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Arveux68, Pierre Kerbrat69, Thérèse Truong49,50, Peter Bugert70,71, Amanda E. Toland72, Christine
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Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis.
Several small candidate gene studies have reported associations between variation in mitotic genes and breast
cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic
genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium
(BCAC) iCOGS study (n 5 39 067 cases; n 5 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) 5
1.24, 95% confidence interval (CI) 1.16–1.33, P 5 4.2 3 10210) and EIF3H (rs799890: OR 5 1.07, 95% CI 1.04–
1.11, P 5 8.7 3 1026) were significantly associated with risk of low-grade breast cancer. The TACC2 signal
was retained (rs17550038: OR 5 1.15, 95% CI 1.07–1.23, P 5 7.9 3 1025) after adjustment for breast cancer
risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant
genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade dis-
ease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with
high-grade breast cancer risk (P 5 2.1 3 1023). These observations will provide insight into the contribution of
mitotic defects to histological grade and the etiology of breast cancer.

INTRODUCTION

Inherited variation in genes encoding proteins involved in
mitotic regulatory pathways, such as mitotic kinases and
centrosome-related genes, has been associated with cancer risk
in several small candidate gene studies. Common variants in
mitotic genes have been associated with various cancer types
such as prostate, lung, uterine, colorectal, and breast cancer
(1–7). Specifically for breast cancer, genes involved in centro-
some amplification, such as NIN, TACC3, GPSM2, CDC25C,
NEK7 and MCPH1 and variation in mitotic regulators, including
SART1, EIF3A, RRM2 and PSCD3 have been associated with
breast cancer risk (8,9). SNP by SNP interactions for breast
cancer risk have also been observed between SEPT4 and
TEX14, both of which participate in the separation into daughter
cells during cytokinesis (10). Finally, the mitotic kinases FYN,
MAST2 and MAP2K4, identified through RNA interference-
based functional screening of mitotic kinases in Drosophila
(11), have been associated with breast cancer risk (12).

Multiple lines of evidence support an etiologic role for disrup-
tion of mitotic regulatory pathways in breast tumorigenesis.
The disruption of chromosome segregation during mitosis is
one mechanism of chromosomal instability, and ultimately
aneuploidy, which has been found to occur early in breast tumor
development (13,14), is found in �80% of all breast tumors and
is thought to play a direct role in tumor progression (15,16).
Further, somatic mutations in spindle assembly checkpoint
genes have been identified in human breast tumors, and muta-
tions in orthologous murine genes have been implicated in
increased chromosomal instability and tumor development
(13,14). Deregulation of mitosis is associated with the patho-
physiology of breast cancer through the mitotic index, a compo-
nent of the histologic grading system of breast tumors. Higher
histologic grade is associated with increased aggressiveness
and both high mitotic index and high grade are associated with
poor prognosis (17). Given the relationship between histologic
grade and mitotic index, we hypothesized that genetic variation
in mitotic regulatory pathways is associated with high-grade
breast cancer risk. Here we report on a comprehensive analysis
of variation in mitotic genes in a study of nearly 80 000 subjects

(n ¼ 39 067 cases; n ¼ 42 106 controls) with information on
histopathologic grade from the Breast Cancer Association Con-
sortium (BCAC). We evaluated 2135 single nucleotide poly-
morphisms (SNPs) in 194 genes involved in mitosis,
encompassing those involved in mitotic entry and progression,
the spindle assembly checkpoint and cytokinesis. Utilizing
genotype data from a custom Illumina Infinium array (iCOGS)
array (18), we investigated whether variation in these 194
mitotic genes influences the risk of breast cancer, both overall
and with respect to histologic grade.

RESULTS

To determine whether variation in genes encoding mitotic regu-
latory proteins influences invasive breast cancer risk, we evalu-
ated associations between 2156 SNPs in 194 mitotic genes
(Supplementary Material, Table S1) and breast cancer risk
among women of European ancestry using 39 067 breast
cancer cases and 42 106 study-matched controls from BCAC
(Supplementary Material, Table S2). Ten SNPs in three loci
were significantly associated with overall breast cancer risk
after Bonferroni correction (P , 2.3 × 1025) (Table 1a). Six
SNPs in the ITPR1 locus on chromosome 3, which has been pre-
viously reported as a breast cancer susceptibility locus by BCAC
(18), were associated with overall breast cancer risk (Table 1a).
Four of these SNPs achieved genome-wide significance with in-
vasive breast cancer overall (rs6762644: odds ratio (OR) ¼
1.06, P ¼ 1.1 × 1028; rs6774180 OR ¼ 1.06, P ¼ 1.3 ×
1028; rs9867580 OR ¼ 1.06, P ¼ 4.2 × 1028; rs13313995
OR ¼ 1.06, P ¼ 4.8 × 1028) (Table 1a). Three SNPs in the
TACC2 locus on chromosome 10 (rs17550038 OR ¼ 1.15,
P ¼ 1.0 × 1026; rs2461211 OR ¼ 1.08, P ¼ 1.8 × 1026;
rs2461210 OR ¼ 1.08, P ¼ 2.3 × 1026) and one SNP in the
EIF3H locus on chromosome 8 (rs799890 OR ¼ 1.06, P ¼
1.4 × 1025) were also significantly associated with overall
breast cancer risk (Table 1a). Of these, the three TACC2 locus
SNPs showed genome-wide significant associations with estro-
gen receptor (ER)-positive breast cancer but no significant
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associations with ER-negative breast cancer (Supplementary
Material, Table S3a).

The 2156 mitotic SNPs were also assessed for associations
with histologic grade of breast cancer, by comparing 19 475
low-grade breast cancers (Grades 1 and 2 combined) and 8780
high-grade (Grade 3) breast cancers to 42 106 controls in a poly-
tomous logistic regression model. Similar to the overall breast
cancer analysis, variants in the TACC2, EIF3H and ITPR1 loci
were significantly associated with low-grade breast cancer risk
(Table 1b). Three genotyped SNPs in the TACC2 locus
showed genome-wide significant associations with risk of low-
grade breast cancers (rs17550038 OR ¼ 1.24, P ¼ 4.2 ×
10210; rs2461211 OR ¼ 1.14, P ¼ 4.8 × 10210; rs2461210
OR ¼ 1.14, P ¼ 7.1 × 10210), and three others retained signifi-
cance after Bonferroni correction (Table 1b). All six variants
were located in intron 2 of TACC2 (Supplementary Material,
Fig. S1). The levels of significance and the effect sizes for the
associations with the six TACC2 SNPs were consistently
greater in ER-positive than ER-negative low-grade breast
cancers, although this may be due to reduced power for the
ER-negative analysis (Supplementary Material, Table S3b).
No SNPs in TACC2 were significantly associated with high-
grade breast cancer risk (Supplementary Material, Table S4).

The TACC2 locus is located �390 kb downstream of FGFR2,
a known breast cancer susceptibility locus (18–20), from which
FGFR2 rs2981579 has been strongly associated with overall
breast cancer risk in these data (OR ¼ 1.32, P ¼ 1.23 ×
102102) (Table 2a) (18). Although 1000 Genomes Project data
showed little evidence of linkage disequilibrium (LD) between
SNPs in the TACC2 and FGFR2 loci (Supplementary Material,
Fig. S2), the proximity of the loci raised the possibility that asso-
ciations between variants in TACC2 and low-grade breast cancer
were accounted for by variation in the FGFR2 locus. To explore
this in detail we investigated associations between 454 SNPs in
the FGFR2 locus and low-grade breast cancer. By adjusting the

top FGFR2 SNP, rs2981579, for each of the 453 remaining
FGFR2 SNPs, rs78985527 was identified as an additional poten-
tially independent FGFR2 signal for low-grade breast cancer
(Table 2b). The analyses of the six significant TACC2 SNPs
were then adjusted simultaneously for rs2981579 and
rs78985527 (Table 2c). While the effect sizes and the signifi-
cance of the findings were reduced, each of the six TACC2
SNPs remained strongly associated with low-grade breast
cancer (Table 2c). In addition, there was no evidence for inter-
action between FGFR2 rs2981579, rs78985527, and any of the
TACC2 SNPs (Supplementary Material, Table S5). For com-
pleteness, we also adjusted the top TACC2 SNP rs17550038
for each of the 454 FGFR2 SNPs, but did not find substantial evi-
dence that FGFR2 SNPs account for the TACC2 signal (Supple-
mentary Material, Fig. S3). These findings suggest that the
TACC2 association is independent of previously described
genetic associations at the FGFR2 locus. However, it will be
necessary to take into account the potential for long-range tran-
scriptional regulation in this region when exploring the exact
functional mechanism underlying this signal.

To identify putative functional SNPs in the TACC2 locus, we
performed a FunciSNP analysis for rs17550038. A total of 27
SNPs in LD with rs17550038 (R2 ≥ 0.3), the majority of
which were located in introns of TACC2 (n ¼ 21) or ATE1
(n ¼ 4), overlapped with at least one biofeature (Supplementary
Material, Table S6, Fig. 1). Of these 27 SNPs, rs11200337 over-
lapped with biofeatures in three breast cell lines (HMEC, MCF7,
T47D). rs11200337 is located 11.5 kb from the TACC2 index
SNP (R2 ¼ 0.53) in a methylated region in each of the cell
lines and a DNaseI hypersensitivity (HS) site in HMEC and
T47D cells. The SNP is also located in sites of histone modifica-
tion and open chromatin in HMEC normal mammary epithelial
cells. Three additional SNPs located in TACC2 introns over-
lapped with biofeatures in at least two of the cell lines
(rs4282928, rs4752637, rs11200373).

Table 1. Associations with overall and low-grade breast cancer risk

SNP Chr. Position Gene Allelea Controls Cases OR P-value

(a) Overall breast cancer
rs6762644 3 4717276 ITPR1 G 42 100 39 055 1.06 (1.04–1.08) 1.1 × 1028

rs6774180 3 4717779 ITPR1 A 42 102 39 061 1.06 (1.04–1.08) 1.3 × 1028

rs9867580 3 4722247 ITPR1 C 42 101 39 058 1.06 (1.04–1.08) 4.2 × 1028

rs13313995 3 4722360 ITPR1 A 42 097 39 048 1.06 (1.04–1.08) 4.8 × 1028

rs17550038 10 123780679 TACC2 C 42 101 39 058 1.15 (1.09–1.22) 1.0 × 1026

rs2461211 10 123783865 TACC2 A 42 101 39 064 1.08 (1.05–1.12) 1.8 × 1026

rs2461210 10 123784538 TACC2 A 42 105 39 065 1.08 (1.05–1.12) 2.3 × 1026

rs9830067 3 4731814 ITPR1 A 42 104 39 062 1.05 (1.03–1.07) 5.0 × 1026

rs2306881 3 4728712 ITPR1 G 42 095 39 057 1.05 (1.03–1.07) 6.1 × 1026

rs799890 8 117318782 EIF3H C 42 102 39 063 1.06 (1.03–1.09) 1.4 × 1025

(b) Low-grade breast cancer
rs17550038 10 123780679 TACC2 C 42 101 16 053 1.24 (1.16–1.33) 4.2 × 10210

rs2461211 10 123783865 TACC2 A 42 101 16 056 1.14 (1.09–1.19) 4.8 × 10210

rs2461210 10 123784538 TACC2 A 42 105 16 055 1.14 (1.09–1.18) 7.1 × 10210

rs7898269 10 123784105 TACC2 A 42 106 16 056 1.16 (1.09–1.22) 2.1 × 1027

rs12146254 10 123793633 TACC2 A 42 079 16 047 1.15 (1.08–1.21) 1.3 × 1026

rs10887047 10 123770790 TACC2 A 42 087 16 054 1.14 (1.08–1.21) 2.2 × 1026

rs799890 8 117318782 EIF3H C 42 102 16 055 1.07 (1.04–1.11) 8.7 × 1026

rs799889 8 117320076 EIF3H C 42 102 16 053 1.07 (1.04–1.10) 1.8 × 1025

rs6762644 3 4717276 ITPR1 G 42 100 16 052 1.06 (1.03–1.08) 2.3 × 1025

a Tested allele.
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We also performed an exploratory analysis of correlations
between TACC2 expression and nearby SNPs, utilizing expres-
sion quantitative trait locus (eQTL) data available from 484
triple negative (TN) breast tumors from the Triple Negative
Breast Cancer Consortium. Seven SNPs around TACC2 were
associated with TACC2 expression at a 10% false discovery
rate (FDR) threshold (P ≤ 5 × 1025), although none of these
SNPs were in LD with the risk-associated SNPs (Supplementary
Material, Table S7). Similarly, an eQTL analysis using The
Cancer Genome Atlas (TCGA) data identified an additional
rare SNP, rs3752956 in intron 8 of TACC2, as an eQTL for
TACC2 (P ¼ 4.07 × 1025) in ER-positive breast tumors (21).
These data alone do not provide evidence that SNP-mediated
deregulation of TACC2 underlies the breast cancer risk signal
at this locus. Further functional analyses in low-grade breast
tumors are necessary to understand the mechanistic basis of
this association.

In addition to TACC2, two SNPs in the EIF3H locus (rs799890
OR ¼ 1.07, P ¼ 8.7 × 1026, rs799889 OR ¼ 1.07, P ¼ 1.8 ×
1025) were associated with low-grade breast cancer risk
(Table 1b). A total of 55 SNPs in the EIF3H locus were geno-
typed, with a single peak of association downstream of EIF3H
(Supplementary Material, Fig. S4). Similar to the overall
results, variants in EIF3H were associated with ER-positive low-
grade breast cancer and marginally with ER-negative low-grade
breast cancer, where the effect sizes were slightly larger but the
association was less significant due to the small sample size
(Supplementary Material, Table S3b). No SNPs in EIF3H

were significantly associated with high-grade breast cancer
risk (Supplementary Material, Table S8). We identified 19 puta-
tive functional SNPs correlated with rs799890 in the EIF3H
locus, all of which were intergenic between the TRPS1 and
EIF3H genes (Supplementary Material, Table S9). The only bio-
features associated with these SNPs were open chromatin states
and sites of histone modification in HMEC cells.

Similarly, a single SNP in the ITPR1 locus remained statistic-
ally significant among low-grade breast cancers (rs6762644
OR ¼ 1.06, P ¼ 2.3 × 1025) (Table 1b). As with the TACC2
SNPs, the ITPR1 SNP was only associated with ER-positive low-
gradebreastcancers(SupplementaryMaterial,TableS3b).Several
SNPs in ITPR1, includingrs6762644,werealsomarginallysignifi-
cantly associated with high-grade breast cancer (Table 1c), sug-
gesting that the ITPR1 locus is associated with breast cancer risk
regardless of histologic grade. SNPs in the ITPR1 locus that are
associated with breast cancer risk have been previously annotated
for effects on chromatin using Encyclopedia of DNA Elements
(ENCODE) biofeatures identified in HMECs (22). Here we iden-
tified 14 SNPs correlated with rs6762644 that also overlap with
DNaseI HS sites, Formaldehyde-assisted isolation of regulatory
elements (FAIRE) open chromatin signals, and sites of histone
modification in T47D and/or MCF7 cells located within introns
of EGOT (Supplementary Material, Table S10).

