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Abstract

In recent years, techniques have been developed to explore spatial non-stationarity and to model 

the entire distribution of a regressand. The former is mainly addressed by geographically weighted 

regression (GWR), and the latter by quantile regression (QR). However, little attention has been 

paid to combining these analytical techniques. The goal of this article is to fill this gap by 

introducing geographically weighted quantile regression (GWQR). This study briefly reviews 

GWR and QR, respectively, and then outlines their synergy and a new approach, GWQR. The 

estimations of GWQR parameters and their standard errors, the cross-validation bandwidth 

selection criterion, and the non-stationarity test are discussed. We apply GWQR to U.S. county 

data as an example, with mortality as the dependent variable and five social determinants as 

explanatory covariates. Maps summarize analytic results at the 5, 25, 50, 75, and 95 percentiles. 

We found that the associations between mortality and determinants vary not only spatially, but 

also simultaneously across the distribution of mortality. These new findings provide insights into 

the mortality literature, and are relevant to public policy and health promotion. Our GWQR 

approach bridges two important statistical approaches, and facilitates spatial quantile-based 

statistical analyses.

Introduction

In empirical studies, researchers typically are interested in examining possible associations 

between regional characteristics and outcomes of interest observed for different geographic 

locations. The standard approach is to specify a spatial linear mean regression model, and 

analyze the average relationship between the variables of interest after accounting for spatial 

dependence among locations; examples include the spatial error or lag, conditional 

autoregressive (CAR), and simultaneous autoregressive (SAR) models (Banerjee, Gelfand, 

and Sirmans 2003). These spatial models, commonly used in spatial statistics and 

econometrics, are designated to estimate a single, or “global” regression equation based on 
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spatial data. Their underlying assumption is that relationships between the regressors and 

regressand are homogeneous (stationary) over space (Fotheringham 1997). However, in 

practice the associations among variables might be different across space and vary 

geographically (Cressie 1993; Jones and Hanham 1995; Fotheringham and Brunsdon 1999; 

Fotheringham, Brunsdon, and Charlton 2002). In addition, from a modeling perspective, 

“global” modeling may be a misspecification of reality, and the variables included in models 

may not be represented with correct function forms (Fotheringham, 1997). A global model is 

useful, but the model specification may not be sufficient to detect nonstationarity 

(Fotheringham, Brunsdon, and Charlton 1997, 2002).

To address these limitations, the trend in spatial data analysis has been to analyze spatial 

non-stationarity by fitting a regression model that allows for geographically varying (local) 

coefficients. A review of the history of the local forms of spatial analysis can be found 

elsewhere (Fotheringham and Brunsdon 1999). A widely applied approach for exploring 

local associations (Huang and Leung 2002; Calvo and Escolar 2003; Longley and Tobon 

2004; Mennis and Jordan 2005; Yu, Wei, and Wu 2007; Chen et al. 2010) is the 

geographically weighted regression (GWR) proposed by Fotheringham, Brunsdon, and 

Charlton (Fotheringham, Brunsdon, and Charlton 1997, 2002; Fotheringham et al. 1998; 

Brunsdon, Fotheringham, and Charlton 1998a, 1998b). The GWR locally quantifies 

“average” relationships among variables and estimates regression parameters through the 

use of local regression and smoothing techniques. The local estimates of regression 

parameters for a specified linear mean regression model are derived for each location in 

space so that spatial variations of regression relationships can be investigated. The output 

from GWR is a set of statistics that can be mapped, depicting the spatial variation of a 

relationship. Like other analytic methods, GWR has several limitations, including 

multicollinearity in local coefficients, multiple hypothesis testing, and the incapability of 

decomposing the global estimates into local estimates (Wheeler and Tiefelsdorf 2005; 

Wheeler and Calder 2007; Wheeler and Waller 2009; Boots and Okabe 2007; Griffith 2008). 

Most of these issues have been discussed, and several solutions and alternatives have been 

proposed (Wheeler, 2007; 2009; Wheeler and Calder, 2007; Griffith, 2008). Despite 

concerns, GWR is still regarded as a useful tool for exploring spatial non-stationarity and 

interpolation (Páez, Long, and Farber 2008; Wheeler and Páez 2010).

