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Abstract

The aim was to elucidate how steps in drug translocation by a solute carrier transporter impact 

Michaelis-Menten parameters Km, Ki, and Vmax. The first objective was to derive a model for 

carrier-mediated substrate translocation and perform sensitivity analysis with regard to the impact 

of individual microrate constants on Km, Ki, and Vmax. The second objective was to compare 

underpinning microrate constants between compounds translocated by the same transporter. 

Equations for Km, Ki, and Vmax were derived from a six-state model involving unidirectonal 

transporter flipping and reconfiguration. This unidirectional model is applicable to co-transporter 

type solute carriers, like the apical sodium-dependent bile acid transporter (ASBT) and the proton-

coupled peptide cotransporter (PEPT1). Sensitivity analysis identified the microrate constants that 

impacted Km, Ki, and Vmax. Compound comparison using the six-state model employed 

regression to identify microrate constant values that can explain observed Km and Vmax values. 

Results yielded some expected findings, as well as some unanticipated effects of microrate 

constants on Km, Ki, and Vmax. Km and Ki were found to be equal for inhibitors that are also 

substrates. Additionally, microrate constant values for certain steps in transporter functioning 

influenced Km and Vmax to be low or high.
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1. INTRODUCTION

The Michaelis-Menten model was developed to describe enzymatic conversion of substrate 

to product. The two steps are substrate binding to enzyme (and its reverse, disassociation) 

and irreversible product formation. These steps are parameterized as k1, k−1, and k2, such 

that the Michaelis-Menten parameters in terms of the microrate constants are Km = (k−1 + 

k2)/k1 and Vmax = k2·[ET] where [ET] is the total enzyme concentration (1, 2). The 
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competitive inhibition model is an extension, where inhibitor can bind reversibly to enzyme 

(i.e. k3 forward and k−3 reverse), where Ki = k−3/k3 (1). A strength of the Michaelis-Menten 

model is its simplicity, including Km being the substrate concentration for catalysis to be 

one-half Vmax.

A large number of methodical investigations have been applied to elucidating mechanisms 

of enzymatic catalysis, which have yielded many elegant descriptions of enzymes. For 

example, these include the ternary complex mechanism for glutathione S-transferases (3), 

the ping-pong mechanism for thioredoxin peroxidase (4), the random-sequential mechanism 

for IκB kinases α and β (5), and the ordered-sequential mechanism for thymidylate synthase 

(6). These models have benefited from a large number of experimental methods to study 

enzyme structure and function, resulting in models that are more elaborate than the 

Michaelis-Menten model.

Drug transporters are generally more complex than many enzyme systems. Hence, when 

drug flux data is modeled, drug interaction with carrier systems is often characterized by Km 

(affinity for transporter), Ki (inhibition potency), and Vmax (maximum velocity of substrate 

transport) values, from the simple Michaelis-Menten model. These parameters are 

experimentally determined through a series of in vitro uptake and inhibition studies. 

Application of the simple Michaelis-Menten model efficiently reduces data to these few 

parameters, allowing for greater data interpretability. For example, Ki values are frequently 

determined to allow for rapid assessment of potential drug inhibitors of transporters (7). 

While convenient for data reduction, the Michaelis-Menten model is presumably overly 

simplified to represent a detailed description of transporter-mediated drug inhibition and 

drug flux. Interestingly, while there have been recent large developments in transporter 

identification and drug studies with transporters, kinetic model development for transporter 

functioning has perhaps lagged. This work aims to contribute to closing this gap. 

Importantly, a greater mechanistic understanding of transporter kinetics will allow for a 

greater understanding of translocation differences by a transporter for different substrates, as 

well as by different transporters for the same substrate. A mechanistic analysis of transporter 

function can lead to greater kinetic interpretability of simplified Ki, Km, and Vmax 

parameters that are typically used to describe transporter flux data.

The overall aim was to understand how steps in drug translocation by a solute carrier 

transporter impact Michaelis-Menten parameters Km and Vmax. As discussed below, a six-

state model (Fig. 1) was selected as a model for transporter translocation of drug, and allows 

for inhibition. The six-state model possesses 11 microrate constants. This model reflects a 

carrier system where substrate (including translocation of an inhibitor that is a substrate) is 

translocated by the protein in a unidirectional fashion, and where subsequent free protein re-

configuration is unidirectional. Motivation for this work is that Michaelis-Menten 

parameters from transporter studies are generally not interpreted, with regard to any 

underpinning mechanistic transporter model. This aim was pursued through two objectives.