No individual SNPs were significantly associated with high-
grade breast cancer (Supplementary Material, Table S11).
However, considering the original hypothesis that variation in
mitotic genes is associated with high-grade breast cancer risk

Table 2. Multivariable analysis of FGFR2 and TACC2 for low-grade breast cancer risk

Gene SNP Adjustmentsa OR (95% CI) P-value

(a) Single SNP analysis
TACC2 rs17550038 1.24 (1.16–1.33) 4.2 × 10210

rs2461211 1.14 (1.09–1.19) 4.8 × 10210

rs2461210 1.14 (1.09–1.18) 7.1 × 10210

rs7898269 1.16 (1.09–1.22) 2.1 × 1027

rs12146254 1.15 (1.08–1.21) 1.3 × 1026

rs10887047 1.14 (1.08–1.21) 2.2 × 1026

(b) FGFR2 2-SNP analysis
rs2981579 rs78985527 1.33 (1.30–1.37) 8.3 × 102106

rs78985527 rs2981579 1.12 (1.06–1.18) 5.7 × 1025

(c) TACC2 + FGFR2 3-SNP analysis
TACC2 rs17550038 rs2981579, rs78985527 1.14 (1.07–1.23) 1.1 × 1024

rs2461211 rs2981579, rs78985527 1.08 (1.04–1.13) 2.1 × 1024

rs2461210 rs2981579, rs78985527 1.12 (1.04–1.12) 2.6 × 1024

rs7898269 rs2981579, rs78985527 1.10 (1.04–1.16) 1.3 × 1023

rs12146254 rs2981579, rs78985527 1.09 (1.03–1.15) 3.2 × 1023

rs10887047 rs2981579, rs78985527 1.08 (1.03–1.15) 4.2 × 1023

FGFR2 rs2981579 rs17550038, rs78985527 1.32 (1.29–1.36) 1.3 × 102100

rs2981579 rs2461211, rs78985527 1.33 (1.29–1.36) 1.7 × 102100

rs2981579 rs2461210, rs78985527 1.33 (1.29–1.36) 1.2 × 102100

rs2981579 rs7898269, rs78985527 1.33 (1.29–1.36) 2.8 × 102102

rs2981579 rs12146254, rs78985527 1.33 (1.30–1.37) 8.8 × 102103

rs2981579 rs10887047, rs78985527 1.33 (1.30–1.37) 7.3 × 102103

FGFR2 rs78985527 rs17550038, rs2981579 1.11 (1.05–1.17) 8.1 × 1025

rs78985527 rs2461211, rs2981579 1.11 (1.05–1.17) 1.4 × 1024

rs78985527 rs2461210, rs2981579 1.11 (1.05–1.17) 1.5 × 1024

rs78985527 rs7898269, rs2981579 1.11 (1.05–1.17) 8.2 × 1025

rs78985527 rs12146254, rs2981579 1.11 (1.06–1.18) 5.8 × 1025

rs78985527 rs10887047, rs2981579 1.11 (1.06–1.17) 7.4 × 1025

aIn addition to study and principal components.

Human Molecular Genetics, 2014, Vol. 23, No. 22 6039

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu300/-/DC1


and the limited power to detect single SNP associations for high-
grade breast cancer, we evaluated whether variation in the 194
mitotic genes influenced high-grade breast cancer risk when ana-
lyzed as a pathway. A two-step gene set analysis (PC-GM) was
conducted, in which each of the 194 mitotic genes were summar-
ized by principal component analysis and then combined into a
single test statistic to evaluate whether the gene set was associated
with risk (23). Based on this method, the mitotic pathway was sig-
nificantly associated with overall breast cancer risk (P ¼ 2.6 ×
1023). This association was maintained even after excluding
SNPs in the TACC2, EIF3H and ITPR1 loci (filtered P ¼ 2.5 ×
1023). In contrast to the findings with single SNPs, the pathway
as a whole was associated with high-grade breast cancer (P ¼
2.1 × 1023; filtered P ¼ 2.6 × 1023) rather than low-grade
breast cancer risk (P ¼ 0.065; filtered P ¼ 0.063). This suggests
that variation in mitotic genes is relevant to high-grade breast
cancer risk; however these result are preliminary, and it is neces-
sary to replicate this analysis in an independent population and to
functionally validate the role of these genetic variants in high-
grade breast cancer to confirm these findings.