Currently GWR is only able to compute the parameter estimates for a mean function of the 

conditional distribution of a dependent variable. While the mean quantifies the central 

behavior of a response distribution, little information is known about the full distribution. In 

applications, interest often lies in estimating different percentiles (or quantiles) on an 

outcome distribution and in determining the spatial pattern associated with a set of 

explanatory variables. For example, Yang, Jensen, and Haran (2011) investigate the spatial 

associations between mortality and both natural and social environment factors across the 

United States. In studies such as this, researchers are more interested in how social 

determinants explain the variation in low-mortality (lower quantile) and high-mortality 

(upper quantile) areas than in how they explain variation in average-mortality regions. The 

GWR approach does not allow such an investigation. A spatial analysis tool that permits 

estimating various quantile functions of a conditional distribution would be valuable.
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Quantile regression (QR), first introduced by Koenker and Bassett (1978), is a statistical 

procedure that extends the natural linear mean regression model to a range of models 

estimating various conditional quantile functions. With multiple quantiles being modeled, 

QR can provide a thorough picture of how independent variables are associated with the 

underlying conditional distribution of a dependent variable, especially when the conditional 

distribution is heterogeneous and does not follow a standard normal distribution. QR is 

useful in practice because of its robustness against outliers and flexibility in dealing with 

error distributions (Koenker and Hallock 2001; Yu, Lu, and Stander 2003). These appealing 

features have led to other applications or generalizations of QR in medical statistics, survival 

analysis, labor economics, and financial econometrics (Buchinsky, 1998; Yu, Lu, and 

Stander 2003; Koenker 2005; Wei et al. 2006; Li, Graubard, and Korn 2007; Taylor 2008). 

Less attention has been focused on the application to spatial statistics.

Su and Yang (2007) report a QR generalization of the spatial lag model that relies on the 

assumption of spatial stationarity. Hallin, Lu, and Yu (2009) propose a local linear spatial 

QR. This technique estimates the QR coefficients using nonparametric methods, but its 

methodology is not undertaken with the assumption of stationarity. Although the authors 

also provide an “ad hoc” two-stage alternative to cope with non-stationarity, the procedure 

does not directly take it into account in the modeling process, and thus can not retrieve the 

spatially varying patterns of the estimated regression coefficients.

The aforementioned studies are among the first to conduct spatial quantile-based regression 

analysis. Few spatial modeling techniques (Salvati et al. 2007; Reich, Fuentes, and Dunson 

2010) exist that permit the estimation of conditional quantile functions and analysis of 

spatial non-stationarity. Our objective is to address this methodological gap. We endeavor to 

integrate the features of QR into GWR and to develop a geographically weighted quantile 

regression (GWQR) method for continuous outcomes that simultaneously accounts for the 

heterogeneity of a regressand and spatial nonstationarity.

Methodology

QR fundamentals

Koenker and Bassett (1978) introduced QR for modeling the relation between a set of 

independent variables and specific percentiles (or quantiles) of a response variable. Assume 

that Yi (i = 1, …, n) are the observations with the associated covariate vectors Xi = (1, Xi1, 

Xi2, ···, Xip)t of dimension (p + 1), including the constant one for the intercept. The QR 

specifies

(1)

where εi, 1 ≤ i ≤ n, are continuous random variables satisfying P (εi ≤ 0) = τ (i.e., the 

distribution of εi whose τth quantile conditional on Xi is zero). Note that the εis are assumed 

to be independent but may not be identically distributed. Equation (1) amounts to assuming 

, where qτ (Xi) ≡ inf{y: F (y|Xi) ≥ τ } is the τth conditional quantile of Yi 
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given the covariate Xi. The QR coefficient βτ is estimated by minimizing the following loss 

function:

(2)

where ρτ (z) = z(τ − I[z < 0]), known as the “check” function, is a V-shaped piecewise linear 

loss function, and I(·) denotes the indicator function. See Koenker (2005) for a 

comprehensive framework of QR.

