume for
each subject. At the beginning of each session, we also
acquired a T1-weighted anatomical image (13 mm voxels;
160 slices of total size 256 � 240 mm).

Experimental Paradigm

Subjects performed a face detection task by discriminat-
ing noisy face stimuli from noise-only stimuli (Fig. 1).
Both subjects were informed that half of the time the stim-
uli contained a face embedded in noise in the attempt to
minimize bias. They were also informed that the face was
the same on all trials, that it was of the same size as the
rectangular stimulus appearing on each trial and that it
was centrally located within the rectangle. Neither subject
was exposed at any time to a noise-free version of the
base image (i.e., they never saw the image shown in Fig. 1,
left). Responses were made by pushing one of two buttons
with the index fingers of both hands.

Each trial had the following structure: a high-contrast
fixation cross was displayed for 100 ms followed by a
stimulus for 400 ms followed, in turn, by a lower-contrast
fixation cross for 10 s. Thus, the duration of each trial
totaled 10.5 s.

During pilot testing, contrast thresholds for the base
image corresponding to a 70% accuracy level were com-
puted for each subject [Watson and Pelli, 1983]—4.5% and
4.2% RMS Weber contrast for EC and EA, respectively.
Noise contrast was the same across subjects and sessions.
Each subject was tested across multiple days prior to scan-
ning in order to ensure no further learning would take
place (as reflected by better accuracy or shorter reaction
times).

Each scanning session contained five to seven face
detection runs and each run consisted in 24 trials preceded
by a 10.5 s fixation interval (for a total of 262.5 s). Trial
order was pseudo-randomized to maximize the uncer-
tainty of stimulus category (noisy base image or just
noise). Across sessions we collected a total of 1,920 and
2,136 face-detection trials for EC and EA, respectively.

In addition, each session included one or two standard
face-localizer runs for a total of 14 and 15 runs for EC and
EA, respectively. During the localizer subject performed a
category-unrelated task (monitoring for stimulus position)
with faces, objects and scrambled images displayed in sep-
arate blocks. More specifically, each run contained nine
blocks (three for each stimulus category), each block con-
tained 15 trials and each trial consisted in 750 ms of stimu-
lus presentation followed by 250 ms of fixation. Stimulus
blocks were separated by 15 s of fixation. Additional fixa-
tion blocks were introduced at the beginning and at the
end of each run. The order of stimulus block types was
counterbalanced across runs and no stimulus of any type
was repeated within a session. Stimuli subtended a visual

Figure 1.

Base image (left) and examples of the two types of stimuli pre-

sented in the experiment: noise-only (middle) and noise-plus-

base image (right).
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angle of approximately 3.9� � 4.3� and were randomly dis-
played on the left/right side of the fixation cross. On each
trial subjects pressed one of two buttons associated with
each position (left/right). The duration of each run totaled
285 s.

In addition to identifying regions of interest (ROIs), the
large number of localizers allowed us to verify the repro-
ducibility of the ROIs and to obtain unbiased estimates of
face selectivity in these regions [Kriegeskorte et al., 2010].
Critically, they also allowed us to monitor potential
changes in the selectivity of these ROIs induced by a visu-
ally demanding task across numerous test sessions.

Conventional Analysis of Imaging Data

Preprocessing steps involved slice scan time correction,
three-dimensional motion correction, smoothing with a
Gaussian kernel of 6 mm full-width half maximum
(FWHM), normalization to percent signal change and lin-
ear trend removal. All analyses were performed in the
native space of each subject using AFNI [Cox, 1996] and
custom Matlab code.

Face selective regions were localized through standard
univariate analysis by contrasting blocks of faces and
objects. Significance maps were corrected using the false
discovery rate (q < 0.05). ROIs were further constrained by
placing spherical masks (19 voxels) on the peak of each
functionally defined area.

In addition to the high-level visual areas mentioned
above we also identified a control ROI in the calcarine sul-
cus of each participant. This early visual cortex (EVC) ROI
was centered on the peak of another contrast, scrambled
images versus objects and faces (q < 0.05), and was equa-
ted in terms of shape and size with the other ROIs. This
particular region was chosen as a control ROI in order to
assess the specificity of a number of effects to higher-level
visual cortex (i.e., face-selective areas).

ROI mapping was performed using the first five local-
izer runs for each subject. Unbiased estimates of selectivity
were computed using the remaining runs.

CI Computation

Trials with no behavioral response and trials scoring
reaction times significantly shorter/longer than the mean
(�2 SD) were discarded (5.6% and 8.8% for EC and EA).
All analyses were performed on the remaining data.

