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† Background and Aims Genetic markers can be used in combination with ecophysiological crop models to predict
the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance
in given environments. The objectives of this study were to explore the use of crop models to design markers and
virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress.
† Methods Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for
these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differ-
ing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele
effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and
drought conditions and in order to design virtual ideotypes for those conditions.
† Key Results To account for genotypic yield differences, it was necessary to parameterize the model for differences
in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most sig-
nificant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosyn-
thesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251
recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than
the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in
determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had
10–36 % more yield than those based on markers for yield per se.
† Conclusions This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-
based crop modelling in developing new plant types with high yields. The approach can provide more markers for
selection programmes for specific environments whilst also allowing for prioritization. Crop modelling is thus a
powerful tool for marker design for improved rice yields and for ideotyping under contrasting conditions.

Key words: Crop yield modelling, drought stress, ecophysiological modelling, genotype–phenotype relationships,
introgression lines, model-based ideotyping, QTL, recombinant inbred lines, rice, Oryza sativa.

INTRODUCTION

Rice (Oryza sativa) yield has been successfully improved during
the last 60 years for both favourable and stressful environments
(Peng et al., 2008), through extensive, largely empirical, selec-
tion. Developments in genomics provided useful tools and infor-
mation for dissecting complex traits into single quantitative trait
loci (QTLs). QTLs related to important agronomic traits, such as
yield and stress tolerance, have been mapped, cloned and charac-
terized (e.g. Xing et al., 2008; for reviews, see Miura et al., 2011;
Xing and Zhang, 2011). These developments have provided a
firm basis for further improving yield through marker-assisted
selection or genetic transformation of crops. However, selection
for, or transformation of, only a few or even a complex of genes
may not result in a major yield increase (Sinclair et al., 2004; Yin
and Struik, 2008). While proven for disease and quality traits,
the marker based approach has rarely been proven successful
for complex traits such as yield, which typically have low

heritabilities and exhibit strong genotype × environment (G × E)
interactions (Collard and Mackill, 2008).

The complexity of the yield trait stems from its many under-
lying processes, which are often environment dependent and
show strong feedback and feedforward mechanisms during
crop growth. Crop yield can be evaluated using ecophysiological
crop simulation models that integrate information about pro-
cesses at lower levels (Yin and Struik, 2008; Hammer et al.,
2010; Zhu et al., 2011). Such models quantify causality
between relevant physiological processes and responses of
these processes to environmental variables (e.g. irradiance, tem-
perature and availability of water and nutrients). By feeding crop
models with weather data from other locations, these models
predict yield beyond the environments in which the model para-
meters were derived and could explain variation in yield of a spe-
cific genotype among contrasting environments (Yin et al.,
2000a; Sinclair, 2011).
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The other type of model inputs are model parameters, often re-
ferred to as ‘genetic coefficients’ (Messina et al., 2006; White
et al., 2008; Boote et al., 2013). Compared with yield itself,
these parameters are thought to be less affected by variation in
environment (Yin et al., 2000a). Modelling could thus assist in
quantifying the G × E interactions and genotype–phenotype
relationships (Yin et al., 2004; Reymond et al., 2004; Hammer
et al., 2005; Yin et al., 2005a; Hammer et al., 2006; Chenu
et al., 2008; Bertin et al., 2010; Tardieu and Tuberosa, 2010;
Messina et al., 2011). This is especially true given advances in
the use of molecular markers to map QTLs for model parameters
and to integrate this QTL information into the crop models (Yin
et al., 2000b; Reymond et al., 2003, 2004; Nakagawa et al., 2005;
Quilot et al., 2005; Uptmoor et al., 2008; Xu et al., 2011). This
‘QTL-based modelling’ approach can dissect complex traits
into physiologically relevant component traits, integrate
effects of QTLs on the component traits over time and space at
the whole-crop level and predict a complex trait of various
allele combinations under different environmental conditions
(Chenu et al., 2009; Yin and Struik, 2010). Such a QTL-based
modelling approach was proven to be robust in predicting
genetic differences in traits, such as leaf elongation rate in
maize (Reymond et al., 2003), flowering time (Nakagawa
et al., 2005; Yin et al., 2005a; Uptmoor et al., 2008, 2012) and
fruit quality (Quilot et al., 2004, 2005; Bertin et al., 2010;
Prudent et al., 2011), under different environmental conditions.
A major challenge is to predict phenotypic differences in crop
yield between relatively similar lines from a genetic population

on the basis of QTL-based model parameters (Yin et al.,
2000a, b), especially under stressful conditions.

In the present study, we followed the same approach and used
the crop model GECROS (Yin and van Laar, 2005) to simulate
variation in grain yield and biomass of biparental crosses of
rice under well-watered and drought stress environments.
Based on the experience of using an older crop model (Yin
et al., 2000a, b), the GECROS model was designed in such a
way that its input parameters include those close to the traits bree-
ders score for selection. Given the plethora of genetic factors
underlying yield, we aimed to analyse the relative importance
of individual markers in accounting for variation in yield. To
that end, we calibrated the GECROS model to account for
yield differences among introgression lines (ILs) of rice. We
identified markers for each model input parameter, and incorpo-
rated the effects of these markers to develop a marker-based
model. In addition, the marker-based model was extrapolated
to account for yield variation among recombinant inbred lines
(RILs) derived from the same parents. Finally, we examined
whether our modelling approach could enhance marker-assisted
crop design for improving yields.

MATERIALS AND METHODS

To achieve the above objectives, we followed a pair-wise meth-
odology (Fig. 1). Its individual steps are described in the follow-
ing sections.