GWR Fundamentals

We briefly review the GWR modeling approach. Now let Yi, i = 1, …, n, be the response 

observations collected from a set of locations in space. The corresponding geospatial 

covariate vector is then Xi of dimension (p + 1), including the intercept. Fotheringham, 

Brunsdon, and Charlton (2002) defined GWR as

(3)

where β(ui, vi) = [β0(ui, vi), β1(ui, vi), …, βp(ui, vi)]t, (ui, vi) captures the coordinate location 

of i in space, and εi is the error term with mean zero and common variance σ2. The βks 

regression coefficients in equation (3) are the local regression coefficients for the 

explanatory variables at location i. These parameters are estimated with the geographically 

weighted least squares on a pointwise basis using kernel-based methods. Specifically, for a 

given location (u0, v0) in a studied region, the βs at (u0, v0) are locally estimated by 

minimizing the weighted square loss function

(4)

where K is a kernel function, usually a symmetric probability density function, and h is the 

bandwidth that controls the smoothness of the resultant estimates. The term 

represents the geographical weight assigned locally to observation (Xi, Yi) and depends upon 

the distance di0 between the given location (u0,v0) and the ith designed location (ui,vi). 

Explicitly, the weight is determined by a kernel function that places more weights on 

observations closer to, than those farther away from, (u0,v0). Many choices exist for the 

kernel functions, including the Gaussian, the exponential, and the bisquare nearest neighbor 

function. Using this estimation technique, the local estimates of βk(ui, vi) in equation (4) can 

be derived by taking (u0,v0) to be each of the designed locations (ui,vi). We refer to 

Fotheringham, Brunsdon, and Charlton (2002) for a more detailed presentation of the 

methodology and theory behind GWR.
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Although a local model should inform its global model counterpart (Fotheringham 2009), 

GWR also has been criticized (Wheeler and Tiefelsdorf 2005; Griffith 2008). Specifically, 

GWR’s local statistics can not be linearly combined to produce their global statistics, 

making the linkage between GWR modeling and global modeling elusive (Boots and Okabe 

2007). Griffith (2008) uses spatial filtering, an eigenvector-based approach, to obtain GWR-

type local coefficients. He concludes that GWR is a special case of spatial filtering modeling 

and that the global/local statistics issue was addressed with spatial filtering. Given the 

nonparametric setting, however, QR is more compatible with GWR than spatial filtering. 

Our attention in this article focuses on synthesizing QR with GWR.

Geographically weighted quantile regression (GWQR)

We extend the GWR (equation [3]) to a QR setting (equation [1]) with the specification

(5)

where  is the random error for the τth quantile conditional on Xi equals zero, and the 

vector  is the local regression quantile 

coefficients (0 < τ < 1) at location (ui,vi). The QR coefficient  measures the change 

in a specified quantile τ of the response variable Y corresponding to one unit change in the 

independent variable Xk. This conceptualization allows a comparison between how some 

percentiles of a response may be more (or less) affected by certain independent variables 

than other percentiles.

Implicit in equation (5) is that the τ conditional quantile function of Yi given observation 

vector Xi for location i with coordinates (ui,vi), namely qτ (Xi, ui, vi) ≡ inf{y: F (y|Xi, ui, vi) 

≥ τ }, is assumed to be

(6)

In contrast to equation (3), the regression coefficients βτ (ui, vi) in equation (5) for each 

location i are unknown functions of the location coordinates and are now τ dependent. The 

GWQR model given by equation (5) can be viewed as a variant of Cai and Xu’s (2008) 

framework with effect modifiers equal to the geographical coordinates (u, v) in space.

Estimation in GWQR

Suppose that each of the GWQR coefficients  (k = 0, 1, 2, …, p) in equation (5) has 

second continuous partial derivatives with respect to the geographical location coordinates u 

and v. Then for a given location (u0, v0) in a study region (hereafter called a regression 

point), we approximate  by the linear function
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(7)

for (u, v) in a neighborhood of (u0, v0), where , and 

. With equation (7) and the local modeling principles, 

we choose to minimize the following locally weighted function:

(8)

where X̃
i = [1, Xi1, …, Xip, (ui−u0), Xi1(ui−u0), …, Xip(ui−u0), (vi−v0), Xi1(vi−v0), …, 

Xip(vi−v0]t, and 

. Notice that θτ (u0, v0) is the parameter vector corresponding to the linear approximation 

given by equation (7).

In equation (8), the aim of geographical weighting is to specify spatial neighborhoods 

around location i according to the given kernel function K so that the locally weighted QR at 

location i is calculated by using only the data in the kernel window. A popular choice for the 

kernel function is the bisquare function given by

(9)

in which observations with distances greater than the bandwidth are zero weighted and 

excluded from any calculation. An alternative may be the Gaussian kernel function of the 

form

(10)

This function is infinitely supported, resulting in nonzero weights for all data observations. 