Two classes of CIs were computed for each subject: be-
havioral CIs and neurally-derived CIs (based on BOLD
data). Behavioral CIs were constructed by combining noise
fields across trials following a standard approach [Ahu-
mada, 2002; Beard and Ahumada, 1998]:

C ¼ ðlFF þ lNFÞ � ðlFN þ lNNÞ (1)

The terms lFF and lNF denote the average noise fields
on trials on which subjects responded ‘‘face’’ in the pres-
ence of a base image (hits) and in its absence (false

alarms), respectively. Similarly, lFN and lNN denote the
average noise fields on trials on which subjects responded
‘‘noise’’ in the presence of a base image (misses) and in its
absence (correct rejections). Figure 2 details the construc-
tion of the CIs and the outcome of this procedure for each
subject.

The computation of neurally-derived CIs was performed
as follows (see also Fig. 3). First, we computed average
ROI amplitudes for each trial, normalized them (by z-scor-
ing) and binned them separately by trial type (base image
present/absent) and time point (1.5 through 10.5 s after
stimulus onset). The size/number of bins is a parameter of
the method—the results below were computed using a bin
of size 0.4SD although smaller/larger bins produced simi-
lar results. Following this procedure every trial was la-
beled with its corresponding bin number (1 through 12
within the interval �2.4 to 2.4 SDs).

Second, for each ROI, time point-specific CIs were com-
puted with the following formula [Murray et al., 2002]:

C ¼
Xn

i¼1

ðgðziÞ � gðziþ1ÞÞlFi þ ðgðzi � d0Þ � gðziþ1 � d0ÞÞlNi (2)

where zi ¼ ½G�1ðpFi�Þ þ G�1ðpNi�Þ þ d0�=2.
Here pFi� and pNi� represent the probability of a bin

number smaller than i when a base image is present and
absent, respectively. G�1 is the inverse of the normal cu-
mulative distribution function, g is the normal probability
density function, d0 is performance level, and n represents
the number of bins (g(z1) and (g(znþ1) are estimated as 0).
Finally, lFi and lNi represent the average noise fields for a
given bin i. The combination schema above represents an
attempt to maximize the SNR of CIs derived from graded
responses [Murray et al., 2002] and is here extended to
work with BOLD responses.

Third, a single CI was computed for each ROI by taking
a weighted sum over time-specific CIs using a standard
hemodynamic response function [Friston et al., 1994]. This
approach was expected to increase the overall SNR of the
images (by computing a weighted average across multiple
time points) and to produce a summary template of the
visual structure driving the response of each ROI.

Finally, both behavioral and neural CIs were smoothed
with a Gaussian filter with a 5-pixel FWHM allowing their
analysis with random field theory-based tests [Chauvin
et al., 2005].

RESULTS

Face Detection—Behavioral Performance and

Neural Correlates

Response accuracy across sessions was 69.3% and 73.2%
for EC and EA. Subjects classified the stimuli as ‘‘face’’ on
50.5% (EC) and 43.9% (EA) of the trials. Thus, as intended,
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both subjects reported the presence of a signal about half
of the time (although we notice a small bias toward ‘‘no
face’’ responses in EA’s case).

The effect of trial type on neural responses was assessed
for traditional ventral cortical regions for face processing
[Haxby et al., 2000]. In both subjects, conventional func-
tional contrasts (faces versus objects) revealed bilaterally
the FFA [Kanwisher et al., 1997] and the occipital face area
(OFA) [Gauthier et al., 2000]— Figure 4 and Table I. Aver-
age ROI responses (Fig. 5) were subjected to a three-way
ANOVA (stimulus type � response type � ROI) across

sessions separately for each subject. Here, stimulus type
encodes whether the stimulus contained a base image or
not while response type encodes the behavioral response,
‘‘face’’ or ‘‘no face.’’

The analysis revealed significant effects for response
type in each subject (EC: F(1, 11) ¼ 27.25, P < 0.001; EA:
F(1,12) ¼ 10.83, P < 0.01) and a significant interaction
between response type and ROI for EA (F(3,36) ¼ 6.18, P <
0.01). To examine the source of this interaction we per-
formed further contrasts that revealed significant effects of
response type within each of EA’s ROIs with the exception

Figure 2.

Intermediate results involved in the construction of behaviorally-

derived CIs: four different components corresponding to four

types of trials are added to each other in order to estimate the

internal template guiding behavioral responses (note that the po-

larity of lFN and lNN was flipped for ease of visualization and

comparison with the other components). Smoothed compo-

nents and CIs are displayed under their original (raw) versions.

The RMS contrast of each raw image is separately computed for

each component and CI. Results are separately shown for sub-

jects EC (top) and EA (bottom).
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of the left FFA (P > 0.10). At the same time, we did not
find a main effect or interaction with stimulus type for ei-
ther subject. Finally, a control area in the early visual cor-
tex did not show any significant effects (P > 0.05).