Experiments to parameterize, calibrate and evaluate
the GECROS model

Dissection

Statistical identification based on eqn (1)

Calculation using eqn (1) and allelic data of ILs (or RILs)

Feeding marker-based parameter values to GECROS

Fixing one marker at a time, by assuming that its
allelic genotype is 0 for all ILs

Pyramiding yield-increasing alleles of relevant markers

Markers for each of
Sw, nso, Hmax, mv, mR, Sla, Nmax

Marker-based values of ILs (or RILs) for each of
Sw, nso, Hmax, mv, mR, Sla, Nmax

Simulation using IL- (or RIL-) specific allelic data at all marker loci

Sensitivity analysis to rank the importance of the markers

Design of virtual ideotypes with
increased yield

Sw, nso, Hmax, mv, mR, Sla, Nmax

FI G. 1. Diagram of the methodology used in this study, which combines a simple genetic model, eqn (1), and an ecophysiological crop model, GECROS, into the
marker-based crop modelling, in order to rank the relative importance of the identified markers and to design ideotypes for improving rice yield. For acronyms of para-

meters of GECROS, see Table 1. IL(s), introgression line(s); RIL(s), recombinant inbred line(s).
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Plant material and field experiments

The genetic population consisted of 94 advanced backcross
ILs and two parents, as described by Gu et al. (2012a). The
parents were the lowland cultivar ‘Shennong265’ ( japonica,
recurrent parent) and the upland rice ‘Haogelao’ (indica–japon-
ica intermediate, donor parent). ‘Haogelao’ is drought tolerant,
but low-yielding; ‘Shennong265’ is drought susceptible, but
high-yielding under irrigated conditions. After a cross between
the two parents, the resultant F1 plants were backcrossed with
‘Shennong265’ three times, and these BC3F1 plants were con-
secutively self-pollinated five times to construct the genetic
population by the single-seed descent method.

Field experiments were conducted to assess model parameters
and to measure grain yield and shoot biomass (two major model
output traits). The ILs and the two parents were sown on 10 May
2009 by direct seeding at the experimental station of China
Agricultural University, Beijing (39854′N, 116824′E; elevation
50 m a.s.l.), China (Gu et al., 2012a). The mean temperature
was 24.8 8C, the total precipitation was 384 mm and the mean
global radiation was 16.7 MJ m22 d21 during the growing
season. During grain set, maximum temperatures reached
values up to 39.6 8C. The soil was classified as a calciaquoll, con-
taining 23.5 % sand, 57.1 % silt and 19.4 % clay. The field
experiments followed a randomized complete block design,
with two replications, four rows of 2.5 m per plot, 0.30 m
between rows, in both rainfed upland and fully irrigated
lowland conditions. Seed was hand sown at a depth of 0.03–
0.04 m. At the seedling stage, plants were thinned to a 0.075 m
distance between plants within each row, resulting in a plant
density of 44.4 plants m22. Weeds in both conditions were con-
trolled by a combination of chemical and manual methods.
Insects and diseases were controlled chemically. Basal fertilizer
application included 48 kg N ha21 (as urea), 120 kg P2O5 ha21

and 100 kg K2O ha21; in addition, 86 kg N ha21 was applied
at the tillering stage and 28 kg N ha21 at the booting stage. For
fully irrigated lowland conditions, rice was grown under contin-
ual standing water until harvest. For rainfed upland conditions,
besides rainfall, irrigation was only applied when necessary at
critical stages (i.e. at sowing, 120 mm; at tillering, 150 mm;
and at booting, 130 mm).

An independent population of 251 RILs derived from the same
parents (La, 2004; Zhang, 2006) was sown on 7 May 2005 by
direct seeding at the experimental station in Zhuozhou
(39.29′N, 115.59′E; elevation 45 m a.s.l.), China (Zhang,
2006). The mean temperature was 25.3 8C, the total precipitation
was 331 mm and the mean global radiation was 16.7 MJ m22 d21

during the growing season. The experiment design and manage-
ment for both irrigated lowland and rainfed upland conditions
were the same as in the field experiments in Beijing in 2009.

Measurements conducted in the experiment for ILs were:
grain yield and yield components (grains m22 and grain
weight), above-ground biomass, flowering date, maturity date,
plant height, leaf area and weight, and grain nitrogen concentra-
tion which was determined by means of micro-Kjeldahl diges-
tion and distillation. ‘Total crop nitrogen uptake at maturity’
(Nmax) was determined based on dry weight and the nitrogen con-
centration in plant organs, assuming that nitrogen concentration
in straw was conservative at 0.463 % (see data of Singh et al.,
1998), and nitrogen accumulation in the roots was assumed to

be 5 % of Nmax (Yin and van Laar, 2005). Phenology, grain
yield and biomass were also measured from the experiment
for RILs.

The crop growth model

The model used in this study was the crop growth model
GECROS, first described by Yin and van Laar (2005).
GECROS is a generic model that simulates the growth and devel-
opment of the crop on a daily basis. It generates phenotypes for a
multitude of traits, based on concepts of the interaction and feed-
back mechanisms among various contrasting components of
crop growth, carbon–nitrogen interaction in particular (Yin
and Struik, 2010). Crop phenology, canopy photosynthesis,
canopy transpiration, crop respiration, nitrogen uptake, partition-
ing of carbon and nitrogen assimilates among growing organs,
green surface area index and senescence are among the physio-
logical processes or traits that the model simulates. The
summary information about the latest GECROS model (v3.0)
is given in Supplementary Data, Model Description (see also
Yin, 2013). For a given set of model parameters and environmen-
tal conditions, the model produces simulated grain yield and
biomass as output variables.

Model inputs, parameterization, calibration and test

Theweather inputs for the GECROS model are daily radiation,
vapour pressure, maximum and minimum temperature, rainfall
and wind speed. These required weather data were collected
from a nearby weather station in 2005 (experiment with RILs)
and 2009 (experiments with ILs) at Zhuozhou and Beijing,
respectively. Atmospheric CO2 concentration and the amount
of irrigated water were also used as model input.

