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A practical model is proposed for predicting the
detectability of targets at arbitrary locations in the visual
field, in arbitrary gray scale backgrounds, and under
photopic viewing conditions. The major factors
incorporated into the model include (a) the optical point
spread function of the eye, (b) local luminance gain
control (Weber’s law), (c) the sampling array of retinal
ganglion cells, (d) orientation and spatial frequency–
dependent contrast masking, (e) broadband contrast
masking, and (f) efficient response pooling. The model is
tested against previously reported threshold
measurements on uniform backgrounds (the ModelFest
data set and data from Foley, Varadharajan, Koh, &
Farias, 2007) and against new measurements reported
here for several ModelFest targets presented on
uniform, 1/f noise, and natural backgrounds at retinal
eccentricities ranging from 08 to 108. Although the model
has few free parameters, it is able to account quite well
for all the threshold measurements.

Introduction

Detection and discrimination of spatial patterns is
fundamental to almost every task involving the human
visual system. Despite decades of research, there have
been few attempts to develop models that can predict
the detectability of an arbitrary target appearing in
arbitrary backgrounds at any position in the visual
field. The goal here is to present such a model that is
both practical and testable. We focus on the classic task
in which both the target and the location at which the
target will appear are known to the observer. This task
is perhaps the most studied task in vision science, and
hence, there is a vast amount of knowledge relevant for
developing models. Indeed, there are many specific
models proposed to account for detection and dis-
crimination over narrow ranges of conditions (e.g.,
Arnow & Geisler, 1996; Foley, 1994; Foley et al., 2007;

Goris, Putzes, Wagemans, & Wichmann, 2013; Mor-
rone & Burr, 1988; Watson & Ahumada, 2005; Watson
& Solomon, 1997; Watt & Morgan, 1985; Wilson &
Bergen, 1979). Our aim is not to incorporate all existing
knowledge into a grand model nor to compete with
existing models designed for a narrow range of
conditions but rather to combine what appear to be the
most important factors identified in the spatial vision
literature into a streamlined model for which it is
practical to generate predictions rapidly for arbitrary
backgrounds and targets at arbitrary retinal locations.

There are several reasons for attempting to develop
such a model. The first is to determine how well known
spatial vision mechanisms can account for the detect-
ability of targets in natural backgrounds. This is
important because a central goal of vision science is to
predict the visual performance of organisms in their
natural environment. Given the relative simplicity of
detection and discrimination tasks, they may be the
best place to make progress toward this goal. The
second reason is to provide a foundation for rigorous
analysis and modeling of more complex tasks, such as
visual search. The third reason is that such a model
may be of value in human factors and medical
assessment applications.

The proposed model is based largely on known
anatomical and physiological factors, and hence, there
are relatively few free parameters. To estimate some of
these parameters and test the model for foveal
detection on uniform backgrounds, we fitted the
ModelFest data set, which consists of detection
thresholds measured in 16 observers for 43 different
targets (see Watson & Ahumada, 2005). To estimate
the remaining parameters and test the model in the
more general case, we measured and then fitted
detection thresholds in three observers for 1/f noise
backgrounds (which have the power spectrum of
natural images; Burton & Moorehead, 1987; D. J.
Field, 1987) and natural image backgrounds for three
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ModelFest targets at several eccentricities. In what
follows, we first describe the model, then the psycho-
physical measurements, and finally the predictions for
the psychophysical measurements.

The retina-V1 (RV1) model

There are orders of magnitude more photoreceptors
and primary visual cortex neurons than there are
retinal ganglion cells. This fact alone suggests that the
optic nerve (the population of retinal ganglion cells)
may be the main bottleneck for spatial pattern
detection information in the human visual system. In
other words, there are likely to be sufficient neural
resources in early cortical areas to encode the ganglion
cell responses from the target and the background.
Also, the target and background are most compactly
represented in the ganglion cell responses (fewest
numbers of neurons), and much is known about the
anatomy and physiology of the retina. These observa-
tions motivated us to anchor a model of target
detectability on a model of the retinal ganglion cell
responses. In the model, cortical mechanisms also play
important roles. One is to limit the spatial frequency
and orientation content in the ganglion cell responses
that mask detectability of the target. The other is to
pool the neural responses in order to make perceptual
decisions.

The RV1 model has two major components: a
‘‘retinal’’ component and a ‘‘cortical’’ component
(Figure 1). The retinal component is grounded in the
known anatomy and physiology of the eye, and the
cortical component is grounded in known properties of
neurons in the primary visual cortex as well as
empirical relationships from the psychophysical litera-
ture.

The retinal component simulates the responses of the
midget ganglion cells (P cells) in the human/primate
retina. It includes the average optical point spread
function (psf) of the human eye (Navarro, Artal, &
Williams, 1993); local luminance gain control (GL),
which enforces Weber’s law for detection on uniform
backgrounds (for reviews, see Hood, 1998; Hood &
Finkelstein, 1986); the average spatial sampling density
of midget retinal ganglion cells in the human retina
(Curcio & Allen, 1990; Dacey, 1993; Drasdo, Millican,
Katholi, & Curcio, 2007); and the receptive field
properties of midget ganglion cells in the nonhuman
primate retina (Croner & Kaplan, 1995; Derrington &
Lennie 1984). We focus on the midget ganglion cell
pathway because of evidence that it is responsible for
detection performance under conditions of low to
moderate temporal frequency (Merigan, Katz, &
Maunsell, 1991; Merigan & Maunsell, 1993). These

conditions include the case of interest here: static
stimuli presented for the duration of a typical eye
fixation (150–400 ms).

The cortical component simulates the spatial pattern
masking effect of the background as well as the final
pooling of responses that determines the predicted
detectability of the target (d0). The spatial pattern
masking is represented by an effective total contrast
power (Peff) that is the sum of three components: a
baseline component, a narrowband component, and a
broadband component.

The narrowband component is computed assuming
filtering matched to the average spatial frequency and
orientation bandwidth of neurons in the monkey
primary visual cortex (for reviews, see De Valois &
De Valois, 1988; Geisler & Albrecht, 1997; Palmer,
Jones, & Stepnoski, 1991; Shapley & Lennie, 1985),
which are generally consistent with estimates from the
psychophysical literature (for reviews, see De Valois &
De Valois, 1988; Graham, 1989; 2011). The broadband
component is consistent with the contrast normaliza-
tion effects observed in cortical neurons (Albrecht &
Geisler, 1991; Carandini & Heeger, 2012; Carandini,
Heeger, & Movshon, 1997; Geisler & Albrecht, 1997;
Heeger, 1991, 1992; Sit, Chen, Geisler, Miikkulainen, &
Seidemann, 2009) and evidenced in the psychophysical
literature (Foley, 1994; Goris et al., 2013; Watson &
Solomon, 1997). We assume that the effective total
contrast power acts as an equivalent noise power in the
computation of d0 (Burgess & Colborne, 1988; Eck-
stein, Ahumada, & Watson, 1997a; Lu & Dosher, 1999,
2008). This enforces the psychophysical rule that

Figure 1. Schematic of The RV1 model of detection.
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threshold contrast power increases linearly with back-
ground contrast power for white noise backgrounds
(Burgess, Wagner, Jennings, & Barlow, 1981; Legge,
Kersten, & Burgess, 1987) and for 1/f noise back-
grounds (Najemnik & Geisler, 2005). This concludes a
brief summary of the model; we now provide more
details.

Retinal image

The input image is either the background image
alone IB(x) or the sum of the target and background
images IT(x) þ IB(x), where we have simplified the
notation by letting x¼ (x,y). Until the final steps of the
model, the operations are effectively linear, and hence,
the target and background can be processed separately.
The retinal images of the target and background are
computed by convolving the target and background
images with an appropriate optical psf:

TðxÞ ¼ ITðxÞ*psfðxÞ ð1Þ

BðxÞ ¼ IBðxÞ*psfðxÞ ð2Þ
In the current implementation, we use the average

human psf in the fovea reported in Navarro et al.
(1993). The convolution is computed in the Fourier
domain using their reported modulation transfer
function: MTF( f )¼ 0.78 exp(�0.172 f ) þ 0.22 ex-
p(�0.037 f ). The optical psf broadens (blur increases)
with retinal eccentricity but is relatively constant out to
108 eccentricity, the largest eccentricity measured in the
present study. This component of the model could be
easily adjusted for greater eccentricities or to take into
account individual differences in optics.