These results are important in several respects. First,
they confirm the sensitivity of the FFA to face detection in-
dependent of the objective presence of a face stimulus
[Righart et al., 2010; Zhang et al., 2008] and also extend
this sensitivity to the OFA (as evidenced by response type
effects). Second, they show that there is marked variation
in both behavioral and neural responses independent of
the presence of a signal (as evidenced by the absence of
effects/interactions with stimulus type). This finding

serves to motivate the application of reverse correlation to
our data—if responses were mainly a function of signal
presence (i.e., stimulus type) then CIs would reveal little if
any information. And third, they suggest behaviorally and
neurally-derived CIs may be similar to each other in virtue
of the fact that they are constructed from correlated sig-
nals: BOLD amplitudes tend to be higher on trials on
which subjects classify the stimuli as ‘‘faces.’’

Finally, a critical assumption of reverse correlation
methods is the consistency of the mechanism responsible
for producing responses (e.g., the use of a same internal
template) across extensive series of test sessions. Particu-
larly problematic is the possibility of additional learning,

Figure 3.

Procedure for the construction of neurally-derived CIs: (a) noise

fields are grouped and averaged based on ROI response ampli-

tude and stimulus type (F—face base image, N—noise) at a

given time point; (b) noise field averages are weighted and com-

bined into a time-specific CI; (c) a weighted sum is computed

across time-specific CIs using a standard hemodynamic response

function (HRF) to generate a single ROI-specific CI; (d) raw CIs

are smoothed with a Gaussian filter to allow analysis and

visualization.
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change of strategy or, in our case, changes in neural per-
ceptual processing. To verify this assumption we exam-
ined both behavioral markers (i.e., accuracy and bias) and
BOLD responses (i.e., ROI-specific face selectivity) for the
presence of consistent changes across sessions. Specifically,
we computed Pearson correlations between each of these
measures averaged within sessions and the corresponding
session number. Our results showed no significant change
in accuracy or bias for either participant (P > 0.10). Simi-
larly, no change in estimates of face selectivity was found
for any of the ROIs examined (P > 0.10).

Behaviorally-Derived CIs

In order to assess the overall reliability and quality of
the results, we examined the intermediate steps involved
in the generation of the CIs. In theory, the most informa-
tive trials in a standard image classification paradigm
should be those on which a subject responds incorrectly in
that they reflect stronger reliance upon internal templates
[Murray et al., 2002; Solomon, 2002]. Thus, we may expect
that the contrast of the components based upon incorrect
responses (lNF and lFN) to be higher than that those based
upon correct ones (lFF and lNN) and, thus, to contribute
more information to the construction of a CI. This expecta-

tion was borne out by the results of both subjects (Fig. 2).
Specifically, the RMS contrast of the four image compo-
nents showed higher levels for the two types of incorrect
responses than for correct ones. In addition, the contrast
level of the resulting CIs was markedly larger than that of
any single component suggesting that information com-
bines (and is used) in a relatively consistent manner across
the four types of trials. Thus, both subjects appear to make
reliable and consistent use of internal templates.

While the results above point to the likely use of inter-
nal face templates, they do not speak to the structure or
the nature of these templates. To deal with these issues,

Figure 4.

Example of ROI mask in subject EA. The map shows the contrast between faces and objects (q

< 0.05) superimposed on three axial slices (in EA’s native space). The mask is centered on the

peak of the right FFA (see Table I).

TABLE I. Coordinates and average face selectivity for

the ROIs (EC/EA)

ROI

Peak coordinates

Face selectivity (%SC � SD)x y z

rFFA 45/45 �53/�44 �15/�18 0.26 � 0.15*/0.16 � 0.08*
lFFA �40/�38 �46/�40 �11/�14 0.05 � 0.05**/0.05 � 0.08
rOFA 36/41 �77/�76 �12/�5 0.22 � 0.11*/0.30 � 0.13*
lOFA �39/�41 �78/�73 �11/�5 0.09 � 0.19/0.22 � 0.12*
EVC 16/1 �94/�93 �6/�7 0.01 � 0.17/0.07 � 0.15

Face selectivity is measured as the difference between face and
object-evoked activation (*P < 0.001, **P < 0.05).

Figure 5.

Response amplitudes (in percent signal change) across different

ROIs as a function of stimulus type and behavioral response

(h—hits, fa—false alarms, m—misses, cr—correct rejections).

Error bars show �1 SE across sessions.
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we conducted two sets of analyses, in the frequency do-
main and in the spatial domain, as detailed below.

First, in the frequency domain, we computed the
squared amplitude energy of raw (i.e., unsmoothed) CIs as
well as of the actual experimental stimuli (Fig. 6). Specifi-
cally, for each given image we computed the energy of a
range of frequencies (in cycles/image) and averaged the
results across orientations. In the case of experimental
stimuli, this analysis examined whether their structure
exhibited significant energy across the entire frequency
band (as shown in Fig. 6a) and, thus, it provide subjects
with the opportunity to exploit information from the range
of frequencies most relevant for face detection (i.e., under
16 cycles/image) [Costen et al., 1996; Näsänen, 1999; Peli
et al., 1994]. In the case of the CIs, the analysis examined
the relative importance and use of different frequencies in
our face detection task (Fig. 6b). In order to evaluate these
latter results more rigorously, the analysis was repeated
for an additional 100 CIs obtained by randomly permuting
the behavioral responses of each participant. Overall, the
comparison between actual and randomly derived
CIs revealed higher amplitudes for the former. More

importantly, behaviorally-derived CIs showed a marked
decrease in amplitude across higher frequencies character-
istic of natural images, and faces in particular [Keil, 2008].
In contrast, permutation-based CIs exhibited a roughly flat
profile characteristic of the spectrum of white noise.

Second, in the spatial domain, smoothed CIs (Fig. 7a)
were analyzed using a pixel test [Chauvin et al., 2005]
with the goal of identifying areas of the image (i.e., pixels)
whose luminance values differ significantly from chance.
Of note, this image-based analysis focuses on low-fre-
quency information (i.e., less than eight cycles/image)
both because it is better suited to deal with such informa-
tion and because low-frequency energy dominates the
spectral profile of the CIs (Fig. 6). The outcome of this
analysis revealed a triangular pattern of dark regions cor-
responding roughly to the position of the eyes and the
mouth. The images also displayed a markedly bright
region corresponding to the upper brow.

Thus, the two sets of analyses concur on the presence of
consistent visual structures used in face detection. More
importantly, they identify the main spatial components of
these structures associated with low-frequency information.

Figure 6.

Average squared amplitude energy for (a) the base image, stim-

uli containing the base image and stimuli containing only noise

fields; (b) the raw behavioral CIs; (c), (d) the raw neurally-

derived CIs (corresponding to the right FFA and OFA). The ab-

scissa represents spatial frequency in cycles per image and the

ordinate displays normalized amplitude values averaged across

orientations—values are normalized (scaled) by the maximum

value. The average energy of 100 control CIs (constructed by

permuting response labels) is shown in gray. Error bars show

�1 SD across stimuli for (a) and across control CIs for (b–d).
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Neurally-Derived CIs

Right-hemisphere ROIs showed higher face selectivity
than their left homologues [Kanwisher et al., 1997; Puce
et al., 1996] and, more critically, their selectivity was reli-
ably replicated across sessions in both subjects (Table I).
Consequently, our analysis focuses on these ROIs; how-
ever, for completeness, CIs were separately constructed for
all regions. Neurally-derived CIs were analyzed in the fre-
quency domain and in the spatial domain following the
same approach described above for behavioral CIs.

Out of all regions, the right FFA exhibited high ampli-
tudes for a broad range of frequencies relative to baseline
as well as an overall decrease in amplitude at higher fre-
quencies. Figure 6b–d displays these results for the right
FFA and OFA and Supporting Information Figure 1 shows
the results for their left homologues.

Some differences between the two participants are im-
mediately apparent. For instance, we note that EC exhibits
a better separation from baseline than EA in the case of
the FFA. These differences are consistent both with behav-
ioral performance (e.g., EA’s bias for ‘‘no face’’ responses)
and neural response profiles (e.g., EA’s smaller FFA face-
selectivity—Table I). In line with these differences, we
expect EA’s CIs to possess a smaller SNR than ECs. In the
spatial domain, pixel tests confirmed this expectation in
that EC’s images displayed more extensive structures that
EA’s—see Figure 7 and Supporting Information Figure 2.

To boost the SNR of the present images and facilitate
their interpretation we appealed to one simplifying
assumption: facial symmetry. Given the sensitivity of face-
selective regions to symmetry [Caldara and Seghier, 2009],
it is plausible that some symmetrical features may be pres-
ent in the internal template used for face detection. To
examine this possibility, we averaged each CI with its

mirror-symmetric version and submitted the results to a
new set of analyses. This manipulation effectively doubles
the number of trials used in constructing the raw images
(since noise fields were independently generated for the
right and the left sides) and is thus expected to increase
their SNR [Murray et al., 2002]. Figure 8a displays the
results for both behaviorally-derived CIs and right FFA
CIs—unlike these CIs, those corresponding to the right
OFA did not show any clear improvement over the initial
results of the two subjects. The examination of the results

Figure 8.