The first objective was to derive a model for carrier-mediated substrate translocation 

(incorporating competitive inhibition where the inhibitor is also a substrate); and perform 

sensitivity analysis with regard to the contributions of the impact of individual microrate 
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constants on Km, Ki, and Vmax. For the six-state model, equations for Km, Ki, and Vmax 

were derived in terms of underlying microrate constants. Sensitivity analysis identified 

which microrate constants impacted Km and Vmax. The second objective was to compare 

underpinning microrate constants between compounds translocated by the same transporter 

using nonlinear regression. Results yielded some expected findings, as well as some 

unanticipated effects of microrate constants on Km and Vmax.

2. THEORETICAL

2. 1. Derivation of Model Equations

The six-state model shown in Fig. 1 was used as a model for substrate and competitive 

inhibitor to cross a membrane, along with re-orientation of the transporter. In this model, 

both substrate and inhibitor cross the membrane by an identical mechanism (i.e., the 

competitive inhibitor is also a substrate that binds to the same binding domain).

The model starts with free transporter (Yo), substrate (So), and inhibitor (Io) outside of the 

membrane, with the membrane shown as a red line. The transporter can bind then to 

substrate (forming SYo complex) or inhibitor (forming IYo complex). If the transporter 

binds to substrate, the transporter can move on to the next step in the cycle, where the 

transporter changes configuration from exo-facially oriented to endo-facially oriented (i.e. 

forming SYin). At this point, the substrate can be released inside the membrane (Sin), and 

then the transporter can reassume its original exo-facially oriented position (Yo). Similarly, 

if the transporter forms IYo, it can change configuration to form IYin and subsequently 

release inhibitor as Iin. Steps in this model that do not cross the membrane are reversible, 

and all components are in steady state. However, steps involving translocation across the 

membrane are unidirectional. This model therefore represents unidirectional transporter-

mediated substrate translocation in the presence of inhibitor. This unidirectional model of 

transport is applicable for carriers such as the co-transporter type solute carriers (SLCs), 

where physiological conditions do not allow for back-flux of the substrate-carrier complex 

or in cases where back-flux is negligible. An example is the human apical sodium dependent 

bile acid transporter (ASBT, SLC10A2). ASBT requires sodium for substrate transport; thus, 

because of the sodium gradient present and the electrochemical potential of the cell, it is 

assumed that steps involving transporter reconfiguration are unidirectional (i.e. transporter 

can only move "forward"). k1, k−3, k5, and k−7 are second order microrate constants with 

units of µM−1s−1, while all other microrate constants are first order and have units of s−1. 

Concentrations of free inhibitor, substrate, and transporter are in µM. A general model of 

facilitative transport where all steps are reversible is presented in the Appendix and 

Supplementary Material (Fig A1 and Eqns S1–14), and represents a more complex model 

relative to the model in Fig. 1.

The system of equations to define transporter movement is defined and solved in a similar 

manner as in Falk et. al (8). Rate equations for the six transporter states are as follows:

(1)
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(2)

(3)

(4)

(5)

(6)

Additionally, the sum of all transporters states (YT) is described by:

(7)

To solve for this system, the rate equations were organized into matrix form. In order to 

obtain six independent equations, equation 7 was substituted for equation 1. Steady state was 

assumed to set all transporter concentration rate equations to 0.

The system of equations in matrix form above was solved in Matlab (The Mathworks, Inc., 

Natick, MA) to yield equations for each transporter state. The full matrix solution equations 

are presented in the Supplementary Material (equations S15– 20).

Velocity of each compound was defined by the following equations:

(8)

(9)

Putting the matrix solution into equation 8, and assuming sink conditions so that [Sin] and 

[Iin] = 0, the equation for VS becomes:
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(10)

In eqn 10, the units of velocity are µM/s. Eqn 10 can be formulated in terms of the Michaelis 

Menten competitive inhibition model, which is (1, 2):

(11)

In the form of eqn 11, with [S] = [So] and [I] = [Io], the six-state model has apparent 

Michaelis-Menten parameters:

(12)

(13)

(14)

Solving equation 9 in the same manner and assuming SO = 0 (i.e. the “inhibitor” I is the only 

substrate available to bind to the transporter), Km and Vmax for I are obtained:

(15)
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(16)

Hence, eqn 12–16 show the dependence of Michaelis-Menten parameters on the six-state 

model microrate constants. Km and Ki have units of µM, while Vmax has units of µM/s−1. 

Interestingly, when the inhibitor is also substrate transported by an identical mechanism to 

the compound designated as the substrate as in the case described above, Ki = Km (i.e. 

equation 13 equals equation 15 for “inhibitor” I). The determinants of Km and Vmax for the 

two compounds are identical, although each possesses their own corresponding microrate 

constants, such that they do not have the same Km values and Vmax values.

3. METHODS

Two types of analyses were performed on the six-state model (Fig. 1): microrate constant 

sensitivity analysis and compound comparison. Based on the results of the model equation 

derivation, Km and Ki were treated as equal for all subsequent analysis. Sensitivity analysis 

assessed the impact of individual microrate constants on each Km and Vmax. Compound 

comparison employed regression to estimate microrate constant values for four scenarios, 

each representing compound pairs with observed Km and Vmax values (four combinations 

of high and low values).

3. 1. Sensitivity Analysis

Eqn 12 and 14 (i.e. Km and Vmax) were subjected to sensitivity analysis for the six-state 

model. For each equation, each microrate constant was individually varied to assess its 

impact on the Michaelis-Menten parameters. Microrate constants were varied from a value 

of 1 to a value of 1,000,000 (in their respective units), while all remaining microrate 

constants were fixed at 1. Additionally, each microrate constant was varied from a value of 

1,000,000 to a value of 1, while all remaining microrate constants were fixed at 1,000,000. 

For example, k1 was assigned 1 or 1,000,000, while all other constants were 1, then 

1,000,000. The resulting fold changes in Km and Vmax were recorded. Those microrate 

constants which caused a 1000-fold or more change in Michaelis-Menten constants were 

deemed significant.

3. 2. Compound Comparison

Nonlinear regression was performed using eqn 12 and 14 (i.e. Km and Vmax) in order to 

elucidate microrate constant values that underpin four observed cases, representing four 

previously observed combinations of high and low Km and Vmax values. The four 

comparisons considered experimental data from four compounds (9, 10, 11), illustrated in 

Table 1. Briefly, the four compounds are bile acid derivatives (see Fig. S1 and Table S1 in 

the Supplementary Material) whose Michaelis-Menten parameters were characterized 

against ASBT. Case 1 compared two compounds with similarly high Km values, but 

differing Vmax values (compound 2 vs compound 1). Case 2 compared two compounds 

with similarly low Km values, but differing Vmax values (compound 4 vs. compound 3). 

Case 3 compared a compound with low Km and Vmax values with a compound with high 
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Km and Vmax (compound 4 vs. compound 1). Case 4 compared a compound with low Km 

and high Vmax against a compound with high Km and low Vmax (compound 3 vs. 

compound 2). This design was intended to assess the relative values of microrate constants 

when Km and Vmax have various values across compounds.

Since eqn 12 and 14 are only two equations, yet collectively contain five unknown 

parameters (i.e. k1 through k−1), any set of Km and Vmax values does not offer an exact 

solution, in terms of microrate constants. Hence, in order to elucidate the distribution of 

microrate constant values for each case, 1000 regressions were performed, with the 

expectation that certain microrate constants have a larger influence on whether Michaelis-

Menten parameters are relatively large or small.

In each regression, each k1, k2, k3, k4, and k−1 were assigned a random number between 

zero and one (either µM−1s−1 or s−1, depending on the constant). Using these randomly 

generated numbers as initial estimates, Matlab’s lsqnonlin function (i.e. least squares 

regression) was employed to estimate microrate constant values until the specified Km and 

Vmax values were attained. Regression employed the Levenberg-Marquardt method. All 

regressions required that each microrate value was greater than 0. For each of the four cases, 

this method was applied to obtain 1000 solutions. From every regression, each fitted 

microrate constant was normalized against the corresponding microrate constant of the 

compared compound. Median values for these ratios were recorded, as well as the percent of 

ratios greater than one, in order to characterize microrate constant values that underpin Km 

and Vmax and the distribution of those values.

In the defined model, there were three equations with nine unknown variables when 

comparing two compounds. Two of these equations are Km (i.e. eqn 12) for each 

compound; the ratio of their Vmax values was a fifth equation (using eqn 14). The ratio of 

Vmax values was used to account for the unknown exact number of transporter proteins. 

Rather than 10 unknown variables (i.e. two times the number of microrate constants), there 

are only 9 unknown variables, since k4 is assumed to be the same value for each compound, 

as they were measured against the same transporter in the same expression system and k4 is 

purely transporter-specific. While there has been evidence k4 can be partially influenced by 

exchanged substrates in limited cases (12), it is assumed here that k4 is substrate-

independent. Compound pair analysis is of practical value, as Michaelis-Menten parameters 

are typically interpreted in the context of other compounds.

3.3. Previously Observed Km and Ki Data and Error Simulations

To determine if the model-supported conclusion Km = Ki is also supported by observed 

data, parameters of 50 previously tested non-native bile acids were analyzed (9, 10, 11, 13). 

In addition to examining previous data, Matlab error simulations were performed to evaluate 

the extent that error explains observed differences between Km and Ki. Km and Ki values 

were assigned to be either 1, 10, or 100 µM (n = 50, Km and Ki for each designated value), 

representing typically observed values. Vmax was set as 0.0005 nmol/cm2/s, along with 

taurocholate concentration of 2.5 µM and Km of 5.03 µM, from historical data (7). 

Taurocholate was used in Ki simulations as the prototypical native ASBT substrate that was 

inhibited. Eight inhibitor/substrate concentrations were used, which reflect typical 
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experimental concentrations: 0, 1, 5, 10, 25, 50, 100, and 200 µM. Flux values were 

calculated by multiplying true flux values by a random number with mean 1 and standard 

deviation 0.1 or 0.3, representing coefficient of variation (CV) values of 10 or 30% (14). 

Calculated flux values were regressed against the Michaelis-Menten competitive inhibition 

model to identify Km and Ki. Although truely equal in these Matlab error simulations, Km 

and Ki, were compared against one another for each of 50 simulated compound cases, and 

their fold-differences were calculated.

4. RESULTS

4.1. Sensitivity Analysis

Table 2 indicates the fold-impact of a 1,000,000-fold change in each individual microrate 

constant on Km and Vmax in the six-state model. Table 2 involves two types of sensitivity 

analysis for each microrate constant. In one type, the microrate constant under study (i.e. kn) 

was increased from a value of 1 to a value of 1,000,000, while all other microrate constants 

remained a value of 1. The second type is when kn was decreased from a value of 1,000,000 

to a value of 1, while all other microrate constants remained a value of 1,000,000. For 

example, in Table 2, Km was reduced many-fold when k1 was increased from one to 

1,000,000 when all other microrate constants were one. Meanwhile, Km was increased 

500,000.5-fold when k−1 was increased from 1 to 1,000,000. Km only increased 1.5-fold 

when k2 was decreased from 1,000,000 to 1. In Table 2, a large impact of a microrate 

constant is defined as changing Km or Vmax by at least 1000-fold, and is highlighted in red 

(and underlined).

Using the six-state model, each microrate constant except k−3 significantly impacted Km or 

Vmax. Km was sensitive to k1, k−1, k3 and k4. k1 had a significantly favorable impact on 

Km (i.e. decreased Km), while k−1, k3 and k4 had a detrimental impact (i.e. increased Km). 

In the context of Fig. 1, faster substrate binding increased Km potency. Meanwhile, faster 

substrate disassociation decreased potency. Each of these effects was expected. An 

unexpected result was that a slower transporter re-configuration from endo-facially oriention 

to exo-facially orientation (i.e. k4) decreased potency. Additionally, faster release of 

substrate inside the membrane (i.e. k3) increased Km potency. No other microrate constants 

impacted Km at the defined significance level. Vmax was favorably impacted by k2, k3, and 

k4 (i.e. all three forward microrate constant after substrate binding).

Some results from sensitivity analysis of the six-state model were unexpected. Since 

Michaelis-Menten rate constants were derived from an enzyme-substrate model, intuitively 

expected influences are perhaps k1 and k−1 on Km and k2 on Vmax. However, from the six-

state model (i.e. Fig. 1), additional microrate constants impacted Michaelis-Menten 

parameters. k4 impacted both Vmax and Km. This sensitivity analysis indicates that a 

compound’s Km and Vmax can also be affected by the free transporter protein’s rate of re-

configuration (i.e. k4), a step that does not involve compound binding or compound 

translocation. For example, an especially large k4 favors Km and an especially slow k4 

disfavors Vmax. These dependencies anticipate that Michaelis-Menten parameters for any 

compound-transporter pair cannot be exclusively attributed to compound structure or 

compound properties, but can reflect the structural biology of the transport itself.
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These sensitivity analysis results imply that free transporter kinetics (i.e. k4) may explain 

variation in typical Km and Ki values for different transporter proteins. For instance, Km 

and Ki values of many compounds for ASBT are on the order of µM, including bile acids, 

which are native ASBT substrates. Meanwhile, native peptide substrates of peptide 

transporter 1 (PEPT1, SLC15A1) are on the order of mM (15). It is possible that peptides are 

poor substrates for PEPT1, compared to bile acids as substrates for ASBT, due to potentially 

higher binding affinity of bile acids for ASBT (i.e. better k1 and k−1 values). Alternatively, 

this sensitivity analysis suggests the difference between ASBT and PEPT1 could possibly be 

due to free transporter protein kinetics.

4.2. Compound comparison

Compound comparison was conducted on the six-state model to build upon sensitivity 

analysis findings. While sensitivity analysis involved assessing the impact of each individual 

microrate constant on resulting Michaelis-Menten parameters by varying microrate constant 

values, compound pair analysis employed regression to determine sets of microrate 

constants that explain observed Michaelis-Menten parameters across compounds. For each 

of four cases, 1000 simulations were performed. Simulations only differed in initial values. 

The strength of compound pair analysis is its focus on identifying which transporter steps 

explain variation in Michaelis-Menten parameters across compounds, which is of practical 

value in studying a homologous series of compounds.

Table 3 summarizes compound pair analysis results. Results shown in red (and underlined) 

signify a 3-fold or more difference in microrate constant values between the compounds 

compared. The median ratio of 1,000 runs for each comparison is shown, as well as the 

percent of all solutions which were greater than 1 (i.e. the percent of instances where the 

microrate constant is larger than the microrate constant of the reference compound). Table 

S2 in the Supplementary Material presents additional compound comparison results using 

100 and 10,000 runs, showing that 1,000 runs are sufficient to obtain a stable distribution of 

underlying microrate constant values. By looking at the distribution of microrate constants 

from 1,000 runs, the microrate constants that can cause these scenarios are identified. 

Additionally, those that have no clear trend of higher or lower values (i.e. median close to 1) 

can thus be any value without affecting the resulting Km and Vmax. These microrate 

constants are found to have limited impact. In this way, compound comparison is a 

multivariate sensitivity analysis using actually observed endpoints.

Case 1—In this comparison (i.e. compound 2 vs. compound 1), compound 2 had a much 

lower Vmax than compound 1 (0.250 vs. 2.15 in Table 1), while Km for the two compounds 

were similarly high (17.5 µM vs. 16.3 µM). Results show that when Vmax is lower (i.e. 

slower), k2 is slower (i.e. median 0.06, respectively). This finding supports the broadly held 

notion that the k2 microrate constant (e.g. substrate bound transporter changing 

configuration from exo-facially oriented to endo-facially oriented) is the most important step 

in determining Vmax. From this data, it is evident that a larger Vmax but similar and potent 

Km can be caused by a faster rate of transport across the cell membrane. Of note, although 

the k3 ratio median did not meet the 3-fold lower cut-off, the ratios of k2 and k3 in a given 

run were never both greater than 1 (i.e. 0 of 1000 runs), indicating that at least one of these 
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microrate constants must be low for Vmax to be low. This implies that k3 (i.e. release of 

substrate from transporter inside the cell) also has an influence on Vmax.

Case 2—In this comparison (i.e. compound 4 vs. compound 3), compound 4 had a much 

lower Vmax than compound 3 (0.242 vs. 1.72 in Table 1), while Km for the two compounds 

were similarly potent (1.20 µM vs. 1.69 µM). This case confirms that k2 is responsible for 

changes in Vmax, consistent with sensitivity analysis and case 1, and that whether Km 

values are low or high does not influence this. Additionally, in this case where compound 

Km values were highly potent, k3 (i.e. release of substrate from transporter inside the cell) 

has a large impact on Vmax. As in case 1, in 0% of all iterations were both k2 and k3 ratios 

greater than 1, indicating that at least one of these must be slower for Vmax to be low.

Case 3—In this comparison, compound 4 (Km = 1.20 µM, Vmax = 0.242) was compared 

against compound 1 (Km = 16.3 µM, Vmax = 2.15). Results in Table 3 show that low Vmax 

and low (potent) Km can be caused by high k1 (i.e. fast substrate binding to transporter 

outside the membrane) and low k2 and k3. Interestingly, when both Vmax and Km are taken 

into account, k−1 value has little impact, contrary to sensitivity results from only the Km 

equation. The k1 ratio has a value greater than one 94.1% of the time, while k−1 has a value 

greater than one 46.0% of the time.

Case 4—In this comparison, compound 3 (Km = 1.69 µM, Vmax = 1.72) was compared 

against compound 2 (Km = 17.5 µM, Vmax = 0.250). Results in Table 3 confirm that, like in 

case 3, fast binding (k1) causes low Km. Additionally, as seen in case 1, fast k2 has more of 

an impact on high Vmax than k3 (i.e. bound substrate translocation across the membrane vs. 

release of substrate inside the cell).

Overall, the results of these four cases suggest that when two compounds are taken up by the 

same transporter (i.e. no difference in k4), the k1 microrate constant is the most influential 

determinant of Km, while k2 is the most influential determinant of Vmax.

4.3. Previously Observed Km and Ki Data and Error Simulations

In Figure 2, previously observed Km and Ki values of 50 compounds for ASBT are plotted 

against one another, along with the line of Km = Ki, to examine differences between Km 

and Ki Compound structures and corresponding data values are presented in the 

Supplementary Material, Fig. S1 and Table S3. A general positive relationship is observed 

between Km and Ki. Using the Student’s t-test between Km and Ki data of the 50 

compounds tested, no Km-Ki pair had a P-value less than 0.01, concluding that Km was 

indistinguishable from Ki at this significance level. Only five of the 50 had a P-value less 

than 0.05. Thus, experimental evidence generally does not refute our model’s claim that Km 

is equal to Ki when an inhibitor is also a substrate and inhibition and uptake occur at the 

same binding site. While measured Km and Ki are of course not identical, an approximately 

equal number of the 50 examined compounds yielded Km>Ki versus Ki>Km. Across all 

ranges of compound Km and Ki fold-differences, Km was greater than Ki 52% of the time.

Another comparison of these Km and Ki values is presented in Table 4. Table 4 illustrates 

that 40.0% of the 50 compounds showed Km and Ki values to be within a factor of two. An 
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additional 38.0% of compounds exhibited Km and Ki values were beyond 2-fold different 

from one another but less than 5-fold different. Only 22.0% of compounds showed over a 5-

fold difference in Km and Ki. Interestingly, for each of these three categories (i.e. less than 

2-fold, 2-to-5-fold, and more than 5-fold), there was about an equal number of compounds 

where Km was greater than Ki (45.0%, 52.6%, and 63.6% of cases showed Km > Ki in each 

group, respectively). This observation implies that Km or Ki is not predominantly larger 

than the other.

Additionally, Table 4 presents the results of experimental error simulations. Distribution 

frequencies were obtained from six simulated scenarios: Km = Ki = 1 µM and 10% CV, Km 

= Ki = 1 µM and 30% CV, Km = Ki = 10 µM and 10% CV, Km = Ki = 10 µM and 30% CV, 

Km = Ki = 100 µM and 10% CV, and Km = Ki = 100 µM and 30% CV. Simulated Km and 

Ki pairs had the largest fold-differences when Km and Ki were large valued (e.g. 100 µM) 

and the assigned percent CV was higher. For example, in the right-most column of Table 4 

(Km, Ki = 100 µM, 30% CV), 40% of simulated Km and Ki pairs were between 2 and 5-fold 

different, while 8% were greater than 5-fold different. Hence, results from 50 non-native 

bile acids show that a majority any one compound's Km and Ki values are within a factor of 

5 apart, and that some of the differences in observed Km and Ki values may be attributed to 

experimental error. Alternatively, differences in observed Km and Ki values could occur if a 

compound binds to an exterior binding site which inhibits uptake but does not result in 

transport across the membrane (i.e. if an individual compound does not adhere to Fig. 1).

5. DISCUSSION

Transporter study results are frequently summarized as Michaelis-Menten parameters. For 

example, an initial inhibition study yields a Ki value. If the compound is an inhibitor (e.g. 

“binds with the transporter”), subsequent flux studies may be performed, yielding Km and 

Vmax values. Infrequently, Km and Ki values are compared. Even less frequently, these 

Michaelis-Menten parameters are interpreted within a kinetic context (e.g. What is the rate 

limiting step in substrate translocation?).

Since transporters and their catalytic cycles are biophysically complex, even compared to 

water soluble enzymes, the interpretation of Michaelis-Menten parameters with regard to 

underlying transporter dynamics is difficult. For example, Michaelis-Menten parameter 

interpretations with respect to substrate-transporter interactions and with respect to 

translocation mechanism are not easily performed. However, several studies have linked 

flux result to transporter catalytic cycles (16, 17, 18). Loo et. al analyzed a model for 

substrate transport by the Na+/glucose cotransporter (SGLT1, SLC5A1), incorporating both 

Na+ and substrate binding (19). In Loo et. al, transporter protein conformations in the 

presence of different substrates were compared by observing resulting current and 

fluorescence in response to induced voltage changes. Simulations were used to vary 

microrate constants until a fit was obtained. Hoare et. al examined L-leucine transport into 

red blood cells using a four step model for simple carrier transport similar to the model in 

our analysis (20). The study concludes that in the case of L-leucine transport, the carrier re-

orientation process (i.e. k4 in our model) is rate-limiting, confirming that free transporter 

kinetics can greatly affect flux data. Fontana et. al also independently confirms that the 
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carrier re-orientation step can be rate-limiting, as they identified for glutamate transport by 

the excitatory amino-acid transporters (EAATs) (21). This reinforces what we have seen in 

our analysis. Experiments such as these represent significant progress toward a mechanistic 

understanding of transport processes. Specifically for ASBT, structure activity relationships 

(22, 23, 24) and crystal structures of bacterial homologues of ASBT (25, 26) have identified 

regions of transporters involved in substrate translocation. However, the carrier models 

above and the identified structure-activity relationships and crystal structures do not attempt 

to understand how underpinning microrate constants influence Michaelis-Menten 

parameters Km, Ki, and Vmax.

The overall aim of this work was to elucidate the contribution of individual steps in drug 

translocation (and inhibition) to apparent transporter Michaelis-Menten parameters. To 

achieve this, first a model was derived for transporter-mediated substrate translocation (with 

competitive inhibition); model flux is presented via Michaelis-Menten parameters in eqn 

12–16 (Fig. 1).

An interesting observation from this work is that Km was derived to be equal to Ki for cases 

when the inhibitor is also a substrate, as is the case in many inhibition/substrate screenings. 

In multiple studies, we have previously speculated that bile acid translocation by ASBT is 

rate-limited by substrate binding, as Ki and Km are often the same value (10, 27). In 

Balakrishnan et. al, a plot for native bile acids showed that compounds fell close to a Km = 

Ki line (27). In this work and in contrast to our prior explanations, rate-limiting substrate 

binding is not the cause of Km being equal to Ki. Our analysis here of past Km/Ki data from 

non-native bile acids confirms that in the vast majority of the compounds examined, Km 

was not significantly different from Ki. Additionally, simulations showed that some of these 

observed differences may be attributed to experimental error. Other studies have identified 

cases of substrate-dependent inhibition, where a single compound can have multiple Ki 

values depending on the substrate being inhibited (28, 29). Substrate-dependent inhibition 

could potentially be caused by multiple inhibitor binding sites, whereas in this manuscript, 

inhibition and uptake are assumed to occur from interaction at the same transporter binding 

domain.

Sensitivity analysis aimed to assess the impact of individual microrate constants on the Km 

and Vmax equations (eqn 12 and 14). Interestingly, the kinetics associated with free 

transporter orientation change (i.e. k4) had a large effect on both Km and Vmax. This 

analysis clearly shows that this substrate-independent re-orientation step is significant and 

could explain why potent substrates for different transporters differ in Km by orders of 

magnitude. Additionally, compound pair analysis built upon sensitivity analysis findings and 

allowed for the elucidation of microrate constant distributions under specific cases of Km 

and Vmax values across differing compounds measured against the same transporter.

5.1. Future directions

Pharmaceutical transporter science has progressed in terms of availability of transporter 

targets and related molecular biology technology (30, 31, 32); relevance of transporters in 

drug disposition (33) and drug-drug interactions (34); and well as computational and QSAR 

approaches to better leverage drug screening data sets (35, 36). However, a molecular 
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understanding of the influence of transporter biophysics and compound structure on 

transporter-mediate drug flux is broadly undeveloped. Interestingly, little transporter kinetic 

interpretation is currently extracted from Michaelis-Menten parameters. For a specific 

transporter, what is the interpretation of a lower Km of one compound relative to another? A 

future direction in pharmaceutical transporter science is to better understand the key kinetic 

steps in transporter functioning and how those steps impact the translocation of various 

drugs. Such a molecular understanding has the promise to aid in the design of drugs, or 

screening of drugs, with favorable attributes (e.g. weak Ki, weak Km, but high Vmax; or 

potent Ki but non-substrate).

6. CONCLUSION

The overall aim was to elucidate the contribution of individual steps in drug translocation by 

(and inhibition of) a carrier to apparent transporter Michaelis-Menten parameters (e.g. Km, 

Ki, and Vmax). Such Michaelis-Menten parameterization is commonly employed to 

interpret drug uptake data, without regard to the underpinning mechanism behind these 

simplified Km, Ki, and Vmax terms. This work contributes to a greater understanding of 

transporter kinetics, which can aid in understanding differences in substrate uptake by one or 

more transporters. Results show that Km and Ki are equal for inhibitors that are also 

substrates, where uptake and inhibition occur at the same binding site. Results also reveal 

the most influential underlying microrate constants on Km and Vmax values.
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ABBREVIATIONS

ASBT apical sodium-dependent bile acid transporter

SLC10A2 PEPT1, peptide transporter 1

SLC15A1 solute carrier (SLC)

APPENDIX

The objective of this appendix is to present a more generalized six-state model than that 

provided in Fig. 1. This generalized model is a six-state model for facilitative transporter-

mediated substrate translocation in the presence of inhibitor and is illustrated in Fig. A1. 

Compared to Fig. 1 (i.e. the six-state model for unidirectional transporter-mediated substrate 

translocation in the presence of inhibitor), this model for facilitative transporter-mediated 

substrate translocation is more complex in that all steps are reversible.
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The model entails that free drug outside of the cell (So) binds with free transporter at exo-

face (Yo) in order to be translocated to be free drug inside of cell (Sin). Three steps are 

needed for substrate flux: free drug binding to transporter, re-configuration of drug-transport 

complex from exo-facial oriention to endo-facial oriention, and release of drug 

intracellularly from transporter. In a fourth forward step, free transporter is re-configured 

from endo-facially oriented to its initial free, exo-facially oriented configuration. Similarly, 

the reverse of this fourth step simply involves flipping of free transporter (i.e. k−4 does not 

involve translocation of substrate). The model also allows free inhibitor outside of the cell 

(Io) to compete for Yo by an identical process, forming Iin inside the cell. Eqn S10 

(supplementary material) is the general solution for net transporter-mediated drug flux from 

outside of cell to the inside of cell when Sin = 0. Subscript o denotes outside of cell or on 

exo-face (i.e. left side). Subscript in denotes inside of cell or on endo-face (i.e. right side). 

Each microrate constant except k−3 and k−7 impacted Km, Ki, and/or Vmax.
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Fig 1. 
Six-state model for unidirectional transporter-mediated substrate translocation in the 

presence of inhibitor. This model is more briefly denoted the six-state model. The model 

entails that free drug outside of the cell (So) binds with free transporter at exo-face (Yo) in 

order to be translocated to be free drug inside of cell (Sin). Three steps are needed for 

substrate flux: free drug binding to transporter, re-configuration of drug-transport complex 

from exo-facial oriention to endo-facial oriention, and release of drug intracellularly from 

transporter. In a fourth forward step, free transporter is re-configured from endo-facially 
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oriented to its initial free, exo-facially oriented configuration. In this model, only 

unidirectional protein flipping that involves substrate (or inhibitor) translocation or free 

protein re-configuration is allowed. The model also allows free inhibitor outside of the cell 

(Io) to compete for Yo by an identical process, forming Iin inside the cell. Eqn 10 is the 

general solution for net transporter-mediated drug flux from outside of cell to the inside of 

cell when Sin = 0. Subscript o denotes outside of cell or on exo-face (i.e. left side). Subscript 

in denotes inside of cell or on endo-face (i.e. right side). Each microrate constant except k−3 

and k−7 impacted Km, Ki, and/or Vmax.
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Fig 2. 
ASBT Ki vs Km values of 50 compounds from previous studies (9, 10, 11, 13). Each 

compound is an ASBT substrate and inhibitor. The trend line shown represents Ki=Km. In 

Panel A, all 50 compounds are shown, while Panel B is an enlarged view of Km and Ki < 30 

µM.
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Fig. A1. 
Six-state model for facilitative transporter-mediated substrate translocation in the presence 

of inhibitor. Compared to Fig. 1, this model for facilitative transporter-mediated substrate 

translocation is more complex in that all steps are reversible. Eqn S10 (supplementary 

material) is the general solution for net transporter-mediated drug flux from outside of cell 

to the inside of cell when Sin = 0. Subscript o denotes outside of cell or on exo-face (i.e. left 
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side). Subscript in denotes inside of cell or on endo-face (i.e. right side). Each microrate 

constant except k−3 and k−7 impacted Km, Ki, and/or Vmax.
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Table 1

Compounds 1–4 and their Km and normalized Vmax values when measured against the bile acid transporter 

ASBT. Compounds 1–4 were applied to compare underlying microrate constants in compound pair analysis. 

Compounds are conjugates of chenodeoxycholate. Normalized Vmax is compound Vmax divided by Vmax of 

taurocholate, where taurocholate is a prototypical native bile acid.

Compound Km (µM) Norm Vmax Characterization

1 16.3 ± 4.7 2.15 ± 0.23 High Km, High Vmax

2 17.5 ± 4.7 0.250 ± 0.022 High Km, Low Vmax

3 1.69 ± 0.71 1.72 ± 0.14 Low Km, High Vmax

4 1.20 ± 0.38 0.242 ± 0.013 Low Km, Low Vmax
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Table 2

Sensitivity analysis for impact of microrate constants on Km and Vmax for the six-state model. Values in red 

(and underlined) denote changes that were over 1000-fold higher or lower. kn is either k1-k−1 and denotes the 

microrate constant that was varied. For example, compared to when all microrate constants were 1 µM−1s−1 or 

1 s−1, increasing k1 to 1,000,000 µM−1s−1 decreased Km by 1,000,000-fold (i.e. 0.000001-fold change, noted 

in table). Meanwhile, compared to when all microrate constants were 1,000,000 µM−1s−1 or 1,000,000 s−1, 

decreasing k1 to 1 µM−1s−1 increased Km by 1,000,000-fold.

kn

Fold change in Km when… Fold change in Vmax when…

kn increased to

1,000,000 a
kn decreased

to 1 b
kn increased to

1,000,000 a
kn decreased to

1 b

k1 0.000001 1000000 1 1

k2 0.75 1.50 1.50 0.000003

k3 1.50 0.000003 1.50 0.000003

k4 1.50 0.000003 1.50 0.000003

k−1 500000.5 0.50 1 1

a
Sensitivity analysis involved increasing kn from a value of 1 to a value of 1,000,000, while all other microrate constants retained a value of 1.

b
Sensitivity analysis involved decreasing kn from a value of 1,000,000 to a value of 1, while all other microrate constants retained a value of 

1,000,000.
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