If a geographical data point coincides with (u0, v0), the weighting of the data is maximum. 

For all other data points, their assigned weight decreases as their distance to the regression 

point (u0, v0) increases.

Two types of weighting schemes can be used for calculating K(di0/h). One is the fixed 

kernel weighting routine, which assumes the bandwidth h at each location is a constant 

across the geographical region of interest. The other is the adaptive kernel weighting 

technique, where the bandwidth is selected such that the number of observations with 

nonzero weights is the same at each location. The adaptive, as implied, changes the 

smoothing window size to the density of data points, and usually is preferable to the fixed 

scheme because it avoids “weak data” problems encountered in sparse regions 

(Fotheringham, Brunsdon, and Charlton 2002). Comparisons of these two weighting 
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schemes in GWR modeling can be found in Fotheringham, Brunsdon, and Charlton (1997, 

2002).

According to QR theory, the solution for parameter vector θτ (u0, v0), which minimizes the 

equation (8) loss function, has no explicit form. The weighted QR problem defined by 

equation (8) can be equivalently formulated as a linear programming optimization problem. 

See, for example, Chen and Wei (2005) and Koenker’s (2005) monograph for more details. 

Therefore, a linear programming solution yields the parameter estimate 

. According to the Taylor theorem, we then take the solution  for each k = 0, 1, …, 

p as the local linear estimator for  at location (u0, v0). If one chooses to minimize the 

following loss function

(11)

then the resulting minimum { } serves as the local constant estimator of 

{ }.

By employing the preceding estimation procedure, and by letting (u0, v0) = (ui, vi) (i = 1, 2, 

…, n), we obtain the estimates  of each QR coefficient  for equation (5). 

The corresponding estimated τth conditional quantile is given by

(12)

where β̂τ (ui, vi) denotes the vector of estimates , k = 0, 1, …, p, and Xi is the vector 

of observed covariates at location (ui, vi).

The preceding methodology also allows for out-of-sample predictions. For an additional 

covariate vector Xn+1 associated with a new set of location coordinates (un+1, vn+1) that is 

not in the original sample but in the original studied region, the estimated coefficients 

, k = 0, 1, …, p, can be obtained through minimization of equation (8) by 

taking (u0, v0) = (un+1, vn+1). Consequently, the prediction for an out-of-sample location is

(13)

The notation (u0, v0) here is generic for both in-sample and out-of-sample estimation within 

a research area.
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Standard errors of GWQR estimators

Because the check function is piecewise linear, equation (8) can be rewritten as

(14)

Given equations (8) and (14), and based on the asymptotic theorems described in Koenker 

(2005), the estimates θτ̂ (u0, v0) have an asymptotically normal distribution, with their mean 

being the true regression coefficients θτ (u0, v0) and a covariance matrix given by

(15)

with  and , where the quantity 

 is a weighted version of X̃
i, and  represents the 

conditional density of Yi given the vector  at location coordinate (ui, vi), evaluated at the 

τth conditional quantile.

The preceding results can be used to examine the statistical significance of the local QR 

parameters  (k = 0, 1, …, p) at (u0, v0). To implement the desired test, the 

asymptotic covariance matrix for equation (15) must be estimated. According to Koenker 

(2005) and Hao and Naiman (2007), we estimate the covariance matrix for θτ̂ (u0, v0) using 

, in which  and 

. Thus the hypothesis testing for the parameter 

can be constructed using the t statistics  where 

 is the (k + 1)th element of θ̂τ (u0, v0);  is the corresponding standard 

error obtained with the (k + 1)th diagonal element of the estimated covariance matrix 

.

The estimation D1 relates to the unknown density function . Different 

techniques have been developed to estimate this quantity for traditional QR (Powell, 1991; 

Koenker and Machado 1999; Koenker 2005). The estimating procedure introduced by 

Koenker and Machado (1999), using a local estimator of the conditional quantile function 

with a difference quotient, has been commonly used (Chen and Wei 2005). Specifically, the 

formula used in our study is

(16)
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where hn is a bandwidth parameter that tends to zero as n → ∞. To determine the bandwidth 

hn, we use the following Hall–Sheather bandwidth rule recommended by Koenker (1994):

(17)

for zα satisfying Φ(zα) = 1 − α/2, in which Φ represents a standard normal distribution 

function whose density function is denoted as ϕ. The parameter α denotes the desired 

significance level for hypothesis testing or confidence interval construction. Note that a 

potential difficulty may arise because  is not necessarily always positive. In 

such circumstances, we replace  by the following quantity suggested by 

Koenker and Machado (1999):

(18)

where ε > 0 is a small perturbation parameter that avoids division by zero.