(a) Symmetrical CIs analyzed with a pixel test (P < 0.05).

Results are shown for behavioral CIs (on the left) and for rFFA-

derived CIs (on the right). (b) The two best contrast features

for face detection of Viola and Jones [2004] superimposed on a

base image.

Figure 7.

Smoothed CIs and their pixel test analysis. Results are shown for (a) behavioral responses, (b)

right FFA responses, and (c) the right OFA responses. Blue and yellow mark pixels darker/

brighter than chance (P < 0.05).
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shows that both eye-level regions and the mouth appear
to serve as key elements for face detection.

Another facet of our investigation concerns the relation-
ship between behaviorally and neurally-derived CIs. The
standard analysis of BOLD amplitudes suggests that the
two types of CIs should be positively correlated with each
other—insofar as ‘‘face’’ responses are overall associated
with higher ROI amplitudes (Fig. 5), this relationship pre-
sumably carries over to the CIs based upon behavioral
and neural data. To evaluate this hypothesis we correlated
smoothed symmetrical CIs (the left-hand half of each
image). As expected, all pairs of CIs showed positive cor-
relations with each other: behavioral and FFA-based CIs
(EC: r ¼ 0.35, P < 0.001; EA: r ¼ 0.26, P < 0.001) as well
as behavioral and OFA-based CIs (EC: r ¼ 0.28, P < 0.001;
EA: r ¼ 0.27, P < 0.001)—the overlap of significant regions
contained by the two types of CIs is also shown in Sup-
porting Information Figure 3. Similar correlation results
were obtained by comparing smoothed CIs prior to intro-
ducing a symmetry assumption. However, this time the
correlation between the right FFA and the behavioral CIs
derived for subject EA did not reach significance (P >
0.10)—this latter result is consistent with the standard
analyses mentioned above given that, unlike the other
ROIs examined, EA’s FFA did not show a significant effect
of response type (i.e., ‘‘face’’ versus ‘‘noise’’).

Correlations between behavioral and BOLD of data are
certainly important in clarifying the relationship between
brain and behavior. At the same time though, if neurally-
derived CIs display significant structures simply by virtue
of the correlation with behavior, in the long term, the
application of image classification to BOLD data may
prove to be of limited theoretical value. To address this
concern we computed and analyzed a new set of neurally-
based CIs. Specifically, first, we regressed out behavioral
responses from neural ones and, second, we constructed
CIs from the neural residuals of both the right FFA and
the right OFA of each subject. Image-based analyses show
that the new CIs (Supporting Information Fig. 4) exhibit
most of the significant regions present in the original CIs
(Fig. 7b–d). Therefore, we argue, the correlation of BOLD
and behaviorally responses is not the only (or even the
main) factor responsible for the structure of neurally-based
CIs. More generally, this latter result supports the idea
that BOLD-derived CIs can contribute significant informa-
tion regarding visual representations independent of that
provided by their behavioral counterparts.

DISCUSSION

Internal Face Representations

What basic image structures guide face detection within
the human visual system? Our study uses image classifica-
tion to clarify the structure of general face representations
and their instantiation at the neural level (i.e., at the level
of face-selective regions). Overall, our results provide

evidence for simple but robust image structures including
a triangular configuration of dark areas corresponding to
the eyes and the mouth along with brighter areas corre-
sponding to the middle brow. These image structures are
especially clear based on our behavioral results; however,
their elements can be traced to neural processing,
especially in the case of the right FFA.

The present results are in broad agreement with recent
behavioral and EEG studies [Hansen et al., 2010; Rieth
et al., 2011; Smith et al., 2012] that also reveal significant
image structures mediating face detection. For instance,
Rieth et al. [2011] applied image classification to behav-
ioral data collected across a large number of subjects (i.e.,
several hundred). The resultant CIs associated with a face
detection task showed a multitude of dark patches across
a surprisingly wide expanse of the image both centrally
and peripherally—however, guiding the subjects’ attention
to the center of the image reduced the amount of spatial
uncertainty leading to a less dispersed and more intuitive
‘‘face-like’’ structure. More relevantly here, two other stud-
ies [Hansen et al., 2010; Smith et al., 2012] extended image
classification to neuroimaging data associated with a face
detection task. Specifically, these studies derived CIs corre-
sponding to EEG signals at different time points and fre-
quency bands. In one study, significant image structures
were observed in multiple frequency bands for occipito-
temporal cortex around 170 ms [Hansen et al., 2010].
While these structures were fairly diverse in their appear-
ance across bands and subjects, additional analyses across
CIs confirmed that they were likely to contain visual fea-
tures characteristic of actual faces. Interestingly, Smith
et al. [2012] showed that meaningful structures can be
derived from frontal areas as well as occipitotemporal
areas in a broad interval ranging from 200 to 500 ms from
stimulus onset. Moreover, neurally-derived CIs correlated
reliably in this latter study with their behavioral counter-
parts computed across the same subjects, thus reinforcing
the explanatory value of the neural results.

