Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 25;92(9):3779–3783. doi: 10.1073/pnas.92.9.3779

Potent interleukin 3 receptor agonist with selectively enhanced hematopoietic activity relative to recombinant human interleukin 3.

J W Thomas 1, C M Baum 1, W F Hood 1, B Klein 1, J B Monahan 1, K Paik 1, N Staten 1, M Abrams 1, J P McKearn 1
PMCID: PMC42045  PMID: 7537376

Abstract

A systematic evaluation of structure-activity information led to the construction of genetically engineered interleukin 3 (IL-3) receptor agonists (synthokines) with enhanced hematopoietic potency. SC-55494, the most extensively characterized member of this series, exhibits 10- to 20-fold greater biological activity than recombinant human IL-3 (rhIL-3) in human hematopoietic cell proliferation and marrow colony-forming-unit assays. In contrast, SC-55494 is only twice as active as rhIL-3 in priming the synthesis of inflammatory mediators such as leukotriene C4 and triggering the release of histamine from peripheral blood leukocytes. The enhanced hematopoietic activity of SC-55494 correlates with a 60-fold increase in IL-3 alpha-subunit binding affinity and a 20-fold greater affinity for binding to alpha/beta receptor complexes on intact cells relative to rhIL-3. SC-55494 demonstrates a 5- to 10-fold enhanced hematopoietic response relative to its ability to activate the priming and release of inflammatory mediators. Therefore, SC-55494 may ameliorate the myeloablation of cancer therapeutic regimens while minimizing dose-limiting inflammatory side effects.

