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Determining the full complement of protein-coding genes is a key goal of genome annotation. The most powerful
approach for confirming protein-coding potential is the detection of cellular protein expression through peptide
massspectrometry (MS)experiments.Here,wemappedpeptidesdetected inseven large-scaleproteomicsstud-
ies to almost 60% of the protein-coding genes in the GENCODE annotation of the human genome. We found a
strong relationship between detection in proteomics experiments and both gene family age and cross-species
conservation. Most of the genes for which we detected peptides were highly conserved. We found peptides for
>96% of genes that evolved before bilateria. At the opposite end of the scale, we identified almost no peptides for
genes that have appeared since primates, for genes that did not have any protein-like features or for genes with
poor cross-species conservation. These results motivated us to describe a set of 2001 potential non-coding
genes based on features such as weak conservation, a lack of protein features, or ambiguous annotations
from major databases, all of which correlated with low peptide detection across the seven experiments. We iden-
tified peptides for just 3% of these genes. We show that many of these genes behave more like non-coding genes
than protein-coding genes and suggest that most are unlikely to code for proteins under normal circumstances.
We believe that their inclusion in the human protein-coding gene catalogue should be revised as part of the
ongoing human genome annotation effort.

INTRODUCTION

The actual number of protein-coding genes that make up the
human genome has long been a source of discussion. Before
the first draft of the human genome came out, many researchers
believed that the final number of human protein-coding genes
would fall somewhere between 40 000 and 100 000 (1). The
initial sequencing of the human genome revised that figure dras-
tically downwards by suggesting that the final number would fall
somewhere between 26 000 (2) and 30 000 (3) genes. With the

publication of the final draft of the Human Genome Project
(4), the number of protein-coding genes was revised downwards
again to between 20 000 and 25 000. Most recently, Clamp and
co-workers (5) used evolutionary comparisons to suggest that
the most likely figure for the protein-coding genes would be at
the lower end of this continuum, just 20 500 genes.

The Clamp analysis suggested that a large number of ORFs
were not protein coding because they had features resembling
non-coding RNA and lacked evolutionary conservation. The
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study suggested that there were relatively few novel mammalian
protein-coding genes and that the �24 500 genes annotated in
the human gene catalogue would end up being cut by 4000.

The Ensembl project began the annotation of the human
genome in 1999 (6). The number of genes annotated in the
Ensembl database (7) has been on a downward trend since its
inception. Initially, there were .24 000 human protein-coding
genes predicted for the reference genome, but that number has
gradually been revised lower. More than two thousand automatic-
ally predicted genes have been removed from the reference
genome as a result of the merge with the manual annotation pro-
duced by the Havana group (8), often by being re-annotated as
non-coding biotypes. The numbers of genes in the updates of
merged GENCODE geneset are now close to the number of
genes predicted by Clamp in 2007. The most recent GENCODE
release (GENCODE 19) contains 20 719 protein-coding genes.

The GENCODE consortium is composed of nine groups that
are dedicated to producing high-accuracy annotations of
evidence-based gene features based on manual curation, compu-
tational analyses and targeted experiments. The consortium ini-
tially focused on 1% of the human genome in the Encyclopedia
of DNA Elements (9) pilot project (8,10) and expanded this to
cover the whole genome (11).

Manual annotation of protein-coding genes requires many dif-
ferent sources of evidence (11,12). The most convincing evi-
dence, experimental verification of cellular protein expression,
is technically challenging to produce. Although some evidence
for the expression of proteins is available through antibody
tagging (13) and individual experiments, high-throughput
tandem MS-based proteomics methods are the main source of evi-
dence. Proteomics technology has improved considerably over
the last two decades (14,15), and these advances are making MS
an increasingly important tool in genome annotation projects.
High-quality proteomics data can confirm the coding potential
of genes and alternative transcripts, this is especially useful in
those cases where there is little additional supporting evidence,
and a number of groups have demonstrated how proteomics
data might be used to validate protein translation (16–18).
However, while MS evidence can beused to verify protein-coding
potential, the low coverage of proteomics experiments implies
that the reverse is not true. Not detecting peptides does not
prove that the corresponding gene is non-coding because it may
be a consequence of the protein being expressed in few tissues,
having very low abundance, or being degraded quickly.

Finding peptides for all protein-coding genes is the holy grail
of proteomics, and a number of recent large-scale experiments
have detected protein expression for �50% of the human
genome (18–24). The collaborative effort from the Human
Proteome Project has identified close to 70% of annotated pro-
teins from a range of sources (25).

Here, we put together reliable peptide evidence from seven
separate large-scale MS analyses and confirm protein expres-
sion for 11 840 protein-coding genes. We show that the vast
majority of these confirmed protein-coding genes correspond
to the oldest and most conserved ORFs. We also describe a
set of 2001 genes that have little or no peptide evidence from
the seven proteomics studies and that have multiple features
that suggest that they may not code for proteins. These results
lead us to conclude that the human genome is likely to have
,20 000 protein-coding genes.

RESULTS

We collected peptides from seven separate MS sources. Two
came from large-scale proteomics databases, PeptideAtlas (26)
and NIST (http://peptide.nist.gov/). Another four, referred to
as ‘Geiger’, ‘Muñoz’, ‘Nagaraj’ and ‘Neuhauser’ throughout
the paper, were recently published large-scale MS experiments
(20,22–24). For all six datasets, the starting point was the list
of peptides provided by the authors or databases. We generated
the final set of peptides (referred to as ‘CNIO’) in house from an
X!Tandem (27) search against spectra from the GPM (28) and
PeptideAtlas databases, following the protocol set out in Ezkur-
dia et al. (18) with a false discovery rate of 0.1%. These seven
studies cover a wide range of search engines, tissues and cell
types.

In order to improve reliability, the peptides from each of these
studies were filtered, eliminating non-tryptic and semi-tryptic
peptides and peptides containing missed cleavages. For those
studies where it was possible, we considered only peptides iden-
tified by multiple search engines (see Materials and methods).

We identified a total of 255 188 peptides in the seven analyses
and mapped them to genes in the GENCODE 12 annotation of
the human genome (GENCODE 12 corresponds to Ensembl 67).
There were a total of 240 688 discriminating peptides (those that
mapped uniquely to a single gene) and 14 520 non-discriminating
peptides (those that matched more than one gene product).

We considered a gene to be uniquely identified when we could
map at least two discriminating peptides to the gene. We found at
least two discriminating peptides for 11 840 genes, 57.9% of the
genes annotated in the GENCODE 12 geneset. We were able to
map non-discriminating peptides to another 1648 genes, whereas
6974 genes had no peptide evidence at all.