A complete set of model parameters (Table 1) was determined
for each IL from data collected in the experiment under well-
watered conditions in 2009. These parameters, covering
various morphological, phenological and physiological charac-
teristics of the crop, are: individual seed dry weight (SW), seed
nitrogen concentration (nSO), maximum plant height (Hmax),
the minimum number of days for the vegetative growth phase
(mV) or for the reproductive (seed-fill) phase (mR) provided
both photoperiod and temperature are optimal, and specific
leaf area constant for newly appeared leaves (Sla). Table 1 also
lists measured Nmax as a model parameter. Nmax per se, as an
accumulative quantity in the crop life cycle, is not considered
as a model parameter of the original GECROS. However, there
was not sufficient information about the soil at the experimental
sites, and modelling of nitrogen availability for transition
between flooded and non-flooded soil environments is complex
and usually full of uncertainties (Gaydon et al., 2012). The model
without using observed Nmax did not simulate yield differences
among the ILs sufficiently (see the Results). To reduce an influ-
ence of uncertainties in predicting edaphic variables for nitrogen
supply on our model-based sensitivity analysis to identify im-
portant markers (see below), we treated Nmax as if it were a
model parameter.

All model parameters were estimated for each genotype
from the well-watered treatment of the 2009 experiment in
Beijing. Parameters mV and mR are calculated based on a flexible
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bell-shaped non-linear function of phenological response to tem-
perature (Yin et al., 2005b), flowering time and harvest time for
each IL. For other non-genotype-specific model parameters and
setting initial conditions of simulation, default values described
by Yin and van Laar (2005) for rice were used for all lines.

To test the model, simulated dry grain yield and dry shoot
biomass were compared with measured data for both ILs and
RILs. To evaluate the model outputs, we used the relative root
mean square error (rRMSE; Wallach et al., 2006), calculated
as the root mean square error divided by the mean of the observed
value. In addition, the R2 coefficient of linear regression between
simulated and observed values was used to indicate the percent-
age of phenotypic variation accounted for by the model.

Statistical identification of markers for model parameters and yield

A total of 130 simple sequence repeat (SSR) markers and their
position for the IL population were reported previously (Gu et al.,
2012a; see also Supplementary Data Fig. S1). In order to select
markers which could be potentially used for breeding, the
effects of markers were analysed using a two-stage approach as
described by Gu et al. (2012a). First, using the general linear
model (GLM) procedure in the statistical package SAS 9.2
(SAS Instute Inc.), one-way analysis of variance (ANOVA)
was used to test the significance (P , 0.05) of markers across
the whole genome. Secondly, all significant markers were put
into a multiple regression model in a GLM procedure, using
eqn (1) where a model parameter value Y (listed in Table 1) of
introgression line k, as affected by N markers, was presented as:

Yk = m+ S
N
n=1anMk,n (1)

where m is the intercept and an is the additive effect of the nth
marker; Mk, n is the genetic score of the nth marker of the individ-
ual introgression line k that takes either the value –1 if the allele
comes from recurrent parent ‘Shennong265’ or the value 1 if it
comes from donor parent ‘Haogelao’. We used this simple addi-
tive model, as additive genetic effects are predictably transmitted
to progeny and more complex effects on model parameters are
presumbly taken into account by ecophysiological crop models
(Chapman et al., 2003). There may be non-significant markers
in the multiple regression because of the collinearity of
markers (Martens and Næs, 1992; Næs and Mevik, 2001). The
non-significant marker with the highest P-value was excluded

in the next round of multiple regression. This approach left out
one marker at a time, until all markers in the multiple regression
became significant (P , 0.05) (Ott and Longnecker, 2010).

Incorporating the effects of identified markers into a crop model

Using the principle as described previously (Yin et al., 2000b,
2005a), the effects of the markers identified in the preceding step
were fed to GECROS for simulating differences in yield and
biomass among the ILs (Fig. 1). This was achieved by replacing
the measured parameter values with the marker-based parameter
values of GECROS. The marker-based parameter values were
calculated using eqn (1) for each genotype, based on the esti-
mated additive effects, i.e. an in eqn (1), for each parameter
and the marker allelic information of the ILs. The same approach
was used to derive parameter values, based on addititive effects
of markers and the marker alleles of RILs, when using GECROS
to simulate yield differences among individuals of the RIL
population.

Identifying important yield-determining markers and ideotype
design

Linear regression analyses were performed to identify which
model parameter in Table 1 influenced yield most. A sensitivity
analysis using the GECROS model was performed to identify the
contribution of single markers to yield production, by following
the approach of Yin et al. (2000a), i.e. examining yield variation
accounted for by the GECROS model when the tested marker
was excluded in estimating the marker-based model parameters.
First, the baseline simulation was conducted, where IL-specific
allelic values for all markers were used as input for simulation.
Then, allelic values were fixed, one marker at a time, at zero
(Fig. 1). The extent to which the percentage of yield variation
accounted for (R2) was decreased relative to the percentage
accounted for in the baseline simulation was used to rank the rela-
tive importance of the markers in determining grain yields: the
more R2 decreases, the more important is the marker. The
ranking of markers identified by GECROS was compared with
that from the conventional analysis of yield data per se.
Furthermore, simulated yields of ideotypes designed by pyra-
miding yield-increasing alleles of model-identified markers
were compared with the simulated yields of ideotypes designed
by pyramiding those markers identified byanalysing yield per se.

RESULTS

Phenotypic variation in yield and physiological model parameters

There was no yield difference between replicates in either well-
watered or drought-stressed conditions (P . 0.05). The IL popu-
lation exhibited considerable phenotypic variation in model
parameters Nmax and grain yield (Fig. 2), showing transgressive
segregation. Model parameters SW, nSO, Hmax and Sla, Nmax in a
drought-stressed environment and yield presented a unimodal
distribution. For parameters mV and mR, and Nmax in a well-
watered environment, a bimodal distribution was observed.
Parent ‘Shennong 265’ yielded more than ‘Haogelao’, even
under drought.