DISCUSSION

In this analysis of 194 genes involved in mitotic regulation, we
have shown that SNPs in TACC2, EIF3H and ITPR1 are

associated with risk of low-grade but not high-grade breast
cancer, with the greatest effects observed for ER-positive
tumors. Several of the TACC2 SNPs remained associated
with low-grade breast cancer risk after adjustment for the
nearby FGFR2 breast cancer risk SNP rs2981579, suggesting
that the TACC2 locus is a new genome-wide significant
genetic risk factor for low-grade breast cancer. The association
of SNPs in FGFR2 and TACC2 with breast cancer suggests a
complex relationship between SNPs and genes in this region
of chromosome 10. Indeed, it is possible that the underlying
functional effect captured by this new signal in the TACC2
locus is related mechanistically to previously described asso-
ciations in the FGFR2 locus, in that variants in the TACC2
locus may influence TACC2 and/or long-range transcriptional
regulation of FGFR2. Analyses of common variants in these
loci using ENCODE and eQTL data identified several candi-
date functional SNPs, which will need to be explored in
future in vitro and in vivo studies to elucidate the underlying
biological mechanisms at this locus that influence risk of low-
grade breast cancer.

While we generally observed greater effects for ER-positive
low-grade tumors, we had limited power to detect significant
associations with the modest number of low-grade,
ER-negative breast cancers genotyped (n ¼ 1447) given the
relatively small effect sizes for the TACC2, EIF3H and

Figure 1. Overlap between putative functional SNPs and ENCODE tracks in HMECs. Figureswere generated in the UCSC GenomeBrowser (http://genome.ucsc.edu,
last accessed on 19 June 2014) using ENCODE and custom tracks. ChromHMM, Hidden Markov Model predicted chromatin state segmentation; bright red, active
promoter; light red, weak promoter; purple, inactive promoter; orange, strong enhancer;yellow, weak enhancer; blue, insulator;dark green, transcriptional elongation;
light green, weakly transcribed; dark gray, polycomb-repressed; light gray, repetitive/copy number variation.
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ITRP1 SNPs. Future studies by BCAC and other consortia that
incorporate large numbers of ER-negative breast cancers with
complete histologic grade data will be necessary to completely
understand the relationship between these SNPs, grade and ER
subtype. In contrast to single SNP effects, variation in the 194
mitotic genes was associated with high-grade breast cancer risk
in a pathway-level analysis, although these findings require
replication in an independent sample and functional validation.
It is important to note that while the total sample size was large,
the number of high-grade breast cancers was comparatively
small and the statistical power to detect associations with
SNPs with small effect sizes was limited. Additionally, due
to the design of the iCOGS array, SNP coverage of the genes
varied and some known mitotic genes were not represented at
all. Nevertheless, we successfully identified biologically inter-
esting genes that appear to influence breast tumor grade, and a
series of candidate functional SNPs in these loci that warrant
follow-up in future studies.

The TACC2 gene is a member of the transforming acidic
coiled-coil-containing protein family and is located on
chromosome 10q26 (24). TACC proteins are an essential com-
ponent of the centrosome–spindle apparatus during mitosis,
and TACC2 is strongly concentrated at centrosomes through-
out the cell cycle (25). Interestingly, mutants lacking the Dros-
ophila melanogaster TACC gene, d-tacc, experience high rates
of chromosomal segregation defects (26). In a study of fresh
frozen primary human breast cancer tissues, TACC2 expres-
sion was increased in high-grade compared with low-grade
tumors and in tumors from patients with poor clinical outcomes
including metastasis, recurrence, and breast cancer related
death, reflected by a shorter disease-free survival for patients
with high TACC2 expression (24). However, multiple other
studies suggest that TACC2 can be up- or down-regulated in
different types of cancer even in the same tissue, including
breast (27–29).