Importantly, some of the image structures identified by
the studies above have noticeable similarity to those we
found here—for instance, the eyes appear to play a domi-
nant role. Thus, the successful application of image classi-
fication across neuroimaging modalities (i.e., EEG, by
previous studies, and fMRI here) suggests that our current
results reflect meaningful aspects of neural representa-
tions. At the same time, as expected, we note the presence
of substantial variability in the overall pattern of results
across subjects (and across studies). Thus, our results also
underline the clear challenges facing further applications
of image classification to neural data (see next section).
Moreover, while the studies above argue for the intuitive
‘‘face-like’’ aspects of certain image structures, it remains
unclear what properties recommend these structures for
their privileged role in recognition and for their encoding
in high-level visual areas. That is, the identification of sig-
nificant image structures can benefit from an explanation
of their function. In this respect, we argue that a plausible
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account of the present results involves objective feature
diagnosticity as detailed below.

Previous investigations of visual face properties found
that the contrast between the eyes and the rest of the face
is highly characteristic of faces as a visual category [Gilad
et al., 2009; Sinha, 2002]. In particular, the contrast
between the eyes and the middle brow area or the upper
cheeks (Fig. 8b) systematically outperforms other local fea-
tures in automatic recognition [Viola and Jones, 2004].
Consistent with this, the horizontal placement of the inter-
nal features (e.g., the eyes and the middle brow) leads to a
specific face signature in the frequency domain—the pres-
ence of diagnostic information at around 10 cycles per face
[Keil, 2008]. Furthermore, recent comparisons of automatic
and human face detection [’t Hart et al., 2011] suggest that
simple contrast features such as those in Figure 8b are
highly predictive of behavioral performance. To be clear,
such features are not invariant (e.g., an extreme change in
viewpoint can render them relatively ineffective). How-
ever, what matters is their robustness over a large number
of common changes, both intrinsic (e.g., expression) and
extrinsic (e.g., lighting). Overall, our results provide sup-
port for these previous findings by deriving such features
directly from patterns of behavioral and neural responses.
Conversely, these previous findings support the idea that
the most robustly encoded features are those most diag-
nostic about faces as a class. In this sense, face encoding
appears to reflect the objective structure and statistics of
face images [Bartlett, 2007] in a manner that is similar to
the way early visual representations reflect the low-level
statistics of natural images [Barlow, 1961; Olshausen and
Field, 1996].

As far as the frequency profile of the features noted
above is concerned, their coarse low-resolution aspect
(under eight cycles/image) is quite obvious. This result
may seem at odds with the availability of high-frequency
information for detection purposes [Halit et al., 2006].
However, current research suggests that high-frequency
information is not critical for face recognition [Costen
et al., 1996; Näsänen, 1999; Peli et al., 1994]. Face detection
as carried out by the human visual system is remarkably
fast and efficient, for instance when compared with indi-
viduation [Liu et al., 2002; Or and Wilson, 2010]. As such,
it is likely to take advantage more readily of low-fre-
quency information whose availability precedes that of
high-frequency information [Bar et al., 2006]. Thus, the
privileged role of low frequencies in neural processing
along with the diagnosticity of the information they carry
serve as a plausible explanation for the coding of the fea-
tures revealed by our CIs.

Interestingly, the structures revealed by our CIs bears
similarity to the type of simple displays (e.g., low-fre-
quency eyes-and-mouth configurations) evoking preferen-
tial looking in infants [Farroni et al., 2005; Johnson and
Morton, 1991]. This structure has been associated in the
past with subcortical face processing [Johnson, 2005].
While our results do not speak directly to this possibility,

the diagnosticity of the visual features identified provides
a plausible argument for their redundant encoding at mul-
tiple levels of visual processing. In particular, we find that
the right FFA appears to encode these features confirming
its involvement in face detection [Freiwald et al., 2009;
Grill-Spector et al., 2004; Nestor et al., 2008].