TABLE 1. List of genotype-specific parameters of the GECROS
model (see the Materials and Methods)

Trait Description Units

SW Seed dry weight g d. wt seed21

nSO Seed (storage organ) N concentration g N g21 d. wt
Hmax Maximum plant height m
mV Minimum days for vegetative growth phase d
mR Minimum days for reproductive (seed fill) phase d
Sla Specific leaf area constant of newly appeared

leaves
m2 leaf g21

d. wt
Nmax Total crop N uptake at crop maturity* g N m22 ground

d. wt, dry weight; N, nitrogen.
*Not an input parameter in the original GECROS (see the text).
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Contribution of individual model parameters to yield

Effects of individual model parameters on yield were ana-
lysed, for both well-watered and drought-stressed environments
as assessed in the 2009 experiments. Simple regression and

correlation based on data of all genotypes revealed that yield cor-
related with most model parameters (Supplementary Data Table
S1). Among them, Nmax was correlated with yield most. Nmax

alone accounted for 57.6 and 59.2 % of the variation in yield
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under well-watered and drought-stressed environments, respect-
ively (Table 2). Nmax was also associated with other model para-
meters (Supplementary Data Table S1). Forexample, Nmax under
well-watered conditions correlated with Sw, Hmax, mV and
mR (r ¼ 0.29, 0.44, –0.29 and 0.32, respectively; P , 0.01).
Therefore, Nmax was used as covariate when multiple regression
was conducted relating yield to each model parameter (Table 2).
The results showed that yield correlated significantly with all
model parameters, except for SW. Besides Nmax, nSO was best cor-
related to yield under well-watered conditions, and mV was best
correlated to yield under drought-stressed conditions. Except for
the correlation of mR with yield, all other significant correlations
with yield were negative (Table 2). These results agreed well
with the simple correlation analysis for yield and model input
parameters (Supplementary Data Table S1), and suggested that
lower grain N concentrations, shorter vegetative and longer
grain-filling phases, lower stem lengths and thicker leaves were
associated with higher grain yields.

Phenotypic calibration of the GECROS model

The GECROS model was evaluated for both well-watered and
drought-stressed experiments in 2009. The model did not simu-
late well differences among the ILs in Nmax, and, therefore, in
grain yield. Similarly when using the across-IL mean value of
observed Nmax, the model did not simulate well the differences
in grain yield (for well-watered, R2 ¼ 0.24; rRMSE ¼ 0.17;
for drought-stressed, R2 ¼ 0.12, rRMSE ¼ 0.34).

After using the genotype-specific values for Nmax, the model
accounted for 72 % of the variation in yield (Fig. 3A) and for
78 % of the variation in biomass (Fig. 3B), with rRMSE values
of 0.10 and 0.09, respectively, for the well-watered conditions.

For simulating yield in the drought-stressed environment, first,
all parameter values as used for the well-watered environment
were applied. This procedure resulted in systematic overestima-
tions, as the actual nitrogen uptake was much less, resulting in
reduced growth under drought. Therefore, observed Nmax from
the drought-stressed environment was used. The model ac-
curately simulated biomass, but still overestimated grain yield
by overestimating the number of grains per m2 (results not
shown). A calibration was applied by reducing the seed
number (i.e. approx. 6171 m22) for all ILs, based on the differ-
ence between simulated average population mean and experi-
mental data. After such a calibration, the model accounted for
57 % of the variation in grain yield (Fig. 3C) and 73 % of the

variation in biomass (Fig. 3D), with rRMSE values of 0.23 and
0.12, respectively.

Both estimations of yield for well-watered and drought-
stressed environments were slightly poorer than the best fit of
linear regression in Table 2. This suggests that the input para-
meters required for GECROS (Sw, nSO, Hmax, mV, mR and Sla)
were not all important for defining yield for this IL population,
as confirmed by later analysis.

Coupling the effects of identified markers to the crop model

First, a multiple regression analysis was conducted to identify
markers for each model parameter. In total, 20 markers were
detected for all seven model parameters, with 3–6 markers per
parameter (Table 3; Supplementary Data Fig. S1). The total frac-
tion of the phenotypic variation accounted for by the markers
ranged from 27.3 to 51.7 %. Marker RM410 showed pleiotropic
effects on nSO, Hmax, mV, mR and Sla; marker RM8030 had pleio-
tropic effects on SW, Hmax, and Nmax under well-watered condi-
tions; marker RM11 was related to phenology influencing both
mV and mR; marker RM338 influenced both mV and Nmax in
the drought-stressed environment; marker RM475 was related
to Nmax in both well-watered and drought-stressed environments.
Also based on eqn (1), we detected five or four markers when ana-
lysing yield per se (Table 3). These markers were generally
among those markers identified for one or more model para-
meters; however, RM4085 for yield in the well-watered environ-
ment, and RM538 for yield in the drought-stressed environment
(Table 3; Supplementary Data Fig. S1) were not detected for any
model parameter.

Secondly, based on the additive effects estimated by the re-
gression analysis and allele information at each detected locus,
marker-based values for each of the model parameters were cal-
culated using eqn (1) for each IL. The performance of GECROS
with marker-based estimates of model parameters was examined
(Fig. 4). The marker-based GECROS model accounted for 52 %
of the across-IL phenotypic variation of yield in the well-watered
environment and for 43 % of the across-IL phenotypic variation
in the drought-stressed environment, with rRMSE of 0.13 and
0.27, respectively. These percentages were almost comparable
with those percentages accounted for by the markers identified
for yield per se (Table 3).

The GECROS model using marker-based parameters gave
less accurate simulations than using measured model parameters
(Fig. 4 vs. Fig. 3). In both well-watered and drought-stressed

TABLE 2. Linear regression of rice yield (Y ) against total crop N uptake (Nmax) and one other parameter trait of both well-watered and
drought-stressed input parameters (n ¼ 96; for definition of these traits, see Table 1)

Equation b0 b1 b2 R2

Y ¼ b0 + b1Nmax 215.43/–62.61 44.49***/37.13*** 0.576/0.592
Y ¼ b0 + b1Nmax + b2SW 239.73/–44.54 43.86***/37.37*** 1356.6/–881.1 0.577/0.593
Y ¼ b0 + b1Nmax + b2nSO 466.60/86.83 47.11***/35.94*** 235698.7***/–10033.9* 0.749/0.614
Y ¼ b0 + b1Nmax + b2Hmax 77.43/48.84 49.70***/40.49*** 2128.5**/–120.7*** 0.609/0.646
Y ¼ b0 + b1Nmax + b2mV 630.66/553.40 39.03***/29.32*** 26.73***/–6.41*** 0.668/0.714
Y ¼ b0 + b1Nmax + b2mR 2310.43/–339.14 38.54***/29.04*** 15.69***/14.63*** 0.669/0.710
Y ¼ b0 + b1Nmax + b2Sla 161.52/92.18 42.74***/36.78*** 28334.2*/–7903.0** 0.598/0.625

Values are presented as ‘well-watered/drought-stressed’.
*, **, ***Significant at the 0.05, 0.01 and 0.001 probability levels, respectively.
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cases, the marker-based model seemed to overestimate the lower
end of observed yield and biomass, and to underestimate the
higher end of observed yield and biomass, and, as a result, the
range of simulated values was narrower than that of the observed
data. This narrower range could be caused by the fact that the
detected markers only explained part of the variation of model
parameters (Table 3). The marker-based simulations correlated
with the original simulations in grain yield for both the well-
watered (r ¼ 0.73) and the drought-stressed (r ¼ 0.70) environ-
ment (Supplementary Data Fig. S2). Similar correlations were
obtained in biomass (r ¼ 0.75 and 0.71 for the two environ-
ments, respectively; Supplementary Data Fig. S2).

For predicting yield differences within an independent, larger
population of RILs derived from the same parents, marker-based
estimates of model parameters were used according to the same
approach as in the IL population using eqn (1) and values of the
additive effects shown in Table 3. The model explained 21 % of
the phenotypic variation among 251 RILs under well-watered
conditions and 20 % of the phenotypic variation under drought-
stressed conditions (Fig. 5), with rRMSE ¼ 0.31 and 0.45,
respectively.

Model-based sensitivity analysis to identify important
yield-defining markers

The sensitivity of crop yield in response to selection for an in-
dividual marker was analysed by excluding the effect of the
marker in estimating marker-based model parameters. Marker
RM8030 on chromosome 2 contributed most to the yield of the
IL population under well-watered conditions. When the additive
effect of RM8030 was excluded, the phenotypic variation
accounted for by the GECROS model decreased most: from
51.6 to 34.2 % (Table 4). A different marker, RM338 on chromo-
some 3, contributed most under drought-stressed conditions.
Excluding the additive effect of RM338 decreased the explained

phenotypic variation in yield most: from 42.6 to 29.8 %. The
extents to which the model accounted for the phenotypic vari-
ation decreased from that of the baseline simulation were used
to rank the markers in importance for determining crop yield
(Table 4). This ranking agreed well with the linear regression
analysis of rice yield against model parameters (Table 2). As
shown by the linear regression, Nmax contributed most to the vari-
ation in yield. In accordance with that observation, the markers
identified for Nmax (Table 3) proved to be the most important
yield-influencing markers identified by the sensitivity analysis
(Table 4).

Table 4 also shows that under well-watered conditions,
markers RM410 and RM251 related to nSO had a higher
ranking than RM5799 related to Nmax; in drought-stressed condi-
tions, marker RM410 and RM432 influencing Hmax had a higher
ranking than RM306 and RM475 influencing Nmax. These results
were in line with an earlier regression analysis, which showed
that parameters nSO and Hmax also had significant effects on
yield for well-watered and drought-stressed conditions, respect-
ively (Table 2).

Most high-ranking markers found in this approach were con-
sistent with the markers identified for yield per se in Table 3;
for example, the four highest-ranking markers in the well-
watered environment (i.e. RM8030, RM284, RM475 and
RM410) and the three highest-ranking markers in the drought-
stressed environment (i.e. RM338, RM7302 and RM410). Our
approach detected a total of 20 markers for each of well-watered
and drought-stressed conditions (Table 4), more than the markers
identified from multiple regression analysis for yield (Table 3).
However, only ten markers mattered for the model to account
for yield variation for each of the environments. The remaining
markers listed in Table 4 were not important in accounting for
yield as removing these markers had no effect on, or even
increased the value of, the explained percentage (Table 4). For
example, by removing the additive effect of marker RM251,
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the simulation for drought-stressed conditions could improve
from 42.6 to 46.2 % variation accounted for.

Designing ideotypes based on identified markers

Given the markers identified above, it is possible to simulate
yields of ideotypes designed by pyramiding yield-increasing
alleles of relevant identified markers. We hypothetically
designed three ideotypes: one based on the markers in Table 4
that mattered for the GECROS to account for yield variation
(Ideotype I), one based on the complete set of the markers in
Table 4 (Ideotype II) and one based on only those markers iden-
tified by analysing yield per se (Ideotype III). Figure 6 shows
GECROS-simulated yields for these three ideotypes as well
as the population mean of observed yields. Compared with
Ideotype III, Ideotype I was simulated to have 10 and 23 %

higher yields, and Ideotype II had 19 and 36 % higher yields,
under the well-watered and drought-stressed environments, re-
spectively. On across-environment average, there was only 3 %
yield advantage for Ideotype III over the population mean,
whereas average yield advantages for Ideotypes I and II were
18 and 29 %, respectively.

DISCUSSION

Simulating genotypic differences using the (marker-based)
GECROS model

The GECROS model uses the concept of carbon–nitrogen inter-
actions for simulating crop growth (Yin and van Laar, 2005;
Yin and Struik, 2010; Yin, 2013). Unlike those of earlier
Wageningen models, the input parameters of GECROS are few

TABLE 3. Coefficients of eqn (1) used to identify markers conferring seven physiological model input parameters and for grain yield,
using data from the well-watered conditions in 2009 and also from drought-stressed conditions for total nitrogen uptake

Trait m Chromosome Location (cM) Markers Additive effect (an) P-value R2 (%)

SW 0.0222 1 124.8 RM1152 0.0010 0.0002 45.2
2 110.9 RM1367 0.0008 0.0007
2 139.3 RM8030 20.0009 0.0035
4 123.8 RM2799 20.0006 0.0039

nSO 0.0148 3 79.1 RM251 0.0009 ,0.0001 36.8
9 64.4 RM410 0.0003 0.0002

12 61.6 RM1261 20.0004 0.0039
Hmax 1.174 1 9.5 RM8068 0.037 0.0213 51.7

2 139.3 RM8030 20.057 0.0004
4 25.5 RM518 20.035 0.0042
7 43.5 RM432 0.081 ,0.0001
9 64.4 RM410 0.042 ,0.0001

10 87.1 RM294A 0.058 0.0021
mV 90.78 1 124.8 RM1152 21.38 0.0041 33.6

3 108.4 RM338 1.31 0.0487
7 47 RM11 1.61 0.0191
9 64.4 RM410 1.23 0.0002

mR 21.71 1 124.8 RM1152 0.52 0.0127 27.3
7 47 RM11 20.81 0.0086
9 64.4 RM410 20.59 0.0001

Sla 0.0203 1 25.4 RM8145 0.0007 0.0006 31.0
7 81.05 RM3753 0.0006 0.0020
9 64.4 RM410 0.0003 0.0098

Nmax well-watered 7.83 2 92.5 RM475 20.44 0.0082 37.0
2 139.3 RM8030 20.50 0.0052
8 83.7 RM284 20.53 0.0004
9 0.8 RM5799 20.35 0.0460

Nmax drought-stressed 5.13 1 98.1 RM306 0.62 0.0011 36.2
2 92.5 RM475 20.46 0.0066
3 108.4 RM338 20.76 0.0042
5 20.6 RM7302 20.47 0.0277

Yield well-watered 325.3 2 92.5 RM475 221.7 0.0288 56.5
2 139.3 RM8030 234.9 0.0009
8 35.7 RM4085 214.5 0.0431
8 83.7 RM284 222.4 0.0113
9 64.4 RM410 219.5 0.0048

Yield drought-stressed 137.2 3 108.4 RM338 242.2 0.0002 45.4
5 20.6 RM7302 222.2 0.0067
5 132.7 RM538 25.7 0.0328
9 64.4 RM410 218.8 0.0004

For definitions and units of these parameters, see Table 1. Marker positions were based on the SSR marker linkage map established for the rice introgression
lines population (Gu et al., 2012a; see Supplementary Data Fig. S1).

Positive values of the additive effect indicate that increasing alleles of the trait score came from ‘Haogelao’.
R2 denotes the percentage of phenotypic variation accounted for by all markers identified for a given parameter or trait.
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and most of them are related to the traits that breeders usually
measure (Table 1), which may facilitate the use of crop model-
ling in support of breeding (Yin et al., 2004). Using as few as
seven parameters (Table 1), the calibrated GECROS model
accounted for observed differences in yield among the 96 ILs in-
cluding the parents (Fig. 3). Marker-based GECROS also simu-
lated yield differences among the 96 genotypes (Fig. 4).

Since the marker-based model parameters were based on the
estimated genetic effects, the marker-based crop model should
be able to simulate the variation within any progeny from the

same parents. This was shown to be the case, using independent
lines of the same cross that were not included in the QTL
mapping step (Reymond et al., 2003). Here we tested this possi-
bility using a different population, i.e. RILs derived from the
same parents. The comparatively low percentage of yield vari-
ation accounted for by the RIL population (Fig. 5) could have
been caused by the comparatively larger number of RILs (n ¼
251), which might have involved segregations that were not
revealed by markers found in the smaller IL population. The
limited number of markers with small additive effects only
accounting for from 27.3 to 51.7 % of the phenotypic variation
of model input parameters in the IL population (Table 3) could
be another reason.

There were also problems to overcome when applying this ap-
proach. This is reflected by the fact that GECROS, like many
models, tended to overestimate low yield and underestimate
high yield. Specifically, we first showed that the model perform-
ance was sensitive to nitrogen uptake, as plant nitrogen content
affects not only canopy dynamics but also leaf photosynthesis,
and, therefore, biomass and yield, in line with the long recog-
nized role of nitrogen in determining crop yield (Sinclair and
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TABLE 4. Percentage of the phenotypic variation in yield among
rice ILs (R2) accounted for by different sets of simulations using
the marker-based version of the GECROS model, when markers
were fixed one at a time to calculate different sets of marker-based

parameter inputs for GECROS

Fixed marker Well-watered Drought-stressed

Chr_cM Name R2 (%) Rank R2 (%) Rank

1_9.5 RM8068 51.6 11 42.6 13
1_25.4 RM8145 53.9 18 41.4 10
1_98.1 RM306 51.6 11 39.5 6
1_124.8 RM1152 50.9 9 44.6 18
2_92.5 RM475* 46.2 3 37.7 5
2_110.9 RM1367 51.7 14 45.5 19
2_139.3 RM8030* 34.2 1 40.9 9
3_79.1 RM251 47.9 5 46.2 20
3_108.4 RM338† 52.6 17 29.8 1
4_25.5 RM518 59.4 20 44.1 17
4_123.8 RM2799 51.8 16 40.2 7
5_20.6 RM7302† 51.6 11 33.2 2
7_43.5 RM432 50.7 8 36.9 4
7_47 RM11 51.7 14 43.8 16
7_81.05 RM3753 49.4 7 41.9 11
8_83.7 RM284* 45.7 2 42.6 13
9_0.8 RM5799 48.3 6 42.6 13
9_64.4 RM410*,† 47.3 4 35.9 3
10_87.1 RM294A 51.1 10 40.5 8
12_61.6 RM1261 53.9 19 42.1 12
Baseline simulation 51.6 42.6

Marker positions are denoted as ‘Chr_cM’, i.e. chromosome_centiMorgan,
as identified in Table 3.

The baseline simulation gives the R2 values for the simulation, in which
no marker was fixed, i.e. IL-specific allelic values (–1 or 1) were used for all
markers in calculating marker-based inputs; for other sets of simulations,
markers were fixed one at a time, in which all ILs were assumed to carry an
identical allele (i.e. 0) at the locus of the considered marker in calculating
marker-based inputs.

*These markers were also identified for yield per se under well-watered
conditions (see Table 3);

†These markers were also identified for yield per se under drought-stressed
conditions (see Table 3).
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de Wit, 1975). However, due to the complexity in modelling the
transition between flooded and non-flooded soil environments
(Gaydon et al., 2012) and the lack of accurate information on
soil-related parameters needed to simulate nitrogen uptake,
Nmax was used in this study as if it were an input parameter of
GECROS (Table 1).

We secondly showed that the drought treatment changed the
sink–source relationships. In our simulation, model parameters
were estimated from the 2009 well-watered experiment in
Beijing. However, a further calibration was found necessary
for simulating spikelet numbers when the model was applied
to the drought-stressed environment (see the Results). Drought
environments reduce transpirational cooling, leading to high
tissue organ temperature and high spikelet sterility in rice; this
effect can be highly genotype dependent (Jagadish et al.,
2007). The generic model GECROS relates potential seed
number to carbon and nitrogen accumulation in the vegetative
phase, and does not have algorithms to account for the direct
effect of panicle temperature on spikelet fertility (Yin and van
Laar, 2005).

Boote et al. (2013) emphasized the needs for more mechan-
sims in crop models when used for characterizing genotype–
phenotype relationships. Our study suggests that there is an
obvious need for robust algorithms to dissect Nmax involving
rooting density and depth for resource capture from the soil
(King et al., 2003). Similarly, better estimation of the final

spikelet number of rice when applying the model for stress con-
ditions is needed by considering floret opening time in the
flowering day and transpirational control of panicle tissue tem-
perature (Jagadish et al., 2007).

Role of crop models in dissecting complex traits

Crop modelling can dissect complex traits into physiological
components. Using the crop model GECROS, yield was con-
nected to, and dissected into, seven model parameters in this
study. By dissecting complex traits into physiologically mean-
ingful components – model parameters – it is possible to
assess genetic variation for each component and evaluate its rela-
tive importance by sensitive analyses or regression analyses.
Regression analyses showed that Nmax had the most significant
effect on yield (Table 2). This is in line with the result showing
that the important yield-determining markers identified by
GECROS-based sensitivity analysis (Table 4) were mainly
those for Nmax (Table 3). Similarly, Prudent et al. (2011), com-
bining a fruit sugar model and QTL analysis, identified keyelem-
entary processes and genetic factors underlying tomato fruit
sugar concentration. These results show that the dissection ap-
proach based on physiological models can indicate where the
QTLs for complex traits come about (Yin et al., 2002), thereby
revealing biological insights into complex traits. Given that the
number of QTLs identified for any single trait is always limited
(Kearsey and Farquhar, 1998), model-based dissection can
detect more QTLs/markers than analysing yield per se (Table 3).

The power of model-based dissection may depend on whether
model parameters represent ultimate physiological components.
For example, Hmax is chosen as a GECROS parameter because it
is among the traits that breeders measure; but it can be further dis-
sected into parameters for stem extension rate and duration.
Nevertheless, the current GECROS can indicate traits and
markers that have the least impact on grain yield (Table 4).
Such an analysis maysuggest whether or not the model has incor-
porated the correct parameters for explaining yield differences
among genotypes in a population. One of our initial thoughts
was to explore the role of leaf photosynthesis in improving rice
yield given extensive reports in the literature on this subject
(e.g. Richards, 2000; Fischer and Edmeades, 2010); so, our pre-
vious major effort was to map QTLs for leaf photosynthesis
(Gu et al., 2012a, b). Based on marker effects on individual
biochemical parameters of leaf photosynthesis identified by
Gu et al. (2012b) using representative ILs, we attempted to intro-
duce these marker effects into the biochemical photosynthesis
sub-model of GECROS. The variation accounted for by the
model decreased significantly for both well-watered and
drought-stressed conditions (results not shown). This suggests
that biochemical parameters of leaf photosynthesis are not im-
portant for defining yield in our population of ILs.