The number of genes detected is comparable with previous
recent studies (18–24). There was a substantial overlap between
the seven datasets. A total of 9781 genes were identified in four
or more different datasets. The PeptideAtlas collection identified
the highest number of genes (10 394 genes from 127 404 pep-
tides). Surprisingly, the combination of the seven datasets did
not substantially increase the number of genes detected—the add-
ition of the six other datasets to the PeptideAtlas peptides identi-
fied just 1444 additional genes. However, the identification of
peptidesacrossmultipleexperimentsdidserve to increase thecon-
fidence of the identifications. Our results suggest that the detected
and undetected genes in proteomics experiments form two rela-
tively robust and well-defined groups.

The relationship between proteomics detection
and gene features

We carried out a series of comparisons in order to determine why
we found peptides for just 11 840 genes. Three technical reasons
make protein detection more difficult a priori. First, the length of
the protein influences the probability of peptide identification
because the shorter the protein is, the fewer peptides can be pro-
duced making identification of low-molecular-weight proteins
technically challenging. We found a relationship between
protein length and peptide detection (Supplementary Material,
Fig. S1). Very few peptides were detected for proteins shorter
than 50 amino acid residues; in fact, we did not detect peptides
for proteins shorter than 38 residues.
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Secondly, it is well known that it is more difficult to detect pep-
tides for proteins with trans-membrane helices. Membrane-
bound proteins are poorly accessible to tryptic digestion, and
hydrophobic peptides may be difficult to detect in conventional
reverse-phase columns. In order to measure the relationship
between trans-membrane helices and peptide detection, we
culled trans-membrane helix predictions from the APPRIS data-
base (29). We compared detection rates for proteins that con-
tained trans-membrane helices against those that did not. The
results confirmed that proteomics detects fewer peptides for pro-
teins with multiple trans-membrane helices—we found peptides
for just 39.1% of these genes. However, proteins with single
trans-membrane helices were just as likely to be detected as
those without trans-membrane helices.

Finally, the range of transcript expression is also important; it
should be easier to detect peptides for genes that express tran-
scripts across many tissues than those that express transcripts
in very few tissues. Using data from UniGene (30), we found a
strong correlation between peptide detection and the number
of tissues in which a transcript was expressed (Supplementary
Material, Fig. S2). We detected protein evidence for .90% of
the 6286 genes that express transcripts in 24 or more tissues. In
contrast, we detected peptides for ,25% of the 2932 genes
that express transcripts in two or fewer tissues.

Genes with low-molecular-weight gene products, with
restricted transcript expression, or with multiple trans-membrane
helices made up over 3400 of the 7000 genes that we did not iden-
tify, so these three features go some way towards explaining why
we detect peptides for just 58% of the protein-coding genes. The
olfactory receptors are a good example of protein-coding genes
that it is hard to detect peptides for. These proteins have multiple
trans-membrane helices, and their expression is tissue-restricted
(though, curiously, UniGene registers expression in as many as
17 different tissues). We do not detect any peptide evidence for
any of the 380 olfactory receptors annotated in GENCODE 12.

Conservation and gene age are the best predictors
of peptide detection

To look at the effect of conservation on gene detection, we col-
lected data from INERTIA (29), one of the modules of the
APPRIS database. INERTIA generates scores for the evolution-
ary rates of codons and exons for splice variants. Evolutionary
rates in INERTIA are calculated using SLR (31) and multiple
alignments of orthologous vertebrate transcripts (32). We
defined gene conservation from the INERTIA score of the
most conserved exon (MI score).

We found a striking correlation between conservation and
detection in proteomics experiments (Fig. 1). We detected pep-
tides for 84.7% of the 5554 genes with an MI score of ,0.02 (the
most conserved genes); in contrast, we detected little evidence
for the 992 genes with least protein coding-like conservation
(MI score . 0.8, 6.1% detection). There were 575 genes that
had tiny exons or alignments against fewer than three species,
so had no MI score. For these genes, the detection rate was
,2%. Genes with poor conservation for which we could not
find protein structural or functional features were hardly detected
at all (Fig. 1). Not surprisingly, there was also a relationship
between MI score and transcript expression (Supplementary
Material, Fig. S3).

Gene family age (the oldest phylogenetic division in which a
gene from the same family is found) was calculated using
Ensembl Compara phylogenetic trees (33). Although there is a
relation between gene family age and conservation, they are
not exactly the same. INERTIA conservation is calculated
only from alignments of vertebrates, whereas gene family age
is measured from the Fungi-Metazoan period. A gene may
have an older gene family age, for example, bilateria, but the
gene itself may have arisen from a primate duplication. Thus,
there are genes with relatively recent gene family age and well-
conserved exons, and many genes with the earliest gene family
ages (Fungi-Metazoa, Bilateria, Coelomata) and poor MI scores.

We compared proteomics detection rates for each of the gene
family ages. The results are in Figure 2. We detect peptides for
.89% of the genes from the oldest phylogenetic division
(those that have Fungi-Metazoa group family age), whereas
we detect practically no peptides for those genes whose family
age can only be traced back to primates.

We also determined gene age, the phylogenetic division in
which the most recent ancestral duplication occurred. The results
for gene age show a similar trend to family age (results are
shown in Supplementary Material, Fig. S4). Combining gene
family age with gene age or conservation gives even more striking
results. We detected peptides for 96.4% of genes with both Fungi-
Metazoa family age and Fungi-Metazoa gene age (1136 genes),
and 96.5% of highly conserved Fungi-Metazoa family age genes
(1712 Fungi-Metazoa genes with MI scores of ,0.015).

In order to determine whether the link between gene family
age and proteomics detection was confined to humans, we per-
formed a similar experiment using yeast, a single-celled organ-
ism. We generated gene ancestral definitions by all against all
sequence similarity searches and plotted gene family age
against the percentage of genes for which peptides are recorded
in PeptideAtlas. There is the same clear relationship between
gene age and detection rates in yeast (Supplementary Material,
Fig. S5), so there were no peptides for genes belonging to fam-
ilies that arose since Saccharomyces cerevisiae.

Figure 1. The percentage of gene products detected in proteomics experiments as
a function of gene conservation. Gene conservation is expressed using MI score,
displayed in bins.Bin ‘0’ is MI scores from 0 to 0.019, ‘0.02’ is from0.02 to 0.039,
etc. The ‘missing’ genes are those where the conservation was so poor that
INERTIA was not able to generate a score.
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A set of potential non-coding genes

Gene family age and coding sequence conservation are the best
predictors of whether a protein will be detected in proteomics
experiments. In contrast, the most recently evolved genes
(those with primate gene family age) and the least conserved
genes were much less likely to be detected in proteomics experi-
ments (just 0.9% of the 563 primate-specific genes and 2% of the
987 genes with MI scores of .1 were detected with discriminat-
ing peptides).