The considerations above raise an interesting issue: to
what extent the study of other types of face stimuli (e.g.,
profiles) or even other categories of objects would reveal
significant structures such as those found here in the FFA?
To address this issue three related points should to be con-
sidered. First, face profiles activate the FFA significantly
less than frontal-view faces [Xu et al., 2009; Yue et al.,
2011] and so do objects [Kanwisher and Yovel, 2006]. Sec-
ond, face profile and object features encoded in the FFA
are probably less diagnostic for their respective classes
and, therefore, less robustly encoded—for instance, highly
effective features for face detection like those shown in
Figure 8b have difficulty in dealing with profiles. Third,
the FFA does not appear to respond linearly to other cate-
gories than faces [Horner and Andrews, 2009] warning
against the application of standard image classification to
such cases. Therefore, we argue, the investigation of alter-
native types of stimuli in face-selective regions is likely to
be less informative. At the same time though, we do
acknowledge that such investigations may serve as rele-
vant controls in the evaluation of image classification
results such as those presented here.

On a related note, it may seem surprising to assume lin-
earity in the neural responses of high-level visual areas
associated with any object category, particularly consider-
ing that invariance in object recognition is achieved pri-
marily trough nonlinear processing [Riesenhuber and
Poggio, 1999]. However, such nonlinearities in face proc-
essing may be amenable to linear approximations under
certain respects. Indeed, recent evidence suggests that the
FFA exhibits much less invariance to basic image charac-
teristics than previously thought. For instance, its response
increases with the size of a face stimulus [Xu et al., 2009;
Yue et al., 2011], decreases with its eccentricity [Schwar-
zlose et al., 2008; Yue et al., 2011] and also with viewpoint
divergence from a frontal view [Xu et al., 2009; Yue et al.,
2011]. Furthermore, many of these properties affect
response amplitudes and combine with each other in a
roughly linear fashion [Yue et al., 2011]. Finally, the
response of the FFA was found to increase proportionately
with the ‘‘faceness’’ of a stimulus [Davidenko et al., in
press; Horner and Andrews, 2009]. To be clear, these
results do not imply that the functioning of the FFA
reduces to strictly linear operations but rather that impor-
tant aspects of its functioning, such as those related to face
detection, can be reasonably approximated by a linear
function. Thus, the response characteristics of the FFA
make it ideal for the goals of our investigation while they
also raise questions concerning the more general applic-
ability of image classification to BOLD data as discussed
in the next section.
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In sum, our results argue for the role of several critical
features in face detection. Clearly though, face detection is
not limited to their use. For instance, other luminance-
based features (e.g., hair), although less stable and robust,
are likely to complement those discussed here. Similarly,
other modalities in addition to luminance can provide
diagnostic information. As a case in point, color can be
exploited in a number of face recognition tasks including
detection [Bindemann and Burton, 2009; Dupuis-Roy et al.,
2009; Nestor and Tarr, 2008]. Thus, we argue that the fea-
tures discussed here serve as robust properties of face rep-
resentations rather than as complete and flawless ones.

Finally, as a point of clarification, we note that top-
down processes such as expectation and context are
unlikely to account for the present results. The use of
noisy/ambiguous images is a powerful tool for research-
ing top-down processes in object recognition [Li et al.,
2009; Summerfield et al., 2006; Wild and Busey, 2004]. The
general strategy of this research involves direct pairing of
neural responses with higher-level cognitive factors (e.g.,
expectations regarding probability of occurrence). In con-
trast, image classification as illustrated here aims at relat-
ing behavioral/cortical responses with random image
structures. The relevant factor in this relationship is the ac-
cidental similarity of these structures to actual face repre-
sentations rather than any manipulation of high-level
cognitive factors. Thus, we argue that our results serve as
approximations of internal visual representations rather
than as byproducts of top-down visual processing.

Application of Image Classification to fMRI

The present findings suggest that an extension of noise-
based image classification to BOLD data can be informa-
tive as long as several preconditions are satisfied. First, the
overall linearity of response amplitudes within a region
[Davidenko et al., in press; Horner and Andrews, 2009;
Yue et al., 2011] is likely to be an important factor in this
respect. Second, the systematic variability of neural
responses (e.g., as illustrated by their relationship with be-
havioral responses) is critical to constructing meaningful
CIs. Third, optimizing the SNR of the CIs serves as a sig-
nificant constraint both in the design of the experimental
paradigm and in the construction of the CIs. Given such
considerations, our results provide a proof of principle that
image classification can be applied to BOLD data to uncover
visual features employed in high-level recognition.