Less is known about the exact role of EIF3H, located on
chromosome 8q23, in cell cycle regulation. The EIF3H
gene encodes the H subunit of the eukaryotic translation ini-
tiation factor 3 (eIF-3) complex, which is required for several
steps in the initiation of protein synthesis including mRNA
recruitment and disassembly of ribosomal complexes (30).
Translational control is a crucial component of cancer devel-
opment and progression (31), and EIF3H in particular is fre-
quently amplified in breast and prostate cancers (32).
Overexpression of eIF3 h in prostate cancers is also asso-
ciated with increased grade as measured by the Gleason
score (33). Two short interfering RNA (siRNA) screens in
HeLa cells have identified EIF3H as essential for cell div-
ision, the disruption of which leads to cell cycle arrest and
altered ploidy phenotype (34,35).

In summary, we have reported on a large-scale analysis of the
relationship between common variation in mitotic genes and
breast cancer grade in a study of �40 000 invasive breast
cancer cases and study-matched controls with extensive histo-
pathologic grade data. While the exact mechanism underlying
the association between TACC2 and EIF3H and breast cancer
grade are unclear, these results warrant follow-up in functional
studies and larger studies of histopathologic subtypes of breast
cancer.

MATERIALS AND METHODS

iCOGS genotyping

Subjects included in this analysis were a subset of those geno-
typed on the iCOGS array from the BCAC (18). Women with
invasive breast cancer and study-matched controls from 40
studies (Supplementary Material, Table S2) with self-reported
European ancestry and .95% subject call rate for genotyping
(n ¼ 39 067 cases; n ¼ 42 106 controls) were included. These
40 studies have been described previously (18). The design of
the iCOGS array (211 155 SNPs), genotyping methods, and
quality control have been previously described (18). Samples
were genotyped as part of the Collaborative Oncological
Gene-environment Study (COGS) project using the iCOGS
array at four genotyping centers. Genotype calling and quality-
control analyses were conducted by a single analysis center at
the University of Cambridge (18).

Gene and SNP selection

The iCOGS array included SNPs from 194 genes encoding
proteins implicated in normal control of mitotic entry, spindle
assembly checkpoint and cytokinesis (GO: http://www.
geneontology.org; KEGG http://www.genome.jp/kegg/) (Sup-
plementary Material, Table S1). All 2351 SNPs on the iCOGS
array within each of the 194 genes and within a 50 kb window
from the beginning and end of the longest transcript were
selected. A total of 2156 SNPs had a call rate .95% and were
included in the analysis.

Pathology

The collection of pathology and tumor marker information for
BCAC has been described previously (36). Briefly, studies pro-
vided information on ER status and grade of differentiation. The
most common source of data for ER status was medical records,
followed by inmunohistochemistry performed on tumor tissue
microarrays or whole section tumor slides. ER-negative status
was defined as , 10% of the tumor cells stained for a number
of participating studies, where patients were recruited from
Europe (n ¼ 30), Australia (n ¼ 3), Canada (n ¼ 2) and the
USA (n ¼ 5) from 1972–2011 (median recruitment year ¼
2004). Histologic grade was reported using the Nottingham com-
bined grading system. For the purpose of this analysis, Grades 1
and 2 were jointly considered ‘low grade’ while Grade 3 was
considered ‘high grade’.

Statistical analyses

Single SNP analyses were conducted in PLINK (37), and polyto-
mous logistic regression was implemented in R (http://cran.us.r-p
roject.org/, last accessed on 19 June 2014) when comparing histo-
pathologic subtypes to a common set of controls. SNP associations
were tested in a log-additive model and were adjusted for study and
European ancestry-specific principal components as described by
Michailidou et al. (18). Consideration of age, assessed by both
the exclusion of studies for which the age of controls was not
known and the adjustment for age in 5-year categories and as a con-
tinuous covariate, made no substantial difference to the results.
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The two-step gene set pathway analysis (PC-GM) has been
previously described (23). Briefly, we first performed principal
component (PC) analysis for each of the 194 mitotic genes.
The PCs that captured at least 80% of variation in each gene
were used to assess the significance of the associations
between each gene and breast cancer risk in a logistic regression
model. Following determination of these gene-level associations
for each of the 194 genes, the P-values were summarized using
the gamma method (23) to obtain a pathway-level test statistic
based on observed data. Empirical gene set association
P-values and pathway-level test statistics were determined
from 1000 permutations, where the response variable (case–
control status) was permuted while keeping genotype and cov-
ariate data fixed. The final pathway P-value was determined as
the proportion of permutations in which the empirical pathway-
level test statistic was greater than the observed pathway-level
test statistic.

FunciSNP annotation

The FunciSNP package (38) was implemented in R using default
parameters with a search window of +500 kb. Analyses were
run separately for each of three index SNPs: rs17550038
(TACC2), rs799890 (EIF3H) and rs6762644 (ITPR1). The Fun-
ciSNP tool identified all SNPs from the 1000 genomes project
(http://www.1000genomes.org/, last accessed on 19 June 2014)
within 500 kb of the index SNP that overlapped with at least one
biofeature. The biofeatures included in this analysis were (1)
built-in consensus promoter regions, ENCODE DNaseI HS
and CTCF sites from the getFSNPs function and (2) HS sites,
FAIRE signals and histone modification ChIP-seq data
(H3K4me1, me2, me3, H3K9Ac and H3K27Ac) downloaded
as bed files from ENCODE Build 37 production data (http://
genome.ucsc.edu/ENCODE/, last accessed on 19 June 2014)
for HMEC normal mammary epithelial cells, and the MCF7
and T47D breast cancer cell lines when available (Supplemen-
tary Material, Table S12). Recognizing that observed SNP asso-
ciations may capture functional SNPs even at relatively low
levels of LD, we defined LD with the index SNP at R2 ≥ 0.3.

Triple negative breast cancer expression quantitative
trait loci (eQTL) analyses

Expression profiles were generated for 596 triple negative (TN)
breast tumors (Supplementary Material, Table S13) using the
Illumina Whole Genome cDNA-mediated Annealing, Selection,
extension and Ligation (DASL) v4.0 assay. Study sites have
been described previously (39,40). Whole formalin fixed paraf-
fin embedded tumor sections were macrodissected for enrich-
ment of tumor cells, guided by a pathologist-read hematoxylin
and eosin-stained slide. RNA was extracted using the Roche
High Pure RNA Isolation Kit (Indianapolis, USA). DASL ex-
pression profiling was performed by the Mayo Clinic Medical
Genome Facility Gene Expression Core (Rochester, MN).
After log2-transformation of raw intensity values, a per-sample
quality (stress) measure was calculated (41). Log2-transformed
intensity values were median-quantile normalized. Probes with
a P-value of detection .0.05 in all samples were excluded
(n ¼ 713) yielding 28 664 high-quality probes. Samples were
median-centered by 96-well plate to correct for batch effects.

Of the 596 TN tumors with high-quality expression data, germ-
line genotype data from the Illumina 660-Quad, HumanHap
500k DUO, CNV370DUO, or iCOGS custom genotyping
array (18,40), were available for 516 of the same individuals.
cis-eQTLs for TACC2 were defined as associations between
ILMN_2315780, ILMN_1686442, ILMN_2363165 probe
expression and SNPs within 1 MB of these probes in a robust
linear regression model. An FDR was generated using 100 per-
mutations of the genome-wide analysis (cis associations
between 8 969 066 SNPs and 28 504 probes), and cis-eQTLs
were excluded at a 10% FDR threshold (equivalent to P ≤
5.0 × 1025).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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