The asymptotic methods described in the previous sections require estimation of a 

conditional density function and the selection of a bandwidth when using a difference 

quotient. This task can be burdensome for practical implementation. As an alternative to the 

asymptotic method, a bootstrap technique resampling {Xi, Yi, (ui, vi)} with replacement 

provides a computationally efficient approach that suppresses the use of 

and hn for deriving the covariance matrix of θτ̂ (u0, v0). Nevertheless, while bootstrapping is 

simple, it may be time consuming for a high dimensional and/or large data set such as the 

one analyzed in this article.

Bandwidth selection for GWQR

The bandwidth controls the smoothness and efficiency of the resultant estimator βτ̂. 

Choosing an optimal bandwidth h associated with the kernel fitting of equation (8) is 

necessary. A commonly used procedure to determine the appropriate bandwidth is based on 

cross-validation (CV). Therefore, following Abberger (1998) and Fotheringham, Brunsdon, 

and Charlton (2002), we construct the following CV score:

(19)

where  is the leave-one-out version estimate of qτ (Xi, ui, vi) obtained with 

the ith observation (Yi, Xi, ui, vi) dropped during estimation. The cross-validated bandwidth 

is selected from the model with the smallest CV score. Note that the CV score is defined 

analogous to the mean regression, but with the square loss function replaced by a V-shaped 

check function.

Although other possible bandwidth selection tools exist that could be considered for GWR, 

such as the Akaike information criterion (AIC), the bias-corrected AIC (AICc), and the 
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Bayesian information criterion (BIC), the CV score is technically more feasible for GWQR. 

Our GWQR estimators are built on QR theory, and have no mathematically explicit 

expression. The AICc or AIC used in GWR could not be directly adopted because of the 

difficulty of computing the degrees of freedom in our GWQR framework. We revisit this 

issue in the discussion section.

Assessment of spatial nonstationarity

To examine spatial nonstationarity in regression coefficients of GWQR, we utilize a simple 

and conventional approach similar to that in Nakaya et al. (2005). We compare, at a 

specified quantile τ, the inter quartile range (IQR) of the local estimates of βs computed by 

GWQR with the standard error of the global estimates derived with a traditional QR. A 

range between the first and third quartiles twice as large as the standard error indicates that 

spatial nonstationarity exists in the relationships between a dependent and its accompanying 

independent variables.

In statistics, the basic approach to testing spatial nonstationarity is to calculate the variance 

of  (k = 0, 2, …, p) across all locations (i = 1, …, n) as a measure of the variability 

of the GWQR estimators, then to determine the sampling distribution of the variance, and 

finally to test the variability based on the sampleing distribution of the variance. However, 

implementing such a concept empirically is difficult because the sampling distribution of the 

variance cannot be identified under the framework of GWQR. Therefore, the conventional 

IQR approach is used in the present form of GWQR. A possible assessment tool for non-

stationarity is briefly described in the discussion section.

An empirical application

The data

Yang, Jensen, and Haran (2011) model the mortality distributions across U.S. counties, 

conditional on different social determinants, such as population composition, inequality, and 

socioeconomic covariates. While the authors realize that the associations between the 

dependent and independent variables may not necessarily be constant across space and the 

entire mortality distribution, no method was available to address this issue. The proposed 

GWQR approach provides one possible solution, and we reanalyze the data from Yang, 

Jensen, and Haran (2011) as an empirical application of GWQR.

The primary outcome is the five-year (1998–2002) average mortality rates (NCHS 2003, 

2006) in 3,109 U.S. counties (the lower 48 states and the District of Columbia [DC]), 

standardized using the U.S. age–sex population structure of year 2000. The independent 

variables of interest here include five area-based social determinants of human health: race/

ethnic composition, income inequality (inequality hereafter), social affluence, concentrated 

disadvantage, and safety.

The first four explanatory variables were derived from the 2000 Census of Population and 

Housing SF3 Files. Specifically, race/ethnic composition is represented by the percentage of 

the black population in a county. Inequality is captured by the Gini coefficient (Kawachi and 

Kennedy, 1997), which is defined as a ratio with values between zero and one. A smaller 
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Gini coefficient indicates a more even distribution of household income within a county and 

hence higher levels of equality. Social affluence is a measure of more economically 

privileged areas, and is measured with a scale defined by the percentage of families that 

have incomes of more than $75, 000, percentage of workers in managerial and professional 

positions, and the percentage of adults with at least a bachelor’s degree. Concentrated 

disadvantage describes conditions of economic disadvantage. Its measurement utilizes the 

following covariates: poverty rate, percentage of persons receiving public assistance, 

unemployment rate, and percentage of female-headed households with children. Our fifth 

variable, safety, is based on the following crimes: embezzlement, forgery/counterfeiting, 

fraud, and Total Part I property crimes (FBI, 2009). This variable is used to reflect the 

absence of mutual trust and safety within a county. Detailed discussions of these variables 

can be found elsewhere (Yang, Jensen, and Haran 2011; Yang, Teng, and Haran 2009). 

Table 1 lists the descriptive statistics for all variables used in our study.

The adaptive bisquare kernel weighting function described in the section on “Estimation in 

GWQR” was used in this application. We computed the local linear quantile estimates of 

regression coefficients for five different percentiles, τ = 0.05, 0.25, 0.50, 0.75, and 0.95. The 

selected optimal bandwidths that yield the same number of nonzero weights for each 

location in the analysis were h = 471 for τ = 0.05, 319 for τ = 0.25, 287 for τ = 0.5, 389 for τ 

= 0.75, and 457 for τ = 0.95.

Results

Table 2 reports the GWQR results for the five selected percentiles. All of the IQRs of the 

local parameter estimates are all at least twice the standard errors of the global estimates. 

These results suggest that all relationships varied across space. Explicitly, the stationarity 

assumption does not hold across both space and the distribution of mortality rates. Knowing 

that the relationships between the five social determinants and mortality are non-stationary 

(standard GWR) across space is valuable; knowing that these relationships also vary across 

the distribution of mortality rates is particularly valuable. That is, different relationships 

between variables exist in different geographical spaces and across different parts of the 

mortality distribution. Figs. 1–3 exemplify these findings, furnishing maps of the non-

stationary process across space and the distribution of mortality for percentage of the black 

population (hereafter percent black), inequality, and safety. One of the advantages of our 

approach is that it provides local statistics that are mappable and GIS-friendly. The maps are 

constructed in ArcGIS 9.x (ESRI) and show only the parts of the mapped surface where the 

local t-values exceed +/−1.96. Following Fotheringham, Brunsdon, and Charlton (2002), 

these local values place emphasis on the differences across space, and facilitate the search 

for exceptions or local hot/cold spots rather than for regularities or global relationships.

Fig. 1 illustrates how the percent black associates with mortality over space and percentiles. 

Beginning with the 50th percentile map, the main general patterns reveal a strong positive 

relationship between percent black and mortality in three relatively low percent black areas 

of the United States (mostly inland West Coast states, parts of Oklahoma, Arkansas, and 

Missouri, and parts of north and central Appalachia in the East). This strong positive 

relationship is not found in any other areas of the United States with a low percentage of 
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black population. Interestingly, percent black is negatively associated with mortality in parts 

of the traditional “Black Belt”. A pocket also exists in central Nebraska/Kansas that exhibits 

a negative relationship. At the 5th percentile for mortality all statistically significant areas 

have a positive relationship with percent black. This group includes a diverse set of areas in 

terms of population density and percent black (surrounding Baltimore/DC, Chicago, parts of 

Texas, and the inland north-west). At the 25th percentile, small pockets in the southeastern 

United States display a negative relationship. Where mortality is high (75th and 95th 

percentiles), the relationship between percent black and mortality across most of the United 

States is not significant. A general contraction of significant areas in the West exists, with a 

slight expansion for the 75th percentile in the East and Midwest.

The GWQR estimates of inequality are summarized in Fig. 2. The local estimates vary 

widely across all percentiles, including both positive and negative values. At the 50th 

percentile, the relationship between income inequality and mortality is positive only in 

southern Texas. The non-stationarity of the relationship between inequality and mortality is 

evident in any single map as well as when comparing across percentiles. The relationship is 

consistently negative across the distribution of mortality in some areas including around 

parts of the Baltimore/Washington, DC area and less so in parts of northern Florida, the 

Midwest, and the Mountain West regions.

Fig. 3 portrays the estimates and significant areas for safety. In the 5th, 25th, and 50th 

percentile maps, all significant areas show a positive association between safety and 

mortality. While the significant areas covered in these three maps are different, some 

commonalities exist: along the U.S./Mexico border between Arizona and Texas, parts of 

Florida and Georgia, along the Mississippi River, and in parts of Minnesota and Wisconsin. 

The commonality in statistical relationship belies the diversity between these areas. At both 

the 75th and 95th percentiles, the map surfaces include areas of the United States where 

negative relationships also exist between safety and mortality. In general, safety is 

associated with mortality in more areas of the country at the 50th and lower percentiles.

Finally, affluence is found to be negatively associated with mortality across space and 

percentiles, with this relationship covering most places in the United States, and with few 

areas showing no significant association (e.g., parts of the Ohio valley). In contrast, 

disadvantage demonstrates a positive relationship with mortality across most of the U.S., 

with the significant areas shrinking toward both lower and higher ends of the mortality 

distribution1.

Discussion and conclusion

We present an approach that analyzes spatially nonstationary relationships between 

explanatory and dependent variables within the framework of QR. Although GWR considers 

spatial nonstationarity only for mean regression models, GWQR generalizes GWR to allow 

for the computation of conditional quantiles. We apply the approach to a U.S. county-level 

mortality rates dataset. The results indicate that the changing spatial patterns in regression 

1The maps for these two determinants are available upon request.
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relationships across the response distribution can be summarized by estimating a range of 

different conditional quantiles functions. Specifically, the GWQR approach enables 

researchers to explore whether spatial nonstationarity is stable across the distribution of a 

dependent variable. Although an increasing interest in exploring nonstationarity across space 

(e.g., Yang et al. 2009; Chen et al. 2010) has emerged in recent years, to date no published 

study has tried to examine this issue in terms of QR; our proposed technique fills this gap in 

the literature.

By bringing QR into GWR, the proposed technique accounts for both spatial structure and 

the stochastic distribution of a dependent variable. Most research studies, especially in 

epidemiology and public health, concentrate on only one of these two dimensions, either 

modeling mean values across space, or showing quantile plots without considering spatial 

structure. Our approach aims to synthesize these two techniques. Although we focuse on a 

health-related empirical example, the approach can be used in other kinds of studies. The 

key message we wish to convey is that without a GWQR approach, researchers cannot 

explore associations between predictors and a dependent variable, how these associations 

vary spatially, and how these associations simultaneously vary across the distribution of the 

dependent variable. Knowing the local estimates via a GWQR helps to place emphasis on 

variations and on the differences in relationships across space. Of relevance to public policy 

and applied research, this emphasis on local estimates (and their comparison to single model 

global estimates) can reveal geographic areas (both hot or cold spots) where detailed case 

studies might be implemented. Our hope is that GWQR is a method that contributes to the 

growing trend in which spatial analysis becomes an interdisciplinary geospatial science 

(Berry, Griffith, and Tiefelsdorf 2008).

We demonstrate in this article that the proposed GWQR is an innovative approach toward 

spatial quantile-based analysis that simultaneously accounts for the heterogeneity of a 

regressand and spatial non-stationarity. Several methodological issues remain that deserve 

further discussion and that future work should try to address. The first issue is the kernel 

bandwidth. A method developed by Cai and Xu (2008) provides a potential bandwidth 

selection criterion for GWQR. Specifically, they propose an AICc for a varying coefficient 

QR to select the optimal bandwidth for time-series data. Our current work attempts to 

integrate the Cai and Xu approach into the GWQR framework, and our ongoing work seeks 

to provide users with an alternative bandwidth selection tool. However, this transformed 

AIC bandwidth selector for GWQR will be more computationally demanding than the 

current CV approach.

The second issue is the nonstationarity test in GWQR. Monte Carlo techniques offer a 

potential approach for testing spatial nonstaionarity in the nonparametric analysis setting 

(Brunsdon, Fotheringham, and Charlton 1996). If an independent variable is found to have a 

spatially stationary relationship with its regressand, a semiparametric GWQR framework 

should be applied to account for the stationarity. That is, in a semiparametric GWQR model, 

the parameter coefficient of a stationary independent variable is fixed across a research area, 

with other regressors varying spatially. This semiparametric approach is important because 

it would account for both stationarity and non-stationarity in the same model. These issues 

are currently being explored.
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Finally, because the GWQR framework is built on GWR, our approach shares the same 

criticisms of GWR described in the introduction. Several strategies have been proposed to 

overcome the limitations of GWR. Wheeler and Calder (2007), for instance, use a Bayesian 

spatially varying coefficient process (SVCP) model that estimates spatially varying 

coefficients as a multivariate spatial process. Their model is specified in a hierarchical 

manner, producing more robust statistical inference than does GWR, particulary in the 

presence of explanatory variable collinearity. Another way to explore spatially nonstationary 

association is spatial filtering (Griffith 2008). As discussed in the section on “GWR 

fundamentals,” this method bridges the global and local statistics with a decomposition 

technique. While these methods have several modeling advantages over GWR, they may not 

be easily combined with QR; but further investigations are warranted.

Although spatial quantile-based analytic approaches are underexplored, some parallels exist 

with GWQR. One is the M-quantile GWR (MQGWR) developed by Salvati et al. (2007), 

and the other is the Bayesian spatial QR developed by Reich, Fuentes, and Dunson (2010). 

The MQGWR is designed to improve small area estimation. Its underlying framework is M-

QR, which is generalized from both quantile and expectile regression (Chambers and 

Tzavidis 2006). Whereas MQGWR is similar to our GWQR approach, and both share some 

advantages (e.g., data-based modeling without modeling assumptions), we identify three 

major differences between these two methods. First, MQGWR is less flexible than GWQR 

when extended to discrete dependent variables. Recent developments in QR (see Bottai, Bo, 

and McKeown 2010) open the door for our GWQR approach to handle binary dependent 

variables. Second, the issue of bandwidth selection has not been fully addressed in 

MQGWR. Our GWQR uses the CV method to determine the bandwidth “specific to each 

quantile,” but MQGWR only applies one bandwidth (chosen for an entire dataset) to every 

quantile (Salvati et al. 2007). Third, developing a non-stationarity diagnostic tool is 

necessary for MQGWR, but our GWQR can adopt the methods used in GWR 

(Fotheringham et al. 2002; Salvati et al. 2007). We want to emphasize that these differences 

do not necessarily make our GWQR approach better than MQGWR. A comprehensive study 

is needed to compare these methods using the same datasets.

Reich, Fuentes, and Dunson (2010) extend a Bayesian SVCP model by Gelfand et al. (2003) 

to the QR setting in which the conditional quantile function is modeled using a finite number 

of basis functions varied across locations and smoothed with a spatial prior. This approach 

handles spatial dependence in data through a single statistical model, and can simultaneously 

analyze several quantile levels. Although Bayesian spatial QR offers some appealing model 

properties, difficulties may arise because of computational complexities in the 

implementation and the choice of prior distributions. In contrast, our GWQR provides a 

different and relatively easy alternative for spatial quantile-based regression analysis, with a 

trade-off regarding robust statistical inference.

The goal of this article is to introduce the GWQR framework and to demonstrate it 

empirically. Many opportunities and challenges exist in implementing GWQR, and our 

work, in many ways, is only just beginning. We hope that GWQR and similar emerging 

methods (e.g., MQGWR and Bayesian SVCP) can help stimulate new conversations and 

methods that continue to push forward the field of geographical analysis.
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Figure 1. 
Map of GWQR estimates for black population, significant areas at +/−1.96 level.
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Figure 2. 
Map of GWQR estimates for income inequality, significant areas at +/− 1.96 level.
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Figure 3. 
Map of GWQR estimates for safety, significant areas at +/− 1.96 level.
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Table 1

Descriptive Statistics of Variables (N = 3,109)

Minimum Maximum Mean Std. Deviation

Percent black 0.0000 86.0780 8.7150 14.5035

Income inequality 0.3140 0.6050 0.4343 0.0377

Affluence −2.4281 6.0110 0.0000 1.0000

Disadvantage −2.5365 9.0560 0.0000 1.0000

Safety −1.3703 12.1190 0.0000 1.0000

Mortality (per 1,000) 0.0000 19.7770 8.8984 1.3766
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