Ganglion cell sampling and the magnification
principle

There is strong evidence that each different type of
retinal ganglion cell forms a mosaic such that the
dendritic branches and the receptive fields of the cells in
the mosaic tile the retinal image with no gaps.
Furthermore, for each cell type, the percentage overlap
of the receptive fields is approximately constant and
independent of retinal eccentricity (for a recent review,
see G. D. Field & Chichilnisky, 2007). This result
suggests a tight link between the anatomical spacing of
retinal ganglion cells and the size of their receptive
fields. We exploit this fact to reduce the number of
parameters in the model.

We use the average ganglion cell density reported by
Drasdo et al. (2007) (six human eyes) to generate a
mosaic of midget ganglion cells. The results reported by
Drasdo et al. (which are based on a reanalysis of the

data in Curcio & Allen, 1990) describe the combined
falloff for all types of ganglion cells. However, Dacey
(1993) reports that the falloff in midget ganglion cell
density in humans tracks that reported by Curcio and
Allen over the first 158 eccentricity, the range of interest
here. Thus, we assume that human midget ganglion cell
density from 08 to 158 is proportional to the ganglion
cell density reported by Drasdo et al.

The symbols in Figure 2A plot one over the square
root of the density (the linear spacing) of ganglion cells
as a function of eccentricity in the four cardinal
directions (nasal, temporal, inferior, superior), assum-
ing that there is one midget ganglion cell (with a linear
receptive field) for each cone in the center of the fovea.
The spacing of cones in the center of the fovea, s0, is
approximately 30 arcsec (0.00838), and thus, the
assumed density of midget ganglion cells in the center
of the fovea is 120 cells/8. In reality, there is one on and
one off midget ganglion cell for each cone, and hence,
the actual density is approximately 240 cells/8. How-

Figure 2. Midget ganglion cell spacing (in degrees) in the human

retina. (A) Ganglion cell spacing (1/square-root of density) in

the four cardinal directions of the visual field, assuming one

midget ganglion cell for each cone in the center of the fovea

(which sets the y-intercept). This one ‘‘midget ganglion cell,’’
which can respond positively and negatively, represents an on-

and-off pair of ganglion cells (data from Drasdo et al., 2007.) (B)

To generate a ganglion cell mosaic, we assume that, in each

quadrant, the contours of constant spacing fall on an ellipse.

This specific contour shows the retinal locations at which the

spacing between midget ganglion cells is twice what it is in the

center of the fovea. Thus, in the upper vertical direction, the

spacing doubles at about 1.18 of eccentricity, but in the

horizontal directions, it does not double until about 1.68. (C)

The equation that defines the spacing function: s0 is the spacing

in the center of the fovea, and eN, eT, eI, and eS are the

eccentricities in the four cardinal directions where spacing

reaches twice s0.
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ever, with little loss of precision, we represent the pair
of on and off cells by a single linear receptive field that
produces positive and negative responses. (In the
current model, we ignore differences in the density and
receptive field sizes of on and off ganglion cells [Dacey
& Peterson, 1992].) As can be seen, midget ganglion cell
spacing increases approximately linearly with a slope
that depends on direction in the visual field.

We use these data to generate a ganglion cell mosaic.
In particular, we assume that the contours of constant
spacing in each quadrant of the visual field fall on an
ellipse (Figure 2B). Thus, the spacing function is given
by the equation in Figure 2C, where eN, eT, eI, and eS
are the eccentricities in the four cardinal directions at
which the spacing between ganglion cells reaches twice
what it is in the center of the fovea. This spacing is then
used to generate the ganglion cell mosaic, a portion of
which is shown in Figure 3. The specific algorithm used
to generate the mosaic is given in the Appendix. The
algorithm produces a mosaic that satisfies the spacing
function and does not have any observable artifacts.
We represent the mosaic by the function samp(x).

Once the ganglion cell mosaic is specified, we then
enforce the magnification principle by assuming that
the receptive field properties (center and surround size)
of the simulated ganglion cells scale with the spacing
between ganglion cells in the mosaic. Thus, for each
property, there is only a single free parameter, a scale
factor, that applies to all eccentricities.

Light adaptation

Retinal light adaptation mechanisms maintain pat-
tern detection and discrimination sensitivity by keeping

the responses of neurons within their limited dynamic
ranges. The primary effects of light adaptation can be
summarized as a multiplicative luminance gain control
(the signal is scaled by the inverse of the average
luminance). An important perceptual effect of retinal
light adaptation is Weber’s law: contrast threshold on
uniform backgrounds is approximately constant inde-
pendent of background luminance. To include lumi-
nance gain control, we compute the local average
luminance at each retinal location. Let ga(y;x) be a 2-D
Gaussian (with a volume of 1.0) centered on retinal
location x. Then, the local average luminance at x is

LðxÞ ¼
X

y

BðyÞgaðy; xÞ ð3Þ

It is plausible that local retinal luminance gain is set
by neural populations having receptive fields that
increase in size with retinal eccentricity, but less is
known about these populations in primates, and hence,
for simplicity, we assume the standard deviation (SD)
of the Gaussian is fixed: rL(x)¼ rL. Thus, the effect of
light adaptation is represented by a single parameter.
The local luminance gain is GL(x) ¼ 1/L(x). Note that
when the background is uniform then luminance gain is
the same at all retinal locations (because the Gaussian
has a volume of 1.0). To handle low light levels in
which Weber’s law fails, a constant L0 can be added to
the denominator, but for the conditions of interest here,
that was not necessary.

We note that there is also global light adaption due
to slower mechanisms (pupil response, photoreceptor
adaptation) that adjust the retina to the overall ambient
light level in the environment. However, here we focus
on stimuli with which the global average luminance is
fixed (displays in which the average luminance is fixed
across conditions), and hence, we ignore the effects of
global light adaptation.

Ganglion cell responses

The spatial receptive fields of midget ganglion cells
(and the corresponding P cells in the lateral geniculate
nucleus) are often approximated by a difference of 2-D
Gaussians (Croner & Kaplan, 1995; Derrington &
Lennie, 1984; Rodieck, 1965). Using this approxima-
tion, let gc(y;x) and gs(y;x) be 2-D Gaussians repre-
senting the center and surround mechanisms of a
midget ganglion cell at retinal location x (equations are
in the Appendix). The response of ganglion cells to the
background alone is given by

rBðxÞ ¼ sampðxÞ
X

y

GLðyÞBðyÞDðy; xÞ ð4Þ

where D(y;x) is a difference of Gaussians: D(y;x) ¼
wcgc(y;x)� (1 � wc)gs(y;x). For the conditions of

Figure 3. Part of the midget ganglion cell mosaic generated

from the human anatomical data in Figure 2. Each dot

represents the location of the center of a ganglion cell receptive

field. This mosaic is generated from the equation in Figure 2C,

using the algorithm given in the Appendix.

Journal of Vision (2014) 14(12):22, 1–22 Bradley, Abrams, & Geisler 4



interest here, the target contributes little to the local
luminance, and hence, the response to the target plus
background is simply the sum of the responses to the
target and background, and the response of the
ganglion cells to the target is given by

rTðxÞ ¼ sampðxÞ
X

y

GLðyÞTðyÞDðy; xÞ ð5Þ

We assume that the magnification principle holds,
and thus, the SD of the center mechanism is given by
rc(x)¼ kcsp(x) and the surround mechanism by rs(x)¼
kcsp(x). We see then that three parameters, wc, kc, and
ks, describe the receptive field properties of all the
ganglion cells.

Effective masking power

Masking in the RV1 model is represented by an
effective contrast power Peff that is the weighted sum of
three components (see Figure 4): a baseline component
P0, a narrowband component Pnb, and a broadband
component Pbb:

Peff ¼ P0 þ kbwbPnb þ kbð1� wbÞPbb ð6Þ
where kb sets the overall strength of pattern masking,
and wb sets the relative strength of the narrowband and
broadband components.

The baseline component is a constant that represents
the masking when the background is uniform. This
component includes the effect of spontaneous ganglion
cell activity, decision noise, and other factors not
dependent on the spatial pattern of the background.

The narrowband component is the power in the
ganglion cell response to the background that drives
the population of primary visual cortex (V1) neurons
responding to the target, and thus, it is target
dependent. In other words, the narrowband component
represents the fact that neurons in V1 are simulta-
neously selective to spatial frequency and orientation
and thus will filter out background power in the
ganglion cell responses that does not activate the
population of V1 neurons activated by the target. In
computing the narrowband component, we assume that
the spatial frequency selectivity of V1 neurons is
approximately Gaussian in log frequency (a log Gabor
function) with a bandwidth that averages 1.5 octaves
(De Valois, Albrecht, & Thorell, 1982; Geisler &
Albrecht, 1997) and that the orientation selectivity is
approximately Gaussian on a circle with a bandwidth
that averages 408 (De Valois, Yund, & Hepler, 1982).
These log Gabor and Gaussian functions are defined in
the Appendix.

The first step in computing the narrowband com-
ponent is to obtain the filtered ganglion cell responses,
which are given by

rnbðxÞ ¼ sampðxÞ
X

y

Gbcðy; xÞfTðy; xÞ ð7Þ

where Gbc(y;x) is the continuous (unsampled) ganglion
cell center response to the background, and fT(y;x) is
the target-specific filter that removes the background
power in the ganglion cell responses that do not drive
the cortical neurons that encode the target. To
determine the target-specific filter, we (a) take the
Fourier transform of the ganglion cell center response
to the target alone, (b) convert to log polar coordinates
(log frequency vs. orientation), (c) convolve (in the
frequency domain) with a function that is the product
of the amplitude spectrum of a log Gabor (bandwidth
1.5 octaves) and a Gaussian function in orientation
(bandwidth 408), and (d) convert back into standard
spatial frequency axes and take the inverse Fourier
transform. We convert to log polar coordinates so that
the cortical filters at all log frequencies and orientations
have the same shape, allowing simple convolution in
step (c) (Watson & Solomon, 1997, use a similar trick).
In this version of target-dependent filtering, we did not
include the effect of the ganglion cell surround because
the lowest frequency (DC) is automatically removed by
the log-Gabor cortical filtering. However, we have
preliminary results that include both center and
surround, and the quality of the Model predictions is
similar.

The narrowband component is given by

PnbðxÞ ¼
X

y

r2
nbðyÞETðy; xÞ ð8Þ

where ET(y;x) is the blurred spatial envelope of the
target, and the blurring depends on retinal location
(i.e., envelope size increases with eccentricity). The
filtered ganglion cell responses are weighted by the
blurred envelope of the target under the plausible
assumption that only the background power falling
within some spatial neighborhood of the target will
have a masking effect. The envelope is defined to be the

Figure 4. Effective masking power of responses to a 1/f noise

background for a Gabor target. Shown is a cross-section of the

average masking power as a function of orientation at one

spatial frequency (solid curve).
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2-D Gaussian (with arbitrary covariance matrix) that
best fits the absolute value of the target (see Appendix).
The blurred envelope is obtained by convolving the
envelope with a 2-D Gaussian having a SD of the
ganglion cell center rc (see Appendix).

The broadband component is the power in the
ganglion cell responses that contributes to masking but
is not spatial frequency and orientation dependent.
Such a broadband component is consistent with
divisive contrast gain control (normalization) observed
in cortical neurons (Albrecht & Geisler, 1991; Car-
andini & Heeger, 2012; Carandini et al., 1997; Geisler &
Albrecht, 1997; Heeger, 1991, 1992; Sit et al., 2009) and
with the psychophysical literature (Foley, 1994; Goris
et al., 2013; Watson & Solomon, 1997). The broadband
component is given by

PbbðxÞ ¼
X

y

rBðyÞ � r0½ �2ETðy; xÞ ð9Þ

where r0 is the response of a ganglion cell to a uniform
background, which is a constant that depends only on
the relative weight of center and surround: r0¼ 2wc� 1.
Subtraction of r0 guarantees that Pbb is zero for
uniform backgrounds. Note that Pnb is also zero for
uniform backgrounds because the spatial frequency
tuning of the cortical neurons is log Gabor (which goes
to zero at zero spatial frequency). Generally, the
masking power of the background is greatest when the
weight on the narrowband component is zero (upper
dashed line in Figure 4) and least when the weight on
the broadband component is zero (i.e., when the solid
curve touches the baseline in Figure 4).

Pooling

We assume that the pooled response is given by the
following formula:

rpooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

jrTðxÞjqq

r
reff

ð10Þ

where q is a pooling exponent, and reff ¼
ffiffiffiffiffiffiffiffi
Peff

p
is the

effective masking contrast. If one regards the effective
masking contrast as an equivalent noise (Burgess &
Colborne, 1988; Eckstein et al., 1997a; Lu & Dosher,
1999, 2008), then rpooled can be regarded a signal-to-
noise ratio. In this case, if the pooling exponent is 2.0,
then Equation 10 is the standard formula for optimal
pooling of statistically independent Gaussian signals
(‘‘d0 summation’’). Following others (Graham, 1977;
Quick, 1974; Watson, 1979; Watson & Ahumada,
2005), we allow the pooling exponent to be greater than
2.0 (which is suboptimal) although for the current

model the estimated exponent is only slightly larger, 2.4
(see later).

Detectability and contrast threshold

The last step is to specify the relationship between
the pooled response, detection threshold, and detect-
ability. For the purpose of predicting detection
performance, we define the contrast of the target in the
standard way as the target amplitude (peak gray level)
divided by the mean background gray level of the
whole screen. We define detection threshold ct to be the
contrast of the target at which the signal-to-noise ratio
given by Equation 10 is equal to 1.0, which corresponds
to 69% correct. In other words, the predicted contrast
threshold is the solution to the equation

rpooledðctÞ ¼ 1 ð11Þ
Although this equation gives the threshold, another

parameter b is required to predict the steepness of the
psychometric function. Specifically, we assume that
detectability has the form

d0ðcÞ ¼ rb
pooledðcÞ ð12Þ

Note that at threshold, d0(ct)¼ rpooled(ct) ¼ 1. In the
model, for a given target and background, the pooled
response is linear with target contrast and hence it is
easy to show that

d0ðcÞ ¼ ðc=ctÞb ð13Þ
Using the usual formula from signal detection theory

(Green & Swets, 1966), the predicted psychometric
function is given by

pcorrðcÞ ¼ U
1

2
d0ðcÞ

� �
¼ U

1

2
ðc=ctÞb

� �
ð14Þ

where U(z) is the standard normal integral function
(this assumes optimal criterion placement).

Note that for expository purposes we regard reff as
an equivalent noise. However, it could also be
regarded as a deterministic gain control, which would
make rbpooledðcÞ a deterministic signal. A constant late
decision noise would then also give Equations 12
through 14.

In sum, the contrast thresholds predicted by the
model are determined by only eight parameters. Five of
these parameters, kc, ks, wc, P0, and q, determine the
predicted contrast thresholds for uniform backgrounds
at all retinal locations. The additional three parameters,
rL, kb, and wb, determine predicted thresholds for more
complex backgrounds. A ninth parameter b is needed
for predicting values of detectability (d0) that do not
correspond to the 69% correct threshold.

Journal of Vision (2014) 14(12):22, 1–22 Bradley, Abrams, & Geisler 6



Implementation

Although the RV1 model is relatively simple
conceptually, programming an efficient implementation
is nontrivial, especially if one would like to rapidly
compute detectability for all possible target locations
and/or fixation locations for a wide range of targets
and backgrounds. The primary difficulty is that all the
linear weighted summations (except the optics) are shift
variant (they change with location relative to the point
of fixation). To make the computations efficient, we use
multiresolution stacks. Specifically, we fix the target
and background images at a canonical location,
centered at x ¼ (0,0), and then convolve each image
separately with a series of Gaussians having SDs that
incrementally increase in powers of two. This set of
images forms a stack of successively blurred images,
each corresponding to a particular discrete SD (reso-
lution). We precompute and save these stacks for each
target and background image to be processed. For each
target image, we also precompute and save the target-
specific spatial frequency filter corresponding to each
level of the target stack. Once these stacks are
computed and stored, they can be interpolated to
rapidly determine the local luminance function, the
ganglion cell target response function, and the ganglion
cell effective background response function for any
target location and fixation location. Specifically, each
fixation location and target location specifies a spatial
region of the background as well as the spatial
coordinates of the samples (ganglion cells) covering
that region. The location of a sample specifies a
particular continuous SD (resolution). That resolution
will fall between two neighboring resolutions in the
stack. The value at the sample location is obtained by
linearly interpolating between the two values in these
neighboring resolution images. This procedure provides
a close approximation to the exact calculations. A
MatLab implementation of the model is available at
http://natural-scenes.cps.utexas.edu/.

Parameter estimation

To estimate model parameters, we minimized the
squared error between the measured and predicted
contrast thresholds expressed in log units (dB). Let ci be
the observed contrast threshold (in dB) for condition i,
and let ĉi(h) be the predicted contrast threshold for
parameters h. We minimize the sum of the squared
errors S(h), and thus, ĥ ¼ arg minh S(h). When the
background is fixed (e.g., a uniform background), this
minimization is straightforward. However, when the
background randomly varies from trial to trial (the 1/f
noise and natural backgrounds), it is not practical to
generate a predicted model response for each trial for

each vector of parameter values evaluated during the
parameter search.

To handle the case of variable backgrounds, we use
the following procedure. First, we pick a random
background patch for each background condition and
then obtain estimates ĥ1. Once these estimates are
obtained, we generate the predicted threshold ĉij(ĥ1) for
each specific background patch j in each condition i.
Then, for each condition, we rank order the thresholds
and select the patch having the median threshold. Let
this patch be ji. We then estimate the parameters again,
where the fixed patch for condition i is ji. These
estimates are ĥ2. We repeat this process until the
estimated parameters converge (usually just a couple of
iterations). Simulations show that this procedure is
effective in finding the optimal parameters.

Once the optimal parameters are estimated, a
predicted threshold is computed for every background
patch in every condition. The predicted threshold for a
particular condition is the average of the predicted
thresholds for all the background patches in that
condition.

Experiment: Measurement of
detectability in 1/f noise and
natural backgrounds

The goal of our model is to accurately predict
detection thresholds for localized targets in arbitrary
natural backgrounds at arbitrary locations in the visual
field. To test the accuracy of the predictions, we
measured contrast detection thresholds in a single-
interval forced choice (yes/no) paradigm for three
target stimuli (Gabor, Gaussian, and Edge) presented
at four retinal eccentricities (08, 2.58, 58, and 108) along
the horizontal meridian in the right visual field in three
different types of background (uniform, 1/f noise, and
natural image). The 1/f noise and natural image
backgrounds were presented at RMS contrast levels of
7.5% and 15%. The yes/no task was used because it is
more typical of real-world tasks in which one is not
given the opportunity to compare the image with and
without the target present. Also, more like natural
tasks, the sample of 1/f noise and natural image
background was different in each trial. Thresholds were
measured for three observers (two were authors).

The targets were chosen because they represent three
broad categories of targets: narrowband in frequency
and orientation (Gabor), broadband in spatial fre-
quency and orientation (Gaussian), and narrowband in
orientation and broadband in frequency (Edge).

The background types were chosen to vary in the
degree of similarity to natural backgrounds. Natural
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backgrounds are extraordinarily complex, differing
from uniform backgrounds along a number of different
dimensions. One dimension is the shape of the average
amplitude spectrum, which typically falls off inversely
with spatial frequency (D. J. Field, 1987). Thus, as a
first approximation to natural backgrounds, we used
random noise backgrounds that have a 1/f amplitude
spectrum.

The 1/f noise backgrounds are isotropic and
stochastically stationary across space. However, natu-
ral backgrounds tend to vary across space in lumi-
nance, contrast, spatial frequency, orientation, and
phase structure. Our second (closer) approximation to
natural backgrounds was to include the spatial
frequency, orientation, and phase structure but to
control the variations in local luminance and contrast.
To do this, we adjusted the gray scale histograms of
natural images to match those of 1/f noise with 7.5%
and 15% contrast (see Stimuli). These ‘‘Gaussianized’’
natural images appear remarkably naturalistic (see
Figure 13A in Discussion), and comparing detection
performance in 1/f noise with that in Gaussianized
natural images allows us to isolate the effects of spatial
frequency, orientation, and phase structure.

In future studies, we plan to measure detection
thresholds in unaltered natural backgrounds, but we
focused first on Gaussianized backgrounds because
they are more useful for testing our model. Because of
the large variations in local luminance and contrast in
natural images, there are many trials, even for a fixed-
amplitude target, in which the target will be either
trivially detectable or trivially impossible to detect.
Performance in such trials is easier for a model to
predict, making unaltered natural images less useful.

Stimuli

Eight-bit gray scale images were displayed on a
calibrated monitor (Sony Trinitron, GDM-FW900) at
a resolution of 1920 · 1080 pixels and a frame rate of
60 Hz noninterlaced. The monitor was placed 168 cm
from the eyes, and all stimuli were displayed at 120
pixels/8. The graphics card lookup table was set to
produce 256 linear steps in luminance with a mean
luminance of 18 cd/m2.

There were three target stimuli in our Experiment:
Gabor, Gaussian, and Edge. The Gabor was horizontal
at 4 c/8 in cosine phase and had a bandwidth of one
octave. The Gaussian had a SD of 8.43 arcmin. The
Edge was horizontal and windowed with a Gaussian
having a SD of 0.58. These three targets were taken
from the ModelFest stimulus set (ModelFest stimuli
#12, #27, and #30, see Watson & Ahumada, 2005).

Targets were presented at the center of a 512 · 512
background located within a larger mean luminance

background (18 cd/m2, 1920 · 1080). The target
contrast is defined to be the difference between the peak
and background luminance divided by the background
luminance (18 cd/m2). Depending on the background
condition, the 512 · 512 background was either set to
mean luminance or randomly selected from either large
1/f noise images (1280 · 1280) or from one of 10 large
(4284 · 2844) ‘‘Gaussianized’’ natural images. In all
conditions, the pixels on the edge of the 512 · 512
background were set to black; this created a 1-pixel-
wide box that cued the location of the background
under all conditions. Detection measurements were
obtained for uniform backgrounds and for 1/f noise
and natural backgrounds of 7.5% and 15% RMS
contrast (i.e., five background conditions).

The natural images were randomly selected from a
set of 1,200 calibrated natural images (available at
www.cps.utexas.edu/natural_scenes), and both the 1/f
noise and natural images were converted to eight-bit
gray scale. The natural images were ‘‘Gaussianized’’ by
matching their gray scale histograms to a 1/f noise
image. The first step was to rank-order the pixels in
each image according to gray level from smallest to
largest. Note that for each specific gray level, the
fraction of pixels having that gray level will differ
between the two images. The goal was to make the
fraction of pixels at each gray level in the natural image
the same as that in the 1/f noise image. This was done
in the second step by applying the following mapping:
gi ¼ fj, where gi is the gray level of the natural image
pixel having rank order i out of a total of N pixels, fj is
the gray level of the 1/f noise pixel having rank order j
out of a total of M pixels, with j¼diM / Ne. (Note that
N . M, and dxe is the ‘‘ceiling’’ function.) This
mapping preserved the spatial frequency, orientation,
and phase structure of natural images but allowed us to
select patches from Gaussianized natural images with
similar mean luminance and contrast as patches
selected from our large 1/f noise images. Specifically,
for each randomly selected 512 · 512 patch of 1/f noise
used in the Experiment, we randomly selected a patch
of Gaussianized natural image having approximately
the same mean luminance (the mean luminance differed
by a maximum of 1.45 cd/m2); the RMS contrasts of
the two patches were set to the same value (i.e., 7.5% or
15%).

Procedure

Psychometric functions were measured in a single-
interval, blocked, forced choice paradigm in which the
observer judged whether a target was present or absent
at the center of the background. Each psychometric
function was based on at least 240 trials, collected in
separate sessions of 120 trials each. For a given
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condition in a session, four blocks of 30 trials each were
run in descending order of target contrast. Eye position
was monitored using an Eyelink 1000 eye tracker. If eye
position deviated by more than 18 from the fixation dot,
the trial was discarded and another trial added to the
block.

Each 30-trial block began with a standard nine-point
calibration procedure for the eye tracking. After the
calibration procedure, the observer was required to
hold fixation on a fixation dot for each of the 30 trials
in the block. Each trial began with a 500-ms interval in
which the background location was cued with a 1-pixel-
wide black square outlining the background area. In
conditions in which the target location was the center
of the fovea, the fixation dot was extinguished 100 ms
before onset of the test stimulus. The test stimulus
consisted of a 250 ms presentation of either back-
ground or background-plus-target. At the end of this
interval, there was a 2-s response window (mean
luminance background) during which the observer
could signal ‘‘target present’’ or ‘‘target absent’’ by
pressing one of two buttons. Failure to respond led to
the trial being replaced with a new one; this occurred
less than 1% of the time. Feedback was given at the end
of the 2-s response window with a high tone
representing ‘‘correct’’ and a low tone representing
‘‘incorrect.’’ The next trial began immediately after
feedback was given.

Psychometric functions were measured for 60
separate conditions (three stimuli · four eccentricities
· five background conditions). The psychometric
functions with uniform and 1/f noise backgrounds were
measured in a random order. Then the psychometric
functions for the Gaussianized natural backgrounds
were measured in a random order.

Fitting psychometric functions and thresholds

As mentioned earlier, we used a yes/no task because
it is more typical of natural conditions. Performance in
all forced choice tasks can be influenced by criterion
bias, but yes/no tasks are often thought to be more
susceptible. Therefore, for each condition, we obtained
maximum likelihood estimates of the threshold (ct),
steepness parameter (b), and criterion (c). Consistent
with Equation 14, the probability of a hit is given by

Ph ¼ U
1

2

c

ct

� �b

�c

 !
ð15Þ

and the probability of a false alarm by

Pfa ¼ U � 1

2

c

ct

� �b

�c

 !
ð16Þ

Thus, the log likelihood of all the responses from a
condition is

ln Lðct; b; cÞ ¼
Xn
i¼1

NhðciÞln PhðciÞ

þ NmðciÞln
�

1� PhðciÞ
�

þ NfaðciÞln PfaðciÞ

þ NcrðciÞln
�

1� PfaðciÞ
�

ð17Þ

where n is the number of contrast levels of the target,
and Nh(ci), Nm(ci), Nfa(ci), and Ncr(ci) are the numbers
of hits, misses, false alarms, and correct rejections, for
contrast level ci. We first estimated the parameters by
maximizing Equation 17. We found that the values of
the steepness parameter were consistent across con-
ditions (see Results) and that there were no systematic
variations in the criterion across conditions for a
given observer. Thus, the final thresholds for each
observer were obtained by setting the steepness
parameter to the average across all subjects and
conditions, setting the criterion to the average across
conditions for that subject, and then finding the
maximum likelihood estimate of the thresholds using
Equation 17. Importantly, the pattern of thresholds
was robust across different versions of this analysis
(including ignoring criterion effects and only analyz-
ing percent correct).

Results

Maximum likelihood fits of Equations 15 and 16 to
the psychometric data were used to obtain the
estimated contrast threshold ct for each of the 60
conditions. Figure 5 plots the square of the estimated
contrast thresholds (threshold power) as a function of
the square of the background contrast (background
power). The open circles represent the average thresh-
olds of three observers for three target stimuli
(columns) presented at four retinal eccentricities
(colors) in 1/f noise and Gaussianized natural back-
grounds (rows). The colored lines are linear fits to the
data (not Model predictions). Note the thresholds
measured in uniform backgrounds (background con-
trast of zero) are the same in both rows of plots and
that the vertical scales are different for the different
targets. The estimated criterion (bias) for the three
observers in units of d0 were 0.362 (JSA), 0.228 (CKB),
and 0.277 (SPS).

Two principles of masking are suggested by these
plots: (a) threshold contrast power increases linearly as
a function of background contrast power, and (b) the
slope of the best fitting line increases as a function of
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retinal eccentricity. Figure 6 shows more clearly how
well our data are described by linear masking functions.
In this figure, the data from each subject has been
normalized so that the linear fits have an intercept of 0
and a slope of 1; also shown are the average thresholds
(Figure 6a). If threshold contrast power is a linear
function of background contrast power then the
normalized data points should fall on a line of slope 1
through the origin (black line).

Although not easily seen in Figure 5, the intercepts
of the masking function also increase with retinal
eccentricity. Figure 7 plots the intercept as a function of
retinal eccentricity for each type of target. The
intercepts tend to increase exponentially with eccen-
tricity (solid curves).

In general, the thresholds in 1/f noise and in
natural backgrounds are similar (see Figure 5).
However, for the Gabor and Edge targets, masking
was somewhat greater in the natural backgrounds.
This can be seen clearly in Figure 8, which plots
threshold in 1/f noise as a function of threshold in
natural backgrounds separately for each target. The
points for the Gaussian target fall near or slightly
below the diagonal, but the points for the Gabor and
Edge target fall above the diagonal. Even though the

points do fall off the diagonal, they fall roughly on
straight lines, indicating that thresholds in 1/f noise
and natural backgrounds differ approximately by a
fixed proportionality constant that depends on the
target.

The slopes of the psychometric functions were fairly
constant over the 60 conditions. Figure 9a shows that
the steepness parameter varies little across the three
types of target. Figure 9b plots the average steepness
parameters of the three targets for all background and
retinal eccentricity conditions. On average, there is a
slight trend for the parameter to increase with
eccentricity. Overall, the average steepness parameter is
1.685. We take this average parameter value to be the
estimate of b in the RV1 model.

Model predictions

In fitting the model to the estimated thresholds we
use Equation 11 and then Equation 14 if we need to
predict thresholds for a different criterion percentage
correct (e.g., 82% rather than 69%). In what follows, we
estimate a subset (five) of the parameters by fitting the

Figure 5. Detection threshold measurements for three different targets at four different eccentricities as function of background

contrast power for 1/f noise and natural backgrounds. Data points are the average of three observers. The solid lines are best fitting

linear functions.
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Figure 6. Normalized contrast threshold power as a function of background contrast power for all experimental conditions.

Figure 7. Threshold contrast power as function of eccentricity when background is uniform. Solid curves are best fitting exponential

functions.
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model to the average thresholds (based on 16 observ-
ers) reported in the ModelFest study. Keeping these
parameters fixed (except for P0 that scales all thresh-
olds up and down), we estimate the remaining three
parameters by fitting the average thresholds from the
present Experiment. Finally, in the Discussion section,
we keep the parameters fixed (except for P0) and
generate predictions for the results of Foley et al.
(2007).

Figure 10 shows the predictions of the RV1 model
(red line) to the ModelFest data set (black points),
which is the average contrast thresholds of 16 observers
across 10 labs for foveal detection of 43 target stimuli in
a uniform background. The thresholds in the Mod-
elFest set are based on an 82% correct criterion. The
thresholds are plotted in dB units. Thus, a 6-dB
difference in threshold corresponds to a factor of two in
contrast threshold. The RMS error of the model is
comparable to the RMS error of the better models
tested by Watson and Ahumada (2005). Recall that
these predictions depend on five parameters: three that
control the relative size and strength of the center and
surround, a pooling exponent, and a baseline noise

parameter. The values of the parameters are given in
the figure caption.

Figure 11 shows the predictions (solid curves) of the
model for the present Experiment (plotted in dB units
rather than contrast power as in Figure 5). The open
circles show the average contrast thresholds of the three
observers for three target stimuli (columns) as a
function of retinal eccentricity for three background
contrasts (colors) in 1/f noise and Gaussianized natural
backgrounds (rows). The plotted thresholds for detec-
tion in the uniform background (black open circles) are
the same in both rows. In order to maximize
compatibility with the ModelFest data, these thresh-
olds are also based on the 82% correct criterion. In
fitting these data, we kept the parameters values
obtained from fitting the ModelFest data with the
exception that we allowed the baseline noise parameter
P0 to change. The only effect of the baseline noise
parameter is to shift the predictions for uniform
backgrounds vertically on the dB axis. Although we
allowed the baseline noise parameter to vary, the
estimated value was well within the range of individual

Figure 8. Threshold in Gaussianized natural images as a function threshold in 1/f noise for all conditions for the three subjects: CB

(green symbols), SS (blue symbols), and JA (red symbols). Dashed curve is best fitting line through the origin.

Figure 9. Psychometric function slope parameter. (A) Average slope parameter values for three types of target. (B) Average slope

parameter as function of eccentricity for type of background and background contrast.
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differences for that parameter in the ModelFest data
set.

Recall that the model has three additional parame-
ters for predicting thresholds in nonuniform back-
grounds: overall pattern masking strength, the relative
weight of the narrowband and broadband components,
and the spatial area for local luminance gain control.
Again, the values of the estimated parameters are given
in the figure caption.

As can be seen, the model captures most of the
variance in the thresholds but is qualitatively more
accurate for the Gaussian and Edge targets than for
the Gabor target. Note that the foveal thresholds for
the three targets on the uniform background are
similar to those in the ModelFest data set (our targets
correspond to ModelFest stimuli #12, #27, and #30 in
Figure 10).

Discussion

We describe an attempt to develop a computation-
ally efficient (practical) model that can predict the
detectability of spatially localized targets presented at
arbitrary retinal locations in arbitrary backgrounds, in
which the target and retinal location are known to the

Figure 10. Predictions for ModelFest data set. Data points are

average contrast thresholds of 16 observers in 10 labs for 43

different targets. The solid curve is the prediction of the RV1

model. Parameter values: kc¼ 1, ks¼ 10.1, wc¼ 0.53, q¼ 2.4, b

¼ 1.685, P0 ¼ 1.4E�3. Note that changing P0 translates the

entire predicted curve vertically on the logarithmic (dB) scale.

Threshold contrast in dB ¼ 20log(ct), where here ct is the 82%

correct contrast threshold (RMS error¼ 1.09 dB).

Figure 11. Predictions for the data from the present Experiment. Data points are the average contrast thresholds of three observers

for 60 different conditions (three targets · four eccentricities · three background contrast levels for two kinds of background; the

0% background contrast is a uniform field, and hence, the black points are the same in the upper and lower plots). Error bars

represent 62 standard errors (across observers). Parameter values: kc¼ 1, ks¼ 10.1, wc¼ 0.53, q¼ 2.4, b¼ 1.685, P0¼ 4.45E�4, rl¼
18, kb¼ 25, wb¼ 0.962. The first six parameters are the same as in Figure 10 except for P0, which accounts for (modest) differences in

overall sensitivity between groups of observers (RMS error ¼ 2.27 dB).
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observer. The model is based directly on known optical,
retinal, and V1 properties of the human/primate visual
system, and hence, there are only nine free parameters:
the spatial extent and relative weight of ganglion cell
center and surround mechanisms; the spatial extent of
local luminance gain control; the strengths of the
baseline, broadband, and narrowband masking power;
a response-pooling exponent; and a parameter con-
trolling the slope of the psychometric function. We find
that the model is computationally efficient and does a
respectable job of predicting detection performance for
a wide range of targets on uniform, 1/f noise, and
natural image backgrounds for retinal eccentricities
ranging from 08 to 108.

Uniform backgrounds

The predictions of the RV1 model for uniform
backgrounds are determined by six parameters. One of
these parameters, b, was determined from the average
steepness of the psychometric functions in the Exper-
iment reported here. We find b¼ 1.685, which we note
corresponds to a Weibull slope parameter of 2.13. The
remaining five parameters can be estimated from the
detection thresholds measured on uniform back-
grounds in the fovea. To estimate these parameters we
fit the ModelFest data set, which consists of foveal
detection thresholds measured for 43 different targets
on 16 observers in 10 different laboratories. The fit of
the model to the ModelFest data is good, comparable
to (slightly worse than) the best nonphysiologically
based models (see Watson & Ahumada, 2005).

The estimated parameters for the midget ganglion
cell receptive fields are reasonably consistent with the
anatomy and physiology of the primate retina. Our
psychophysical estimate of the SD of the ganglion cell
center mechanism rc is almost exactly equal to the
spacing between the (on or off) midget ganglion cells,
which in the central visual field is approximately equal
to the spacing between the photoreceptors (about a half
minute of arc). This is consistent with the anatomical
finding that in the central visual field a midget ganglion
cell synapses with one midget bipolar cell, which
synapses with one cone photoreceptor. The measured
width of center mechanisms with single-unit recording
is larger than a single cone, but the larger size is
expected because of the effect of the optical psf; the
measured center mechanism should be the convolution
of the physiological center mechanism and the optical
psf. Croner and Kaplan (1995) report that in the central
58 the median SD of the center mechanism is 0.038 and
of the surround mechanism is 0.188 (about six times
larger than the center). We computed the effective
center SDs for our model and find that they range from
0.0218 at 08 eccentricity to 0.0388 at 58 eccentricity,

spanning the value reported by Croner and Kaplan.
Similarly, the effective surround SD for the model
ranges from 0.0778 (3.6 times larger than center) at 08

eccentricity to 0.38 (7.9 times larger) at 58 eccentricity.
Finally, Croner and Kaplan report that the relative
weight on the center mechanism wc is about 0.64
whereas our estimate is 0.53. Thus, we also find greater
weight for the center mechanism but not by as large a
factor.

The ModelFest data set only contains measurements
made in the center of the fovea. In the present
Experiment, we made measurements for three of the
ModelFest targets at four eccentricities (black circles in
Figure 11) and obtained reasonable predictions (solid
curves) without altering parameters except that we
allowed the baseline masking power P0 to change from
1.4E-3 to 4.5E-4 to account for modest differences in
overall sensitivity among different groups of observers.

As a further test of the model, we generated
predictions for the detection thresholds reported in
Foley et al. (2007). In their experiment 1, Foley et al.
measured thresholds for vertical 4 c/8 Gabor targets at
retinal eccentricities ranging from�58 to 58 along the
horizontal meridian. In three observers, thresholds
were measured for a cosine-phase Gabor having an
envelope SD of 0.258. In two other observers,
thresholds were measured for a sine-phase Gabor
having an envelope SD of 0.188. The symbols in Figure
12A show the average thresholds. The solid curve
shows the prediction of the RV1 model without altering
parameters except for the baseline masking power (see
figure caption). In their experiment 2, Foley et al.
measured thresholds in the fovea for 4 c/8 Gabor
targets in cosine phase (Figure 12B), sine phase (Figure
12C), and anticosine phase (Figure 12D) for various
areas and aspect ratios in two observers. The blue
symbols show the thresholds for Gabor targets with a
radially symmetric envelope. In this case, the horizontal
axis gives the SD of the envelope in all directions. The
red symbols show the thresholds for Gabor targets that
are elongated parallel to the orientation of the grating.
In this case, the horizontal axis gives the SD of the
envelope in the parallel direction, with the SD in the
perpendicular direction fixed at 0.258. The green
symbols show the thresholds for Gabor targets that are
elongated perpendicular to the orientation of the
grating. In this case, the horizontal axis gives the SD in
the perpendicular direction, with the SD in the parallel
direction fixed at 0.258. The solid curves show the
predictions of the RV1 model.

We have only evaluated the predictions of the model
out to 108 eccentricity. However, if it works well over
this range, then the literature suggests that it would
apply over a wider range (Peli, Yang, & Goldstein,
1991).
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The relatively good fit of the model to all the
uniform background data and the reasonable agree-
ment of the estimated parameters with retinal anatomy
and physiology suggest that optical and retinal factors
may be the primary factors causing the variation in
detection thresholds across different targets on uniform
backgrounds. This is not implausible given that the
optic nerve is arguably the major information trans-
mission bottleneck in the visual pathway, making it
possible for cortical circuits to process the ganglion cell
responses with relatively constant efficiency across the
different targets. The largest errors (underestimates) of
the thresholds in Figure 10 occur for the two spatially
complex targets (binary noise, #34, and cityscape, #43),
for which it is reasonable to expect reduced central
efficiency in pooling all the relevant features.

Patterned backgrounds

The predictions of the RV1 model for patterned
backgrounds depend on three additional parameters.
To estimate these remaining parameters and provide a

further test of the model, we measured psychometric
functions for Gabor, Gaussian, and Edge targets at
four different eccentricities in uniform backgrounds in
1/f noise backgrounds and in natural backgrounds
whose gray scale histogram has been adjusted to match
that of 1/f noise. The predictions are good but slightly
poorer for the Gabor target than for the Gaussian and
Edge targets (see Figure 11). It is interesting to note,
however, that the average thresholds reported by Foley
et al. (2007) for the Gabor target (Figure 12a) increase
slightly faster with eccentricity in better agreement with
the RV1 model.

Perhaps the most remarkable result is that the model
does about as well predicting detection thresholds in
Gaussianized natural backgrounds as it does in 1/f
noise backgrounds and that the thresholds for the two
kinds of background are similar. The background
masking effects in the model are entirely based on the
narrowband and broadband power in the ganglion cell
responses, not on the specific phase structure, which
differs greatly between the natural image and 1/f noise
backgrounds. Perhaps the trial-to-trial variation in the
backgrounds is hiding the effect of the phase structure.

Figure 12. Predictions for data from Foley et al. (2007). (A) Threshold as a function of eccentricity for 4 c/8 radially symmetric Gabor

targets in sine phase (envelope SD¼ 0.258; two observers; P0¼ 5.4E�4) and cosine phase (envelope SD¼ 0.188; three observers; P0

¼ 1.3E�3). (B–D) Threshold as a function of envelope SD for 4 c/8 Gabor targets with a circular envelope, an envelope elongated

collinear with the grating, and an envelope elongated orthogonal to the grating (two observers; P0¼ 9.2E�4). Solid curves are the

predictions of the RV1 model with the same parameters as in Figure 10 except for P0, which accounts for (modest) differences in

overall sensitivity between groups of observers (RMS error ¼ 1.28 dB).
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That is, thresholds may be similar in the two types of
background only because in some trials the phase
structure helps detection and in other trials it hurts
detection. However, if this were true, then one might
expect shallower psychometric functions for natural
backgrounds. In fact, the slope parameter of the
psychometric functions is similar for uniform, 1/f noise,
and Gaussianized natural backgrounds (see Figure 9).
It would appear that for Gaussianized natural back-
grounds, the complex phase structure of natural
backgrounds has, practically speaking, a relatively
minor effect on detection thresholds.

A limitation of our test of the RV1 model for
patterned backgrounds is that it is based on data for
only three different targets. However, note that the
pattern-masked thresholds for these three targets tend
to parallel (on a log scale) the thresholds obtained on a
uniform background (see Figure 11). This suggests that
the pattern-masked thresholds for other ModelFest
targets would also tend to parallel those obtained on a
uniform background. Thus, it seems likely that the
predictions of the RV1 model would be of similar
accuracy for the other ModelFest targets given the
accuracy of its predictions for the other ModelFest
targets on uniform backgrounds.

Components in the model and components not
in the model

The RV1 model contains a number of different
components, and they each play an important role in
the predictions. The optical psf has a substantial effect
on the shape of the contrast sensitivity function (CSF)
(especially the high-frequency falloff) and on how
rapidly thresholds rise with eccentricity; thresholds for
high-frequency targets would rise more rapidly without
the effect of the optics because the effective ganglion
cell center size would grow more rapidly.

Obviously, the discrete sampling function has a big
effect. The number of samples declines rapidly with
eccentricity, and hence, the maximum amount of
retinal image information transmitted by the ganglion
cells for high-frequency and broadband (e.g., natural or
1/f noise) images drops rapidly.

The continuous variation in ganglion cell receptive
field size with the sample spacing is also important. For
example, consider the CSF in the fovea. In Figure 10,
the thresholds for stimuli 1 through 10 give the CSF for
targets with a fixed spatial extent, and the thresholds
for stimuli 11 through 15 give the CSF for targets with
a fixed numbers of cycles. These CSFs are not well
approximated by a difference of Gaussians (Watson &
Ahumada, 2005), which is the shape of the ganglion cell
receptive fields. The relatively accurate prediction of
the RV1 model is due in part to the fact that there is a

distribution of ganglion cell receptive field sizes falling
under the stimuli.

In agreement with the masking literature (Eckstein,
Ahumada, & Watson, 1997b; Foley, 1994; Watson &
Solomon, 1997), we find that both the narrowband and
the broadband masking components are important. If
the parameters are estimated with the weight on the
narrowband component set to zero (wb¼ 0.0, see
Equation 6), then the predictions are substantially
worse. Conversely, if the parameters are estimated with
the weight on the broadband component set to zero,
then predictions are also substantially worse. Although
the estimated weight is much higher on the narrowband
component (wb ¼ 0.962) than the broadband compo-
nent (1� wb¼ 0.038), they both play an important role.
In fact, the average total masking power due to the
broadband and narrowband components is about
equal across the three targets: wbPnb @ (1 � wb)Pbb.
More specifically, the average ratio of narrowband to
broadband masking power is smallest for the Gabor
target (0.165), intermediate for the Edge target (0.98),
and largest for the Gaussian target (2.27). Although we
find that both components are important in the current
version of the model, the result may depend on how the
target-dependent filter is computed. It is perhaps also
worth emphasizing that broadband and narrowband
components have no effect on the predictions for
uniform backgrounds.

There are some well-known components that are not
included in the RV1 model. One is a component that
would produce the oblique effect; foveal detection
thresholds tend to be higher for gratings oriented along
the diagonals (Campbell, Kulikowski, & Levinson, 1966;
McMahon & MacLeod, 2003). This effect is most likely
cortical in origin (McMahon &MacLeod, 2003). We left
out this component because the underlying anatomy and
neurophysiology are not well understood and because
including the oblique effect produces only minor
improvements in prediction accuracy for the stimuli
tested here (Watson & Ahumada, 2005). However, it
would not be difficult to include in the model.

A second missing component is one that would
produce the dipper effect: When the masker has the
same (or nearly the same) shape as the target, then the
detection threshold reaches a minimum (dips) when the
contrast of the masker is itself at or near detection
threshold (Legge & Foley, 1980). The dipper effect has
been modeled with an accelerating (or threshold)
nonlinearity prior to late noise (e.g., Foley, 1994; Goris
et al., 2013; Legge & Foley, 1980; Watson and Solomon
1997). We left out this component because it would
reduce the computational efficiency of the RV1 model
(which depends on linearity) and because the dipper
effect is likely to occur relatively infrequently under
natural conditions. The dipper effect would be poten-
tially present only in low background contrast regions,
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and it is reduced or disappears if the target and masker
differ in shape, which they generally do in 1/f noise or
natural images.

A third missing component is one that would produce
some of the stronger crowding effects: Identification of
targets can be strongly suppressed by the presence of
surrounding objects or textures that are sufficiently
similar to the target (for a review, see Levi, 2008). We
did not try to include explicit crowding mechanisms
because the current aim is to predict detection rather
than identification performance (detection is a special
case of identification). However, it is interesting that the
RV1 model is able to predict detection in natural
backgrounds without including the kinds of mechanisms
(extended feature or texture integration) thought to
underlie crowding. For example, natural backgrounds
are filled with edges of various scales and orientations,
yet threshold for the edge target across the visual field is
accurately predicted from only the background power
falling under the envelope of the target (note the
envelope expands slightly with eccentricity, see Appen-
dix). Like crowding paradigms, doesn’t detection in this
case involve identifying whether the specific target is
present as opposed to whatever other edge shape or
object might be at that location? (Recall that in the
present yes/no task, the observer does not get to
compare targetþ background with background alone.)
Perhaps the success of the model is because in natural
scenes (and in 1/f noise) the target is on average not very
similar to the background surrounding the target. This
raises the question: How important are crowding effects
when looking for specific targets in natural scenes? If one
takes an arbitrary target and adds it at a random
location in a natural image, then does the target tend to
be sufficiently similar to the surrounding background for
crowding effects to be strong relative to the more local
masking effects? It may be possible to answer this
question by analysis of natural image statistics. Of
course, in some natural cases, crowding effects are
known to be very important (e.g., reading) and in other
cases are likely to be very important (e.g., detecting
animals, which often mimic the backgrounds in their
natural habitat).

Comparison to previous models

The RV1 model borrows heavily from previous
models of pattern detection (as indicated by the
references in earlier sections) but has several unique
features. First, the model directly incorporates physical
measurements of the optics of the eye and of the
anatomy and physiology of retinal ganglion cells,
extending an earlier attempt to do this (Arnow &
Geisler, 1996). This approach exploits known physical
and physiological constraints and hence reduces the

number of free parameters. Second, there are few
models of pattern detection that explicitly model the
variation in spatial resolution across the visual field.
Indeed most models focus exclusively on detection in
the fovea, which reduces their generality and utility.
Third, the model takes into account the spatial
frequency and orientation selectivity of cortical popu-
lations (channels) by applying a target-dependent filter
(that varies with eccentricity) to the modeled ganglion
cell responses. This approach allows for very efficient
computation while still representing the information
processing carried out by the (very large) cortical
population. Fourth, the implementation of the model
makes extensive use of Gaussian stacks, which make it
possible to rapidly generate predictions for arbitrary
locations across the visual field even though the visual
system is highly inhomogeneous (shift variant).

There are a number of previous pattern masking
models that include narrowband spatial frequency
channel masking together with broadband contrast
masking (e.g., M. P. Eckstein et al., 1997b; Foley, 1994;
Goris et al., 2013; Rohaly, Ahumada, & Watson, 1997;
Watson & Solomon, 1997), and some of these have
been applied to detection of targets in natural
backgrounds (e.g., M. P. Eckstein et al., 1997b; Rohaly
et al., 1997). These models differ from the present
model in that they explicitly represent the spatial
frequency channels rather than implicitly with a target-
dependent filter, and they do not explicitly represent the
variation in spatial resolution across the visual field. As
mentioned above, the models of Foley (1994), Goris et
al. (2013), and Watson & Solomon (1997) include an
accelerating nonlinearity to account for the dipper
effect, which the present model does not.

Another class of pattern masking model is related to
ideal detection in noise (Burgess, 2011; Burgess et al.,
1981; M. P. Eckstein et al., 1997a; Legge et al., 1987;
Myers & Barrett, 1987; Zhang, Pham, & Eckstein,
2006). These models typically involve first characteriz-
ing the statistical properties of the backgrounds plus
any assumed internal noise properties or constraints
and then deriving a model (ideal) observer that is
optimal given those statistical properties and con-
straints. This is a more principled approach that often
yields nearly parameter-free predictions and can
provide deeper insight into neural computation (Geis-
ler, 2011). This approach has been extensively devel-
oped in the area of medical imaging perception (e.g.,
see Burgess, 2011; Samei, 2010; Zhang et al., 2006). The
RV1 model does not directly consider the statistical
properties of backgrounds and hence is not an ideal
observer model; however, it borrows from this ap-
proach by regarding the baseline, narrowband, and
broadband masking effects as a combined equivalent
noise in a signal-detection framework. In the future, an
ideal observer analysis that includes the biological
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constraints represented in the RV1 model may provide
deeper insights into, and new predictions for, the neural
computations underlying pattern detection in natural
scenes. Nonetheless, the RV1 model may prove useful
because it is (a) based directly on known biological
constraints, (b) contains few parameters, (c) is exten-
sible, (d) takes images of the background and target as
input and produces a predicted performance (d0) or
predicted response (yes/no) as output, (e) can generate
predictions across the visual field for arbitrary back-
grounds, and (f) is computationally efficient.

Detectability maps

The computational efficiency of the RV1 model
makes it possible to generate maps of target detect-
ability across the visual field for arbitrary backgrounds.
Figure 13A shows a Gaussianized natural image that is
248 across. Figure 13b through d illustrates three
different types of detectability (d0) map.

Figure 13B shows the d0 map for all possible
locations of a fixed-contrast 4 c/8 Gabor target given
fixation in the center of the image (0,0). As can be seen,
d0 is predicted to be higher near the fixation point but
also to vary greatly depending on the background
content at the target location. Such d0 maps for target

location may be useful in making predictions for a
single fixation search, in which the observer’s task is to
detect the target during a single brief presentation when
the location of the target is uncertain. For example,
these location d0 maps could be used to determine the
best possible search performance, assuming perfect
parallel processing of all potential target locations. This
is a critical baseline analysis for interpreting the results
of visual search and attention experiments (e.g., see
Eckstein, 2011; Geisler & Cormack, 2011).

Figure 13C shows the d0 map for all possible fixation
locations given that the target location is at the center
of the image. In this case, d0 falls smoothly away from
the target location. This fixation d0 map is closely
related to the conspicuity area—the spatial region
around a target where it can be detected in the
background (Bloomfield, 1972; Engel, 1971; Geisler &
Chou, 1995; Toet, Kooi, Bijl, & Valeton, 1998). The
conspicuity area can be defined as the area of the region
where d0 exceeds some fixed criterion. Previous studies
(Geisler & Chou, 1995; Toet et al., 1998) have shown
that there is a strong negative correlation (on the order
of �0.8 to �0.9) between the conspicuity area and the
time it takes humans to locate the target even in natural
scenes (Toet et al., 1998). This is a powerful result of
theoretical importance and of potential practical value.
But to be of practical value, one must know the

Figure 13. Detectability maps for a 4 c/8 Gabor target. (A) Gaussianized natural image. (B) Detectability (d0) of the target at all

locations within the dashed box in (A) given fixation at the center of the scene. (C) Detectability of the target presented in the center

of the scene for all possible fixation locations within the dash box in (A). (D) Detectability of the target at all locations within the dash

box in (A) given fixation at the location of the target. The target contrast was fixed within each map but was set so that d0 reached a

maximum of 4.5.
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conspicuity area for the particular target at its
particular location in the background. The RV1 model
might prove useful for estimating conspicuity areas
without having to directly measure them in preliminary
psychophysical experiments.

Finally, Figure 13D shows the d0 map for all possible
target locations when the observer is directly fixating
the target. Such foveal d0 maps could be used to
determine the best possible search accuracy for a given
target in a given background given unlimited search
time.

Keywords: spatial vision, detection, masking, periph-
eral vision, ganglion cells, natural images
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Appendix

Generation of ganglion cell mosaic

First, place a ganglion cell at the center of the fovea.
The algorithm then creates successive rings of ganglion
cells around that location. Begin by defining gk,n to be
the kth ganglion cell on ring n. The ganglion cell at the
fovea will be g1,1 (the only ganglion cell on ring 1).
Also, define C(gk,n) to be the circle centered at gk,n with
a radius (spacing) specified by the equation in Figure
2C (the radius depends on the retinal location of gk,n).
Two rules specify how all ganglion cells on ring n are
created given that ring n� 1 has been completed. For
each rule, there is a special case in which the fovea is the
previously created ring.

Rule 1: The first ganglion cell on ring n, g1,n, is
placed at the intersection furthest from the fovea
between C(gk�1,n�1) and C(gk,n�1), where k is a
randomly chosen positive integer at most as large as the
total number of ganglion cells on ring n� 1. The special
case in which n � 1¼ 1 (the central ganglion cell) is
handled by placing g1,2 at any randomly chosen point
on C(g1,1).

Rule 2: The kth ganglion cell on ring n, for k . 1, is
found by first identifying all intersections between
C(gk�1,n) and the circles of all ganglion cells on ring n�
1. In the special case in which n � 1 ¼ 1, there will be
only two such intersections, one clockwise and the
other counterclockwise from gk�1,n. In this case, choose
the intersection that is clockwise from gk�1,n as the
location for gk,n. In the more general case in which n�
1 . 1, we first find the subset of intersections between
C(gk�1,n) and the circles of all ganglion cells on ring n�
1 that lie counterclockwise from gk�1,n. The location of
gk,n is at the intersection (within this subset) that is
furthest from the fovea.

MatLab code for generating the array is available at
http://natural-scenes.cps.utexas.edu/.

Ganglion cell receptive fields

The center and surround mechanisms at retinal
location x are given by:
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gcðy; xÞ ¼ 1
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2pr2
s ðxÞ

exp �0:5
jjy� xjj2

r2
s ðxÞ

 !
ð19Þ

where ||�|| is the Euclidean norm (vector length).

Cortical filters

The filtering characteristics of cortical neurons are
assumed to be described by the product of a log Gabor
function in spatial frequency (Gaussian on a log spatial
frequency axis) and a Gaussian function in orientation,
in which the log Gabor has a spatial frequency
bandwidth at half height, bu, of 1.5 octaves and the
Gaussian has an orientation bandwidth at half height,
bh, of 408. The form of the functions is as follows:

Glogðu; u0; buÞ ¼ exp �lnð16Þ ðlog2 u� log2 u0Þ2

b2
u

" #

ð20Þ

Gðh; h0; bhÞ ¼ exp �lnð16Þ ðh� h0Þ2

b2
h

" #
ð21Þ

Target envelope

The envelope of the target was computed by first
finding the parameters of a scaled two-dimensional
Gaussian function g(y;u,R) that best fits the absolute
value of the target:

l̂; R̂; k̂ ¼ argmin
l;R;k

X
jTðyÞj � kgðy;l;RÞ½ �2 ð22Þ

where l is the mean vector, R is the covariance matrix,
and g(y;u,R) has a volume of 1.0. To obtain the
envelope for a given retinal location, we then blurred
this Gaussian with another Gaussian (of volume 1.0)
having the size of the ganglion cell center at that retinal
location rc(x). Thus the envelope (which also has a
volume of 1.0) is given by

ETðy; xÞ ¼ g y; û; R̂þ r2
cðxÞ 0
0 r2

cðxÞ

� �� �
ð23Þ
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