At the same time, we note that the completeness and
quality of neurally-based CIs is not on the same par with
that of behaviorally-derived CIs as illustrated by the pres-
ent results and by related studies [Hansen et al., 2010;
Smith et al., 2012]. At least two reasons seem to underlie
this difference. First, the SNR of neural recordings is likely
poorer than that of behavioral responses. For instance,
BOLD signals are corrupted both by internal (e.g., physio-
logical) noise and by external noise related to fMRI

measurement (e.g., thermal noise) [Bennett and Miller,
2010]. In contrast, behavioral responses are primarily influ-
enced by internal noise—there is virtually no measurement
noise associated with recording button presses. Our work
attempts to deal with this issue by maximizing the SNR of
BOLD-derived CIs. Despite such efforts, it seems unlikely
that current methods can yield comparable SNR levels for
the two categories of data. Second, it is reasonable to
assume that any CI based upon activation in a single brain
region may provide only a noisy and incomplete estima-
tion of the overall internal template driving behavioral
responses. For instance, in the case of face perception, its
reliance upon an entire network of cortical regions is well-
documented [Gauthier et al., 2000; Haxby et al., 2000,
2001; Ishai et al., 2005; Rossion et al., 2003; Tsao et al.,
2008] and consistent with the idea that these regions pro-
vide both redundant and complementary information for
the purpose of face recognition [Fox et al., 2009; Gobbini
and Haxby, 2007; Nestor et al., 2011]. Thus, the construc-
tion of hybrid CIs based from patterns of activation across
multiple regions may ultimately provide a way to boost
the quality of neurally-derived CIs. More generally, relat-
ing and combining CIs across different brain regions in a
principled and statistically optimal manner may provide
new insights into how information is integrated at the
level of cortical networks and how behavior emerges from
complex visual processing.

In addition to the research directions noted above, a
more extensive application of image classification to neu-
roimaging, and BOLD data in particular, appears to
require two critical developments. One concerns a signifi-
cant reduction in the number of trials, for instance by
replacing random sampling with adaptive stimulus sam-
pling [Lewi et al., 2009]. Generating and testing maximally
informative stimuli on the fly as a function of previous
responses is certainly an option for behavioral studies but
also for neuroimaging, particularly in connection with the
advent of real-time fMRI [deCharms, 2008; LaConte et al.,
2007]. The other development involves the use of nonlin-
ear methods [Neri, 2004] better suited to uncovering
subtler, more complex, higher-level features. Such devel-
opments are critical in extending the application of image
classification beyond the interesting but restricted domain
of face detection.

At this time, we note that neuroimaging data represent
a new domain for the application of image classification.
‘‘Bubbles’’ [Gosselin and Schyns, 2001], a technique related
to image classification, has been recently applied to several
imaging modalities including fMRI [Smith et al., 2007,
2008, 2009]. However, rather than aiming to reconstruct in-
ternal representations out of structure-free stimuli, the
bubbles technique takes on the interesting but less taxing
enterprise of uncovering informative areas of a given stim-
ulus. More closely related to our work, another study
[Smith et al., 2012] applied a challenging version of image
classification known as ‘‘superstitious perception’’ [Gosse-
lin and Schyns, 2003] to EEG data. Unlike standard image
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classification [Abbey and Eckstein, 2002; Ahumada, 2002;
Beard and Ahumada, 1998], superstitious perception com-
pletely discards the use of a base image and only relies on
noise stimuli to construct CIs. The merit of this approach
is obvious in that it forces a heavier reliance on internal
templates in performing the task. However, it also introdu-
ces the risk of variable/evolving internal templates within
(and across) subjects, a risk that base images, such as those
used here, are intended to minimize. From a practical
point of view, this version of image classification may
not be immediately applicable to BOLD data due to the
larger number of trials needed. However, the development
of adaptive stimulus sampling [Lewi et al., 2009] in con-
nection with real-time fMRI could make superstitious per-
ception a feasible and appealing approach for future
research.

Finally, an interesting parallel can be drawn here with
fMRI methods for stimulus reconstruction [Miyawaki
et al., 2008; Naselaris et al., 2009]. The idea of reconstruct-
ing an image-based structure is common to both such
methods and to reverse correlation. However, the general
goal of the former is to reconstruct actual stimuli from
neural patterns rather than to recover the structure of neu-
ral representation. Thus, while impressive as an engineer-
ing feat, stimulus reconstruction was pointed out to have
unclear theoretical value [Kriegeskorte, 2011] in that it
exploits current knowledge about neural representations
rather than attempting to extend it. In particular, stimulus
reconstruction takes advantage of existing computational
descriptions of neural representations in early visual areas.
On the other hand, rigorous descriptions at the level
of higher visual areas are still missing. In this respect,
image classification methods may provide an important
tool by narrowing the gap between models of neural rep-
resentation at the level of high-level versus low-level vis-
ual areas.

SUMMARY

Our work aims at uncovering the basic visual structures
underlying human face detection and at relating them to
the neural representations hosted by ventral face-selective
areas. Our results reveal the existence and characteristics
of such structures and account for them in terms of their
objective diagnosticity for face detection. More generally,
the present results are instrumental in establishing the
potential as well as the challenges confronting the applica-
tion of image classification to BOLD data in the study of
high-level visual perception.
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