The lack of importance of some other parameters for our IL
population was suggested by the result showing that the marker-
based GECROS accounted for 43–52 % of yield variation
(Fig. 4) while identified markers typically accounted for only
25–30 % of variation in individual parameters (Table 3).
Removing some markers even increased the explained percent-
age, as was the case for marker RM251 under drought-stressed
conditions (Table 4). This could have been caused by the fact
that marker RM251 only influenced nSO (Table 3), which only
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markers in Table 4. Ideotype III is the hypothetical genotype designed by pyra-
miding positive alleles of 4–5 markers identified by analysing yield per se as
shown in Table 3. The ‘pyramiding’ was done by summing up the additive
effect of all relevant markers affecting GECROS model parameters that are
expected to have positive impacts for improving yield. It is worth noting that in
simulating the yield of Ideotype III, the effect of the marker identified by analysing
yield per se that had not beendetected byanalysingmodelparameters (i.e. RM4085
for well-watered and RM538for drought-stressedenvironments, see the text) needs
to be accounted for. This was done by multiplying the simulated yield based on the
remaining three or four markers found by analysing yield per se with the factor
derived as the ratio of the best yield expected from additive effects of 4–5

markers to the best yield expected from additive effects of 3–4 markers.
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had a marginally significant effect on yield under drought-
stressed conditions (Table 2). The irrelevance of parameters in
another crop model in defining yield differences has been
noted previously (Yin et al., 2000a) for a barley RIL population
of similar size. Whether or not this type of result is general
requires further research using a larger population with more re-
combinant events that probably show more diverse relationships
between yield and model parameters.

The model-based dissection approach, despite many advan-
tages (see also the next section), may never replace the approach
of the yield per se, because the latter not only is simple but also
identified markers (e.g. RM4085 for well-watered, and RM538
for drought-stressed environment, Table 3; Supplementary
Data Fig. S1) that were not detected by the model-based
approach. This arises from the possibility that markers under
the statistical threshold of detection for component traits can
be detected when the aggregated complex trait itself was ana-
lysed (Yin et al., 2002). The other possibility is that the present
GECROS model might miss some yield-influencing traits as
input parameters, especially those important for determining
the spikelet number.

Marker-based modelling to improve the efficiency of designing crop
ideotypes

Combined with conventional breeding, marker-based ap-
proaches have been used to integrate major genes or QTLs
with large effect into widely grown varieties (Jena and
Mackill, 2008). However, so far, the marker-based approach
has only had a moderate impact on breeding for complex traits
such as yield and drought tolerance for which many genes with
only small effect are involved, and which are highlyenvironment
dependent (Collard and Mackill, 2008). A crop model-based dis-
section approach can identify the most determinant yield-
defining traits, and can suggest how to create the combination
of component traits for an ideal plant type that will perform
best under given conditions (Peng et al., 2008). QTL-based
models can be used to evaluate the contribution of a single
QTL to yield (Chenu et al., 2009), and, therefore, could assist
in finding the most important markers.

We showed that the GECROS model, if well parameterized
and calibrated, can be a useful tool to enhance the efficiency of
selection for improved yields. The markers were first identified
for various yield-determining physiological traits that are input
parameters of GECROS (Table 3). The relative importance of
these markers was then ranked by sensitivity analysis using the
marker-based model (Table 4). Such an analysis detected
markers that breeders can prioritize in their programmes for spe-
cific environments. Our analysis also confirms the assertion that
rather than looking only for QTLs for a complex trait (yield)
itself, determining QTLs for underlying component traits will
provide more genetic information (Yin et al., 2002; Tardieu
and Tuberosa, 2010; Prudent et al., 2011). Notably, the
GECROS model-based approach identified some markers that
were otherwise unidentified by analysis of yield per se, e.g.
marker RM432 for the drought-stressed environment (Tables 3
and 4). This approach provides breeders with more choice of
markers for selection. Alleles of these markers can be pyramided
to create ideotypes (Gu et al., 2012b). Simulations showed that
ideotypes based on more markers identified by the model

(Ideotypes I and II) had a higher yield potential than the ideotype
based on the markers identified for yield per se (Ideotype III)
(Fig. 6). It remains to be tested through actual breeding
whether this additional information does indeed result in better
genotypes.

Quantitative trait locus/marker-based modelling combined
with sensitivity analysis (Table 4) can also directly evaluate
the effect of a a single QTL/marker on yield level, which could
be used to evaluate a specific genotype in silico, thus potentially
reducing labour-intensive selection in the field. Crop modelling
quantifies causality between relevant physiological processes
and the responses of these processes to environmental variables,
and might therefore help to resolve the QTL × environment
interaction (Hemamalini et al., 2000; Asins, 2002). Using the
CROPGRO-soybean model, Messina et al. (2006) estimated
the effects of QTL markers from a set of near-isogenic lines
and satisfactorily predicted the variation of yield across 5 years
and eight sites among an independent set of soybean cultivars.
Chenu et al. (2009), using the crop model APSIM-Maize, simu-
lated that a QTL accelerating leaf elongation will increase yield
in an environment with water deficit before flowering, but
reduced yield under terminal drought stress. Our model analysis
showed that the marker RM338 contributed the greatest to yield
undera stressed environment, but had no effect at all underawell-
watered environment (Table 4). This modelling analysis will
greatly improve the selection efficiency for traits which are
greatly influenced by environment factors.

Concluding remarks

This study outlines a genotype-to-phenotype approach that
exploits potential values of marker-based crop modelling in
developing new plant types with high yields. The approach can
provide more, yet prioritize, markers in the selection pro-
grammes for specific environments. Although the modelling ap-
proach may never replace the analysis of yield per se approach,
our simulation analysis showed that ideotypes based on the mod-
elling approach had 10–36 % yield advantages. Further work
could be achieved by upgrading crop models for rice, based on
the identified weakness of the model, especially for drought
stress conditions. As pointed out recently by Boote et al.
(2013), ‘model linkage to genetics is a new area with good poten-
tial’, and incorporating new mechanisms and algorithms into
crop models to identify more relevant traits is needed to better
account for genotype–phenotype relationships.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford
journals.org and consist of the following. Model Description: de-
scription of the crop growth model GECROS. Figure S1:
chromosome locations of markers associated with the seven
model input parameters and with yield per se. Figure S2: correl-
ation between simulated values from marker-based model para-
meters and those from measured model parameter values for 96
rice genotypes of the IL population for grain yield and biomass,
for well-watered and drought-stressed environments. Table S1:
simple correlation coefficients for rice yield and model input
parameters for well-watered and drought-stressed environments.
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