Following the trans-membrane helix comparison, we also
investigated the effect of a range of protein features on protein
detection rates. Again, we collected features from the APPRIS
database and measured peptide detection rates against the pres-
ence and absence of features such as protein functional domains,
functional residues, homology to known structures and cross-
species conservation. Proteins with these features were more
likely to be detected in the analyses than proteins without these
features (Supplementary Material, Fig. S6). For example, we
detected 75.3% of proteins annotated with catalytic or ligand
binding residues and 73.9% of proteins annotated with at least
one unbroken PfamA functional domain.

At the other end of the scale, we discovered that genes without
any APPRIS protein features had very low rates of peptide detec-
tion. In fact, the absence of all protein-like features turned out to
have a very strong inverse relationship to peptide detection—we
detected peptides for just 4.2% of the 956 genes that did not have
protein-like features or conservation in APPRIS.

Wesearcheda rangeof sources, including theAPPRISdatabase,
the UniProt Knowledgebase (34) and Ensembl/GENCODE, to
find other features that might be related to low detection rates.
From these, we selected a list of 19 features that correlated with
low protein detection rates (see Table 1, and Materials and
methods and Supplementary sections for more details).

We produced a set of 2001 genes that had at least 1 of these 19
features. We detected peptides for just 61 (3%) of these genes.
The combination of features not typical of proteins and the

very low peptide detection rates suggested that a number of
these genes might turn out to be non-coding genes or pseudo-
genes. The complete annotations for the whole genome and for
the potential non-coding set are available in Supplementary
Material, Table S1.

Many genes in the set had more than one of the features listed
in Table 1, and the more features a gene had, the less likely it was
to be identified in the proteomics analysis. We found no peptides
at all for genes with five or more features (Supplementary Mater-
ial, Fig. S7).

Almost half the genes in this potential non-coding set were
annotated with clone-based names rather than function-based
names typical of protein-coding genes. Many of those with non-
clone names were named for their chromosomal position, their
sequence bias or with one of a set of miscellaneous identifiers
that included generic names, pseudogene names, chimeric
gene names and the cutely named ‘orphan’ gene (Supplementary
Material, Fig. S8).

Immunoglobulin and t-cell segments, keratin-binding pro-
teins, various antigens and olfactory receptors made up almost
300 genes. Analysis with the DAVID functional annotation
(35) tool bears this out. Those genes we could map had biases
towards the GO terms ‘intermediate filament’ (Benjamini
score 5.3e-20), ‘keratinization’ (4.1e-10), ‘defence response to
bacterium’ (5.2e-14) and ‘extra-cellular region’ (5.9e-6, a
number of genes in the set are secreted). DAVID only identified
50% of genes in the potential non-coding set.

The set had two other biases. First, there were a number of
genes with human-specific duplications. Clearly, it was impos-
sible to distinguish these genes because most do not have
unique tryptic peptides. Multiple duplications often generate
pseudogenes, so some duplicated genes will be non-functional.
Second, there were 142 genes corresponding to proteins that

Figure 2. The percentage of genes for which peptides are detected in proteomics
experiments against gene family age. Gene products with gene families that
appeared in the oldest phylogenetic divisions (towards the left) are detected
much more often in proteomics experiments than those genes with families
that appeared in the most recent phylogenetic divisions.

Table 1. The 19 features used to select the potential non-coding set

Features Genes Peptide detection (%)

Homology existence [UP] 131 6.87
Pseudogene [E] 75 6.67
PUTATIVE transcripts [G] 434 2.53
Caution—pseudogene [UP] 79 2.53
Caution—dubious CDS [UP] 47 2.13
Poor conservation (MI score) [A] 987 2.03
Predicted existence [UP] 507 1.58
No protein features [A] 1212 1.32
Nonsense-mediated decay [G] 78 1.28
Circular annotation [E/UP] 336 1.19
Uncertain existence [UP] 100 1.00
Primate gene family [E] 563 0.89
Read-through [E/G] 229 0.87
Obsolete [E/UP] 130 0.00
Dubious EST support [E/G] 98 0.00
Non-functional [E] 44 0.00
Non-coding [E] 38 0.00
Antisense/opposite strand [E] 25 0.00
Miscellaneous RNA [E] 7 0.00

Each feature is explained in more detail in Materials and methods and
Supplementary sections. The source of each feature is indicated in square
brackets (A, APPRIS; E, Ensembl; G, GENCODE; UP, UniProt). For each
feature, we also show the number of genes with the feature and the proportion that
we identify in the seven datasets.
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were 38 residues or shorter. Many of these were immunoglobulin
or T-cell receptor joining segments and some were annotated as
pseudogenes.

Can we detect protein-coding ability from other sources?

We looked for evidence of the protein-coding ability in a variety
of other sources, in a large-scale proteomics experiment using
human placental tissue (36), in the Passel selected reaction mon-
itoring data repository (37) in the Human Protein Atlas (13) and
in the UniProt Knowledgebase literature resource (34).

In total using Passel, Human Protein Atlas and UniProt, we
found evidence of protein expression for a further 54 (2.7%) of
the 2001 genes in the potential non-coding set (for more details,
see Supplementary Material and Supplementary Material, Fig.
S9). No evidence of protein expression was found for the other
1886 genes in the potential non-coding set.

How do these potential non-coding genes compare
with known protein-coding genes?

In order to determine whether the genes in the potential non-
coding set coded for proteins, we split the GENCODE 12
genes into three groups, those genes for which we found peptides
in the seven analyses (Detected), those genes for which we did
not find peptides, but that were not in the potential non-coding
set (Not Detected) and the 1940 genes in the potential non-
coding/pseudogene set for which we did not detect peptides
(Potential NC). This last set comprises the 2001 genes from
the potential non-coding set minus the 61 genes in the set for
which we did detect peptides. We measured tissue expression
and reading frame conservation (RFC) for the genes in each of
the three sets.

First, we looked at the transcript evidence in UniGene by
counting the number of tissues in which at least 5 transcripts
per million were detected. The results show that there is much
more transcript evidence for the Detected set than for the Not
Detected and Potential NC genes (Fig. 3)—the more tissues in
which a transcript was expressed, the more likely we were to
detect peptides. Although distributions of transcript expression
for the Not Detected and Potential NC sets are similar, it is
noticeable that .50% of the genes in the Potential NC set have
no measured transcription in any of the 45 tissues in UniGene.

In 2007, Clamp (5) identified 1177 genes as ‘orphans’ with
features typical of non-coding RNA. Based on the numbers of
coding genes then available (Ensembl 35), the authors suggested
that the human reference genome had only 20 500 coding genes.
The GENCODE 12 annotation still annotates 308 of these
orphans, and there were 248 orphans among the potential non-
coding genes. We detected peptides for just 3 of these 248 genes.

As part of their analysis, the authors calculated an RFC score
for transcripts. Reading frames that change in pairwise align-
ments between two different species suggest large changes in
protein function. The RFC score distribution of the orphans
was very close to that of non-coding RNA.

We carried out our own reading frame analysis. Reading
frame conservation scores were generated for the known protein-
coding genes in the Detected set, for the probable protein-coding
genes in the Not Detected set, for the genes in the Potential NC
set and for a set of non-coding RNA. We aligned human with

four species, chimp, macaque, dog and mouse, as in the Clamp
analysis.

The results are shown in Figure 4. For the human-chimp align-
ments, most transcripts keep the same frame over the whole
alignment—this is true even for the set of the non-coding
genes we analysed—so the differences between the Detected
genes and the genes in the Potential NC set were minimal.
However, with the human–macaque alignments, the frame is
lost in most non-coding alignments, and there is a marked differ-
ence between the Detected and Potential NC genes. In the dog
and mouse comparisons, practically all non-coding transcripts
had reading frame changes, and proportionally 3 times as
many transcripts in the Potential NC set changed frame com-
pared with the Detected set.

We could not find dog or mouse orthologues for half of the
genes in the Potential NC set. This is the same proportion as
the non-coding genes, which suggests that as many as half the
genes in the Potential NC set are non-coding or orphan protein-
coding genes. For the transcripts that we were able to align
(Fig. 4C and D), more than half had changes in reading frame.
While this is not as bad as the non-coding set (practically all non-
coding genes had frame changes), it does suggest that as many as
25% of the genes in the Potential NC set will have changes in
function compared with their mouse and dog orthologues,
which again is not indicative of protein-coding potential. The
RFC results for mouse and dog suggest that between half and
three-quarters of the genes in the Potential NC set are unlikely
to code for proteins.

The RFC results are also consistent with a model in which the
majority of the genes in the Not Detected set are protein coding.
Their RFC scores are close to those of the known protein-coding
genes in all four sets of alignments. The fact that many of these
genes are expressed in limited tissues (see Fig. 3) is likely to be a

Figure 3. Transcript ubiquity for human genes. UniGene contains transcript evi-
dence for most human genes over 45 different tissues. For each gene, we counted
the number of tissues in which there was transcript evidence of at least five or
more transcripts per million. We separated the numbers of tissues in which tran-
scripts were detected in UniGene into ten bins and calculated the percentage of
genes in each of the ten bins. We split the GENCODE 12 genes into three
groups, those genes for which we found peptides (‘Detected’ in dark red),
those genes for which we did not find peptides that were also in the potential non-
coding set (‘Potential NC’ genes marked in yellow) and those for which we did
not find peptides but that were not in the potential non-coding set (‘Not Detected’
genes, in orange).
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large part of the reason these genes were not detected in our
analyses (25).

We generated four sub-groups (read-through, possible
coding, possible non-coding and possible pseudogenes) from
the potential non-coding set by manual curation. We repeated
the human–mouse RFC analysis on these four groups. The
results (Fig. 5) show that the RFC scores for possible coding
genes and read-through genes had a very similar curve to the
Not Detected genes. The 968 genes predicted to be non-coding
genes had similar RFC scores to known Non-coding genes,
whereas the 397 possible pseudogenes had RFC score curves
that were somewhere between the Detected and Non-coding sets.

How does this affect protein-coding gene numbers?

The Human Proteome Project (25), which aims to detect protein
evidence for all human genes, has estimated that there are ,20
000 protein-coding genes. Their estimates were based on
Ensembl 69, which was a low water mark in terms of protein-
coding genes with just 20 059 annotated. Since then, the
Ensembl and GENCODE annotations have added .600 new
protein-coding genes. In order to estimate the numbers of
protein-coding genes in the reference genome, we need to

consider those genes added to the annotation since GENCODE
12 (Ensembl 67) and to look for protein-coding genes that the
annotators might have missed.

Since GENCODE 12, 394 protein-coding genes have been
removed from the reference genome, whereas 651 genes have
been added. According to our analysis, the annotators have
done a good job of cleaning up the annotation because almost
90% of the genes removed since GENCODE 12 (349) were in
our potential non-coding set. What is more, the vast majority
(336) were in our predicted non-coding gene or pseudogene
subsets. However, we did find peptides for nine of the genes
removed since GENCODE 12, and we would expect these
genes to be reinstated as protein-coding in the future.

We extended our analysis to the 651 genes that have been
added sinceGENCODE 12.Using just10of theavailable19non-
protein features (APPRIS protein characteristics, read-through
genes, Ensembl descriptions and UniProt protein evidence),
we found that 596 of the newly annotated genes had features
that suggested they were not protein-coding. For example, 338
of these new protein-coding genes did not have any protein
features, whereas 183 were read-through transcripts.

We also looked for peptides for the newly annotated genes and
for genes that are not yet annotated by Ensembl/GENCODE. Six

Figure 4. RFC scores for pairwise alignments with four species. The RFC scores are calculated as per the section Materials and methods. RFC scores for alignments
between (A) human and chimp, (B) human and macaque, (C) human and mouse and (D) human and dog. We split the GENCODE 12 genes into three groups, those
genes for which we found peptides (‘Detected’ in dark red), those genes for which we did not find peptides and that were in the potential non-coding set (‘Potential NC’
genes marked in yellow) and those that we did not detect but that were not in the potential non-coding set (‘Not Detected’ genes, in orange). As a comparison, we
included the results for a set of long non-coding genes (‘Non-coding’ shown in blue). RFC scores are shown on the y-axis; the x-axis is the proportion of each set.
RFC scores are ordered from highest to lowest.
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of the seven proteomics analyses mapped their spectra to mul-
tiple databases of predicted proteins, including UniProtKB/
SwissProt (34), UniProtKB/TrEMBL (34), IPI (38), H-InvDB
(39) and RefSeq (30) in addition to Ensembl/GENCODE.
From these 6 studies, we found more than 6000 peptides that
did not map to GENCODE 12.

We performed an exhaustive cross-checking of the peptides
against GENCODE 19 and other databases and found peptide
evidence (2 or more peptides) for 24 of the 55 possible protein-
coding genes added since GENCODE 12 and peptide evidence
for 49 genes that are not yet annotated in GENCODE 19.

Based on our analysis of atypical coding features, we believe
that as many as 1867 of the 20 719 genes annotated in the
GENCODE 19 reference genome will be shown to be non-coding
or pseudogenes. On the other hand, we have found peptide evi-
dence for 58 protein-coding genes that are not currently in
Ensembl/GENCODE, and there will almost certainly be more
protein-coding genes, possibly as many again, which are not yet
annotated and for which we were not able to detect peptides. If
we take these two numbers into account, we estimate that the
number of protein-coding genes in the reference genome will be
very close to 19 000 genes.

DISCUSSION

Our analysis of seven large-scale proteomics experiments
has unambiguously identified close to 12 000 human genes.
We found most peptides for the oldest and most conserved
genes. The high proportion of ancient genes identified with
peptide evidence is in accord with their expected expression
level and importance to the cell. Ancient genes are generally
widely expressed and often retain important housekeeping
roles. We identified 96.3% of genes that have not duplicated
since the Fungi-Metazoan era.

Despite the high coverage from the seven analyses, we failed
to detect peptides for 40% of the human geneset. Of course, the
absence of peptides in proteomics analyses does not imply that a
protein is not expressed. There are many reasons why peptides
are not detected in proteomics experiments, for example, the pro-
teins may be present in limited tissues or developmental stages,
they may be expressed in very low quantities or, like the HOX
genes, have a very short half-lives. Some may be only activated
by certain stresses (25), and still other proteins will have features,
such as multiple trans-membrane helices, that make them diffi-
cult to detect for technical reasons.

However, the seven proteomics studies covered a wide range of
cell types, making it less likely that one of the main reasons for not
detecting a protein, i.e. that it is expressed in limited tissues or de-
velopmental stages.The PeptideAtlas database alone isa compen-
dium of experiments carried out on 51 different tissue and cell
types, and the PeptideAtlas database forms just a part of the
CNIO study and the NIST database. Six of the seven studies
were carried out on a range of tissues, and together these studies
cover considerably more cell types than UniGene. Although the
Human Proteome Project (25) has reported that early develop-
mental stages are still under represented in proteomics experi-
ments, the Muñoz analysis used in this paper (22) interrogated
embryo and pluripotent stem cells and found relatively few previ-
ously undetected proteins. However, despite the variety of tissues
interrogated in our analysis, it is to be expected that some proteins
will remain undetected because they are tissue specific.

Although the technical limitations of proteomics analyses are
among the most probable reason for detecting peptides for
,60% of the protein-coding genes, there may be another reason
for not identifying peptides for certain genes. It is possible that
some of the genes predicted to be protein-coding in the
GENCODE geneset do not actually code for proteins. To investi-
gate this,weselected 2001genes that hadoneor more features that
suggestedofa lackofcodingpotential.Wefound proteinevidence
for ,6% of these genes, and for many of these genes, the reading
frame was not conserved in cross-species alignments. Together
the non-protein-like features, loss of reading frame and lack of
protein evidence suggested that many of these genes might not
code for proteins under normal circumstances.

We did detect proteomics evidence for several genes in this set,
for example, SLC5A3 (ENSG00000198743), which was anno-
tated by UniProt as only having evidence of protein existence
by homology, and for SPA17 (ENSG00000064199), which is
annotated as ‘putative’ by GENCODE. Both these genes have
protein-like features and good conservation. They were in the
list of potential non-coding genes because the human genome
annotation project is not yet complete and these genes had yet to
be annotated with evidence by GENCODE and UniProt. SPA17
is no longer tagged as ‘putative’ in the GENCODE 19 annotation.
We also identified peptides for genes with conflicting protein-
coding evidence, such as WASH4P (ENSG00000234769) and
WASH6P (ENSG00000182484), annotated as protein coding,
but tagged as pseudogenes in the Ensembl description. Again as
the human genome annotation progresses, these descriptions are
likely to be refined.

There are genes that do not fit into the conventional coding/
non-coding narrative in the non-coding set. Several genes are
annotated as potentially non-functional but may actually be
functional under certain conditions. One example is FMO2,

Figure 5. RFC scores for genes from potential NC set. The RFC scores were cal-
culated as per the section Materials and methods for alignments between human
and mouse only. We split the Potential NC set genes that we could classify into 4
groups, those 342 genes that we felt were likely protein-coding genes (Possible
coding), the 396 genes that we felt were possible pseudogenes (Possible pseudo-
genes), the 229 read-through genes and those 969 genes that we felt were likely to
be non-coding (Possible non-coding). We compared these four sets against three
background sets, those protein-coding genes for which we found peptides
(Detected in dark red), those coding genes for which we did not find peptides
and that were not in the potential non-coding set (Not Detected genes, in
orange) and a set of long non-coding genes (Non-coding shown in blue). RFC
scores are shown on the y-axis; the x-axis in all the figures is the proportion of
all the valid pairwise alignments included in the RFC calculations. RFC scores
are ordered from highest to lowest.
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dimethylaniline monooxygenase 2 (ENSG00000094963).
There are two alleles, FMO2∗2A, which is truncated, and
FMO2∗1, the full-length form. The truncated allele FMO2∗2A
is catalytically inactive and is probably unable to fold correctly.
FMO2∗1 is not present in Caucasian and Asian populations but is
found in low quantities in African populations (40). The function
of the FMO2∗1 variant is not clear, but it does lead to increased
risk of thiourea-caused pulmonary toxicity.

The growth of the number of annotated read-through genes
plays a role in maintaining artificially high numbers of protein-
coding genes in the human reference genome. Read-through
genes connect two or more neighbouring genes by splicing to-
gether exons of two otherwise defined, independent loci. It is not
clear what biological significance this has, but the number of read-
through genes is growing in the reference annotation. We found
229 read-through genes in GENCODE 12, and there are .400
read-through protein-coding genes annotated in GENCODE 19.
There is some evidence to suggest that read-through transcription
is part of a process that allows genes to gain new protein domains
(41), and so these genes might be regarded as a testing ground for
new protein functions. However, there is very little peptide evi-
dence for these chimeric genes (just 0.87%), and they are probably
best annotated as splice variants of the downstream gene. Their
presence in the reference genome makes proteomics searches
(and other large-scale experiments) more complicated because it
is impossible to find peptides that separate the (likely non-coding)
read-through genes from the component genes. Without the read-
through genes, we could have identified up to 300 more genes in
the 7 proteomics studies.

Many of the 2001 genes in the potential non-coding set may
turn out not to code for proteins under any circumstances. Unfor-
tunately, genes labelled as protein coding at the gene annotation
level can have complications for downstream services and
research groups that are sometimes difficult to undo. The Pfam
functional domain database, for example, has a recent surge in
the numbers of newly defined protein functional domains, and
many of these have almost certainly been defined on the back
of ‘protein-coding’ genes, some of which may turn out not to
code for proteins. Overestimating the numbers of protein-coding
genes can also hinder experiments such as large-scale proteo-
mics projects and biomedical projects, such as the mapping of
cancer or disease-related variations to human genes.

The human genome is still in the process of being annotated,
and the Ensembl/GENCODE merge of the human genome is in
constant flux as the annotators withdraw, redefine gene models
and add new genes. To some extent our results reflect this situ-
ation, many of the genes we have identified will be removed
from the protein-coding catalogue as the manual annotations
become more complete. In fact, this can be seen clearly with the
most recent release of the reference annotation, GENCODE 19,
where 349 of the 2001 genes in the potential non-coding set
have already been withdrawn.

Most genes in the potential non-coding set have multiple non-
coding features, little or no evidence of transcript expression, no
detected peptides and an RFC that fits non-coding genes more
closely than coding genes. We believe that this evidence sug-
gests that as many as 1800 genes that are currently annotated
as protein-coding do not actually code for proteins and that the
number of functional protein-coding genes in the reference
genome is closer to 19 000 than to 20 000.

This reduction in the number of protein-coding genes will be
an important re-definition of one of the most fundamental fea-
tures of the human genome and one that has many implications.
The human genome provides a reference for the annotation of all
other vertebrate genomes, so a redefinition of the human protein-
coding complement would affect other species, and not just
closely related species, such as chimpanzee, which may have
homologues to reclassified human genes. The approach we
have taken to identify potential non-coding genes is a highly
practical means of informing the curation of the human
genome. It will be even more valuable for species that have
less manual curation and that depend more on automatic gene
predictions that inevitably will predict protein-coding genes
that are species-specific, that have weak conservation and
without protein features.

These results will be fed back into the GENCODE human
geneset, and manual curators will decide on the protein-coding
ability of each gene based on the available evidence. The
GENCODE geneset is used as the reference gene annotation
for the ENCODE and Ensembl projects, and Ensembl is the
base of many large-scale projects so these changes would poten-
tially have a substantial impact on a range of fields, including, but
not limited to, genomics, evolutionary biology, and proteomics.
Among other consequences, it will have a profound effect on
large-scale genomics and proteomics studies and an obvious
impact on the classification and functional interpretation of
human variation in biomedical studies, where potential non-
coding genes are currently included as part of the analytic
process.

MATERIALS AND METHODS

Peptides were assembled from seven previously available pro-
teomics datasets. Four of the peptide datasets, the Geiger,
Muñoz, Nagaraj and Neuhauser sets, came from published
large-scale experiments (20,22–24); two others were large
spectra libraries, PeptideAtlas (26) and NIST (http://peptide.
nist.gov/). The final study (referred to as CNIO throughout the
paper) was carried out in-house and is detailed later.

The CNIO analysis

The CNIO analysis was based on the protocol detailed in
Ezkurdia et al. (18). Briefly, we used X!Tandem (27) to search
against peptide mass spectra from two publicly available proteo-
mics resources, the Global Proteome Machine Organization
(GPM, 28) and PeptideAtlas databases. We used an updated
set of spectra in the analysis; the spectra data in the GPM data-
base had grown by 37% and PeptideAtlas by 18% since the
original experiment. The PeptideAtlas and GPM data files can
be downloaded from the Tranche distributed file system (tranche.
proteomecommons.org) and ftp://ftp.thegpm.org/data/msms/.

Peptides were identified by searching against GENCODE 12.
Expectation values (e-values) produced by X!Tandem were used
to score the peptide–spectrum matches (PSM). When a peptide
is identified more than once, we only included the PSM with
lowest e-value. Only fully tryptic peptides containing a
maximum of one missed tryptic cleavage site were taken into
account. Peptides were considered positively identified when
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they had an FDR of≤0.1%. The FDR was calculated using a con-
catenated target/decoy strategy (42); the decoy database was
constructed by reversing each GENCODE 12 sequence entry.

Filtering for high-quality peptide identifications

In order to guarantee that we only used the most reliable data
from these sets, the peptides (and in the case of the CNIO
study, the spectra) were filtered before mapping to the genome
annotation. We used a series of filters to remove the most
likely false-positive peptides in each analysis.

It has been shown that using multiple search engines increases
performance (43) so where possible we required peptides to be
identified by more than one search engine. For the Nagaraj, Neu-
hauser and Geiger datasets, we used those peptides with an An-
dromeda (44) score of 100 or more, because it has been shown
that Andromeda and Mascot (45) are almost always in agreement
on the top-scoring peptides with a score of 100 or more (44).

The NIST database uses five different search engines to iden-
tify peptides from spectral databases. The NIST data have good
coverage of the human genome but a higher than 1% FDR. We
filtered the NIST peptides by only including peptide-spectra
matches where three or more of the search engines identified
the same peptide. The Muñoz study and PeptideAtlas database
peptides did not have any specific filters.

An in-house investigation of the false-positive rates of the
various types of peptides showed that non-tryptic peptides, semi-
tryptic peptides and missed cleavages without the presence of
one the cleaved tryptic sub-peptides had markedly higher false-
positive rates. Non-tryptic peptides, semi-tryptic peptides and
peptides with unsupported missed cleavages were removed from
all studies. We applied the equivalent rule to peptides detected
using GluC and LysC enzymes in the Nagaraj analysis (23).

We mapped the peptides to the GENCODE 12 geneset. The
manual GENCODE annotations for Ensembl annotation are
probably the most reliable annotation of human protein-coding
genes. The version we used was GENCODE 12 (equivalent to
Ensembl 67), which was annotated with 20 462 protein-coding
genes. We counted both the number of peptides that mapped un-
equivocally to a single gene (discriminating peptides) and those
that mapped two or more different genes (non-discriminating
peptides). In order to prove the expression of a protein, we
required two discriminating peptides or discriminating peptides
from two or more analyses.

The peptides used in the analysis are mapped to genes and
transcript in the APPRIS database (appris.bioinfo.cno.es).

Protein features

Protein features were supplied by APPRIS (29), a database that
houses annotations of protein structural and functional data and
information from cross-species conservation for the human
genome. Genes were annotated with protein structural informa-
tion via a mapping to structural homologs in the PDB (46), highly
reliable predictions of conserved functionally important amino
acid residues were made by firestar (47) and mapping to Pfam
functional domains was carried out via Pfamscan (48). In add-
ition, trans-membrane helices were predicted using three separ-
ate trans-membrane predictors (49–51). We predicted signal
peptides with SignalP (52). Conservation information comes

from two sources, one APPRIS module counts the numbers of
equivalent vertebrate orthologues in the protein databases,
whereas a second, INERTIA, calculates exon evolutionary
rates using three separate sets of cross-vertebrate transcript
alignments (53–55). APPRIS calculates features for all tran-
scripts, and we took the APPRIS scores from the highest
scoring transcript for each gene.

INERTIA MI scores (exon conservation scores)

The results from INERTIA were used to calculate the conserva-
tion score for each gene, a score that is referred to as MI score
throughout the paper. The MI score was the INERTIA score
from the lowest scoring exon. There were two caveats: the
exon had to be at least 42 bases long and the alignment had to
have at least 3 species other than human.

Gene expression breadth based on EST data

Expression data were obtained from the UniGene database (30)
at http://www.ncbi.nlm.nih.gov/unigene/ (data download from
August 2013). UniGene provides EST data clustered in different
sets according to the different tissues (45 body sites). We consid-
ered that a gene is expressed if at least two cDNAs were found,
representing five or more transcripts per million. Genes with
no expression data within the tissue sets were removed from
the corresponding analyses, and as a consequence, we obtained
17 934 human genes with tissue expression information.

Human gene birth dating

We performed a gene birth dating analysis based on phylogenet-
ic family trees following a pipeline that is conceptually similar to
that described recently (56). We used the phylogenetic recon-
structions of Ensembl Compara v67 (33), which are based on
genes sequenced from 58 different species. We focused on the
human protein-coding genes annotated by Ensembl Compara
v67. We only considered age classes (or phylostrata) represent-
ing the last common ancestors of Homo sapiens and species
sequenced with relatively high coverage (at least 5×). We
decided to remove Euarchontoglires phylostratum and to col-
lapse it within the Eutherian level owing to the inconsistencies
described previously between gene trees and species phylogeny
at this level (57,58). Our analysis included the following 18 age
classes for human genes: Fungi/Metazoa, Bilateria, Coelomata,
Chordata, Vertebrata, Euteleostomi, Sarcopterygii, Tetrapoda,
Amniota, Mammalia, Theria, Eutheria (Eutheria + Euarchonto-
glires), Simiiformes, Catarrhini, Hominoidea, Hominidae,
HomoPanGorilla and Homo sapiens. For the purposes of the
graphic in Figure 2, all classes from Simiiformes to Homo
sapiens were combined to form the ‘Primate’ class and the
smaller classes Vertebrata and Sarcopterygii were clustered to-
gether with Chordata and Tetrapoda, respectively.

Ensembl Compara classifies each internal node of a family
tree in speciation and duplication events and assigns it to the
phylogenetic level (or age class) in which these events are
detected (59). We used this information in our pipeline to estab-
lish two alternative definitions of gene birth events. We defined
gene family age as the last common ancestor to all the species
containing a member of the gene family (i.e. the phylostratum
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defined by the root node of the gene family tree). We defined the
gene age as the phylostratum assigned to the last genomic event
leading to the birth of an extant gene.

For genes with origins other than duplication (singletons),
gene age corresponds to the gene family age, whereas for dupli-
cated genes, gene age represents the ancestral species where the
last duplication event was detected. Duplication events were
detected following a previously described in-house protocol
(60). For this purpose, we only considered duplication events
showing a consistency score (58) of .0.3. When this score
was exactly 0, we considered that this duplication was an artefact
of the phylogenetic reconstruction, and we ignored this node and
established gene age using the previous nodes in the tree. Dupli-
cation nodes with consistencies between 0 and 3 were considered
unclear and gene age could not be assigned.

Yeast gene birth dating

For S. cerevisiae, we performed a gene family birth dating ana-
lysis based on PSI-BLAST homology searches, following a
pipeline similar to that described recently (61). For this, we
created a 3-round PSI-BLAST (62) profile for every yeast
protein against a 90% sequence identity non-redundant version
of the UniProt database. We used these profiles to detect homo-
logues for each yeast protein-coding gene by searching against
sequence databases created from the UniProt database for a
range of taxonomic divisions. Each database contained only
those sequences from species with the same last common ances-
tor as S. cerevisiae. In this way, detection of a significant hit
(e-value , 1025) in a given database implies that an ancestor
was present in the corresponding ancestral species prior to the
evolutionary split. We date the gene family birth event to the evo-
lutionary time period (or phylostratum) represented by the most
recent database in which we detected the presence of an ancestor
gene.

Database annotations

Annotations were taken from a range of resources. The Protein
Existence annotations came from UniProt Knowledgebase
(34). If there was more than one splice isoform, the isoform
with the highest-ranked evidence was taken as the representative
of the gene. We also downloaded all UniProt caution advice,
three in particular were indicative of genes with little or no pro-
teomics evidence, those that warned of ‘dubious CDS predic-
tion’, ‘pseudogene’, preliminary data’. UniProt also annotated
a number of genes as ‘Obsolete’.

UniProt also annotates proteins manually with protein evi-
dence. Human proteins are particularly well annotated within
UniProt. Protein evidence in UniProt is organized in five levels
that are in order of decreasing evidence: ‘Protein’, ‘Transcript’,
‘Homology’, ‘Predicted’ and ‘Uncertain’.

Ensembl gene descriptions were also a useful source of annota-
tions. Ensembl gene descriptions allowed us to generate subsets of
genes annotated as ‘pseudogene’, ‘readthrough’, ‘non-coding’,
‘non-functional’, ‘antisense’ and ‘opposite strand’.

We were also able to generate subsets of genes from
GENCODE tags. GENCODE transcripts have three types of
‘status’ tag, ‘KNOWN’ is the most reliable and ‘PUTATIVE’
identifies the transcripts with the least evidence. Where a gene

had multiple splice variants, we took the transcript with the
highest-ranked tag to represent the gene. GENCODE also has
a ‘class’ tag. Most transcripts are tagged as ‘protein coding’,
but there are some transcripts tagged as ‘nonsense_mediated_-
decay’ (NMD). Where all gene transcripts were in the nonsen-
se_mediated_decay class, we tagged the gene as NMD.

Finally, the GENCODE project is manually annotating all
transcripts with a transcription support level in collaboration
with Ensembl. The annotation levels for multiple exon tran-
scripts range from ‘mRNA covers all introns’ (the highest anno-
tation level) to ‘suspect ESTs’ and ‘no evidence’, the two lowest
levels of transcript support. Once again for those genes with
alternatively spliced transcripts, the highest-ranked transcrip-
tion support level was taken as the transcript support level for
the whole gene.

Feature selection

A total of 19 features from a range of sources correlated with very
low peptide detection rates. The list of features with very low
peptide detection rates is shown below, ordered by the number
of genes that has each of the features. The annotation source is
in brackets.

Class 1. Genes with no protein-like features (from APPRIS)

These were genes that had no protein features and medium-
to-high MI score (because we detected peptides for 33% of
genes with no protein features but that have good conserva-
tion—MI scores of ,0.4).

Class 2. Genes with poor protein-coding conservation (APPRIS)

Here, we included all genes that had an INERTIA MI score of
.1 and those cases where INERTIA did not produce a score
because few species had related sequences.

Class 3. Primate genes (Ensembl Compara)

This class included those genes with primate gene family age.
We detected peptides for just 5 of the 563 genes annotated as
appearing since primates.

Class 4. PUTATIVE genes (GENCODE)

These were genes that have all transcripts annotated as PUTA-
TIVE by GENCODE. PUTATIVE transcripts are the least reli-
able level of GENCODE annotations.

Classes 5, 6 and 7. Genes with weak Protein Evidence (UniProt)

Genes where all splice isoforms were annotated with Homology
evidence or worse had little evidence of protein expression (the
best was Homology with a 6.87% peptide detection rate). The re-
lation between protein evidence and detection can be seen in
Supplementary Material, Figure S10.

Class 8. Genes with (semi-)circular annotation (UniProt/
Ensembl)

There were 336 genes where Ensembl took their description
from a UniProt entry, and the corresponding UniProt entry
linked back to Ensembl with the following caution: ‘The se-
quence shown here is derived from an Ensembl automatic ana-
lysis pipeline and should be considered as preliminary data’.
There was peptide evidence for just four of these genes.
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Classes 9 and 10. Genes with UniProt Cautions

These were genes with other cautions in the UniProt annotations,
either because the isoforms were tagged as potential pseudo-
genes or because they were tagged as dubious CDS predictions.
There were 126 genes with these two cautions.

Class 11. Obsolete genes (Ensembl/UniProt)

A total of 130 genes had Ensembl descriptions that pointed to
UniProtKB/TrEMBL protein entries tagged as ‘Obsolete’.
None of these genes had any evidence of protein coding. Most
of them were no longer annotated in GENCODE 19.

Class 12. Genes supported by suspect ESTs (GENCODE)

There were 98 genes with transcripts supported only by ‘suspect
ESTs’. We did not detect peptides for any of these genes. The re-
lation between transcript support and detection can be seen in
Supplementary Material, Figure S11.

Class 13. Nonsense-mediated decay genes (GENCODE)

GENCODE include transcripts annotated as nonsense-mediated
decay targets within the protein-coding set. There were 75 genes
annotated solely with NMD transcripts.

Class 14. Pseudogenes (Ensembl)

These were 75 genes tagged with the word ‘pseudogene’ in the
Ensembl description.

Class 15. Read-through genes (Ensembl/GENCODE)

There were 229 genes annotated as ‘read-through’ in the
Ensembl description or by GENCODE. We detected peptides
for just two of these genes.

Class 16. Non-functional genes (Ensembl)

These were genes that are annotated as ‘non-functional’ by
Ensembl as part of their description field. Many of these were
T-cell receptors and immunoglobulins. We did not detect pep-
tides for any of these genes.

Class 17. Non-coding genes (Ensembl)

Thirty-eight genes of the genes in GENCODE 12 were tagged as
‘non-coding’ in the Ensembl description field. As might be
expected, we did not detect peptides for any of these genes.

Class 18. Antisense/opposite strand genes (Ensembl)

Annotated as antisense or opposite strand as part of the
Ensembl description. We did not detect peptides for any of
these 25 genes.

Class 19. Miscellaneous RNA (Ensembl)

There were seven genes tagged in the Ensembl description field
as ‘long intergenic non-protein-coding RNA’ or ‘microRNA’.
Again, we did not detect peptides for any of these genes.

Reading frame conservation

We calculated RFC scores for all protein-coding genes in the
GENCODE 12 annotation and for a set of non-coding genes.
Alignments for the GENCODE 12 transcripts were obtained
from the UCSC 46-way mammalian multiple alignments (32).

Alignments for the non-coding regions were downloaded from
the Ensembl Compara alignments (33). RFC scores were calcu-
lated from pairwise alignments between human and chimpan-
zee, human and macaque, human and dog, and human and
mouse. The RFC score for each gene/non-coding region was cal-
culated as the proportion of aligned bases that stay in frame.

In all cases, we calculated RFC scores across three frames and
took the highest scoring frame to avoid cases where misalign-
ment at the 5′ end skews the final score. For the GENCODE 12
annotations, we took the APPRIS principal variant (29) as the
representative for the gene. For the non-coding genes, we took
the longest transcript. The coding genes were split into three
groups for comparison. Those 11 840 for which we detected pep-
tides, the 1940 genes from the potential non-coding set that we
did not find peptides for and the remaining protein-coding genes.

Predicting gene type for the potential non-coding set

We generated four sub-groups (read-throughs, possible coding,
possible non-coding and possible pseudogenes) from the potential
non-coding set. Read-through genes were the 229 read-through
genes. Possible protein-coding genes were those genes for
which we detected peptides, genes that had protein evidence
from other sources and genes that had not evolved recently, that
had good conservation and that had few atypical protein features.
Possible pseudogenes were the genes annotated as pseudogenes
by UniProt, Ensembl or the Clamp analysis, genes from highly
duplicated families annotated as non-functional and genes that
we felt were not non-protein coding and nevertheless had clear
protein-like features. Possible non-coding genes were those anno-
tated as non-coding by Ensembl or the Clamp analysis and genes
that had no clear protein features and were not conserved.

Several genes were left out of these sets, specifically genes
from multiple recent duplications where there were several
genes with practically identical scores, and genes read from
frames opposite coding exons. There were 229 read-through
genes, 343 possible pseudogenes, 968 possible non-coding
genes and 392 possible protein-coding genes.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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