Full text

PDF
3779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenson R. J., Andrews R. G., Bensinger W. I., Kalamasz D., Knitter G., Buckner C. D., Bernstein I. D. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest. 1988 Mar;81(3):951–955. doi: 10.1172/JCI113409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biesma B., Willemse P. H., Mulder N. H., Sleijfer D. T., Gietema J. A., Mull R., Limburg P. C., Bouma J., Vellenga E., de Vries E. G. Effects of interleukin-3 after chemotherapy for advanced ovarian cancer. Blood. 1992 Sep 1;80(5):1141–1148. [PubMed] [Google Scholar]
  3. Calvo J. C., Radicella J. P., Charreau E. H. Measurement of specific radioactivities in labelled hormones by self-displacement analysis. Biochem J. 1983 May 15;212(2):259–264. doi: 10.1042/bj2120259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  5. Denzlinger C., Walther J., Wilmanns W., Gerhartz H. H. Interleukin-3 enhances the endogenous leukotriene production. Blood. 1993 May 1;81(9):2466–2468. [PubMed] [Google Scholar]
  6. Ding D. X., Rivas C. I., Heaney M. L., Raines M. A., Vera J. C., Golde D. W. The alpha subunit of the human granulocyte-macrophage colony-stimulating factor receptor signals for glucose transport via a phosphorylation-independent pathway. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2537–2541. doi: 10.1073/pnas.91.7.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ganser A. Clinical results with recombinant human interleukin-3. Cancer Invest. 1993;11(2):212–218. doi: 10.3109/07357909309024841. [DOI] [PubMed] [Google Scholar]
  8. Ganser A., Lindemann A., Seipelt G., Ottmann O. G., Herrmann F., Eder M., Frisch J., Schulz G., Mertelsmann R., Hoelzer D. Effects of recombinant human interleukin-3 in patients with normal hematopoiesis and in patients with bone marrow failure. Blood. 1990 Aug 15;76(4):666–676. [PubMed] [Google Scholar]
  9. Goodall G. J., Bagley C. J., Vadas M. A., Lopez A. F. A model for the interaction of the GM-CSF, IL-3 and IL-5 receptors with their ligands. Growth Factors. 1993;8(2):87–97. doi: 10.3109/08977199309046929. [DOI] [PubMed] [Google Scholar]
  10. Herrmann F., Brugger W., Kanz L., Mertelsmann R. In vivo biology and therapeutic potential of hematopoietic growth factors and circulating progenitor cells. Semin Oncol. 1992 Aug;19(4):422–431. [PubMed] [Google Scholar]
  11. Heyman M. R., Schiffer C. A. Platelet transfusion therapy for the cancer patient. Semin Oncol. 1990 Apr;17(2):198–209. [PubMed] [Google Scholar]
  12. Highkin M. K., Krivi G. G., Hippenmeyer P. J. Characterization and comparison of avian and murine helper cell lines for production of replication-defective retroviruses for avian transformation. Poult Sci. 1991 Apr;70(4):970–981. doi: 10.3382/ps.0700970. [DOI] [PubMed] [Google Scholar]
  13. Hippenmeyer P., Highkin M. High level, stable production of recombinant proteins in mammalian cell culture using the herpesvirus VP16 transactivator. Biotechnology (N Y) 1993 Sep;11(9):1037–1041. doi: 10.1038/nbt0993-1037. [DOI] [PubMed] [Google Scholar]
  14. Jacobs S., Cuatrecasas P. The mobile receptor hypothesis and "cooperativity" of hormone binding. Application to insulin. Biochim Biophys Acta. 1976 May 21;433(3):482–495. doi: 10.1016/0005-2736(76)90275-3. [DOI] [PubMed] [Google Scholar]
  15. Kan O., Baldwin S. A., Whetton A. D. Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line. J Exp Med. 1994 Sep 1;180(3):917–923. doi: 10.1084/jem.180.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kitamura T., Sato N., Arai K., Miyajima A. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell. 1991 Sep 20;66(6):1165–1174. doi: 10.1016/0092-8674(91)90039-2. [DOI] [PubMed] [Google Scholar]
  17. Kurimoto Y., de Weck A. L., Dahinden C. A. Interleukin 3-dependent mediator release in basophils triggered by C5a. J Exp Med. 1989 Aug 1;170(2):467–479. doi: 10.1084/jem.170.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mayer P., Valent P., Schmidt G., Liehl E., Bettelheim P. The in vivo effects of recombinant human interleukin-3: demonstration of basophil differentiation factor, histamine-producing activity, and priming of GM-CSF-responsive progenitors in nonhuman primates. Blood. 1989 Aug 1;74(2):613–621. [PubMed] [Google Scholar]
  19. Metcalf D. Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science. 1991 Oct 25;254(5031):529–533. doi: 10.1126/science.1948028. [DOI] [PubMed] [Google Scholar]
  20. Metcalf D. Hematopoietic regulators: redundancy or subtlety? Blood. 1993 Dec 15;82(12):3515–3523. [PubMed] [Google Scholar]
  21. Miyajima A., Mui A. L., Ogorochi T., Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood. 1993 Oct 1;82(7):1960–1974. [PubMed] [Google Scholar]
  22. Nicola N. A., Metcalf D. Subunit promiscuity among hemopoietic growth factor receptors. Cell. 1991 Oct 4;67(1):1–4. doi: 10.1016/0092-8674(91)90564-f. [DOI] [PubMed] [Google Scholar]
  23. Olins P. O., Devine C. S., Rangwala S. H., Kavka K. S. The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene. 1988 Dec 15;73(1):227–235. doi: 10.1016/0378-1119(88)90329-0. [DOI] [PubMed] [Google Scholar]
  24. Park L. S., Friend D., Price V., Anderson D., Singer J., Prickett K. S., Urdal D. L. Heterogeneity in human interleukin-3 receptors. A subclass that binds human granulocyte/macrophage colony stimulating factor. J Biol Chem. 1989 Apr 5;264(10):5420–5427. [PubMed] [Google Scholar]
  25. Polotskaya A., Zhao Y., Lilly M. B., Kraft A. S. Mapping the intracytoplasmic regions of the alpha granulocyte-macrophage colony-stimulating factor receptor necessary for cell growth regulation. J Biol Chem. 1994 May 20;269(20):14607–14613. [PubMed] [Google Scholar]
  26. Rapoport A. P., DiPersio J. F. Sequence analysis and functional studies of interleukin-3 receptor alpha subunit-encoding cDNAs amplified from KG-1 leukemic cells and normal human marrow. Gene. 1993 Dec 31;137(2):333–337. doi: 10.1016/0378-1119(93)90030-7. [DOI] [PubMed] [Google Scholar]
  27. Rodbard D. Mathematics of hormone-receptor interaction. I. Basic principles. Adv Exp Med Biol. 1973;36(0):289–326. doi: 10.1007/978-1-4684-3237-4_14. [DOI] [PubMed] [Google Scholar]
  28. Schrader J. W. The panspecific hemopoietin of activated T lymphocytes (interleukin-3). Annu Rev Immunol. 1986;4:205–230. doi: 10.1146/annurev.iy.04.040186.001225. [DOI] [PubMed] [Google Scholar]
  29. Silvennoinen O., Witthuhn B. A., Quelle F. W., Cleveland J. L., Yi T., Ihle J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8429–8433. doi: 10.1073/pnas.90.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takaki S., Kanazawa H., Shiiba M., Takatsu K. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor alpha chain and its function in IL-5-mediated growth signal transduction. Mol Cell Biol. 1994 Nov;14(11):7404–7413. doi: 10.1128/mcb.14.11.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weiland G. A., Molinoff P. B. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 1981 Jul 27;29(4):313–330. doi: 10.1016/0024-3205(81)90324-6. [DOI] [PubMed] [Google Scholar]
  32. Weiss M., Yokoyama C., Shikama Y., Naugle C., Druker B., Sieff C. A. Human granulocyte-macrophage colony-stimulating factor receptor signal transduction requires the proximal cytoplasmic domains of the alpha and beta subunits. Blood. 1993 Dec 1;82(11):3298–3306. [PubMed] [Google Scholar]
  33. Yi T., Mui A. L., Krystal G., Ihle J. N. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol. 1993 Dec;13(12):7577–7586. doi: 10.1128/mcb.13.12.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES