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† Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene
family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one
or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly
all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity
of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the
origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms.
† Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to iden-
tify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the
growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed
to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes.
† Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I
MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large
number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably pos-
sessed at least 11–14 Type II MADS-box genes. In gymnospermstwo duplications of Type II MADS-box genes were
found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes.
† Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box
genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The
analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues,
indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides
a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on
MADS-box genes in seed plants.
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ancestral gene set, most recent common ancestor, MRCA.

INTRODUCTION

MADS-box genes comprise a large gene family coding for tran-
scriptions factors (Gramzow et al., 2010). They are characterized
by the presence of a MADS-box that encodes the DNA-binding
domain of the corresponding MADS-domain proteins. Two
types of MADS-box genes are distinguished, Type I or SRF-like
and Type II or MEF2-like, which had probablyalready been estab-
lished in the most recent common ancestor (MRCA) of extant
eukaryotes (Alvarez-Buylla et al., 2000; Gramzow et al., 2010).
In line with this, both types of MADS-box genes have been iden-
tified in most eukaryotes studied so far, even though taxa exist in
which the one or other type of MADS-box genes has been lost
(Gramzow et al., 2010). In plants, the proteins encoded by Type
II MADS-box genes have a conserved, characteristic domain
structure, with the MADS (M) domain followed by an
Intervening (I) domain, a Keratin-like (K) domain and a
C-terminal domain. The genes encoding these types of proteins
have therefore been termed MIKC-type genes (Ma et al., 1991).
In plants, the total number of MADS-box genes increased greatly
to about 100 in flowering plants (angiosperms), while it remained
low in all other eukaryotic groups (Alvarez-Buylla et al., 2000;

Gramzow et al., 2010). MADS-box genes in land plants have
been further subdivided into groups and clades based on their
phylogeny and structural features (Gramzow and Theissen,
2010). The Type I genes have been subdivided into the three
groups, Ma, Mb and Mg based solely on phylogenetic criteria,
while, in the case of Type II genes, MIKCC- and MIKC*-group
genes are distinguished by different lengths of their encoded
K-domains and also on phylogenetic criteria (Henschel et al.,
2002; Parenicova et al., 2003; Kwantes et al., 2012). Finally,
about a dozen ancient clades of MIKCC-group genes have been
recognized in angiosperms (Becker and Theissen, 2003), and a
few other clades in mosses and ferns (Münster et al., 2002).

Our knowledge of the functional importance of the different
types of MADS-box genes differs greatly in plants. Only a few
Type I genes have been functionally characterized and it has
been shown that they are mainly involved in female gametophyte,
embryo and seed development (Yoo et al., 2006; Bemer et al.,
2008; Kang et al., 2008; Steffen et al., 2008; Walia et al., 2009).
Large fractions of their function may be hidden by redundancy,
and many of these genes may have a function that is only weak,
at best (Bemer et al., 2010). In contrast, the crucial functions of
MIKC-type genes have long been recognized based on informative
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mutant phenotypes and are well studied (Schwarz-Sommer et al.,
1990; Yanofsky et al., 1990; Trobner et al., 1992; Mandel et al.,
1992; Pelaz et al., 2001). These genes are involved in controlling
nearly all aspects of sporophyte and male gametophyte develop-
ment (for recent reviews see Gramzow and Theissen, 2010;
Smaczniak et al., 2012). Most prominent are their roles in flower
and fruit development of angiosperms.

Land plants evolved from unicellular green algae (Cronk,
2001). The transition to land was accompanied by the evolution
of structures that allow the regulation of water loss, such as cuticles
and stomata (Peterson et al., 2010). Land plants comprise liver-
worts, mosses, hornworts (collectively called bryophytes) and tra-
cheophytes. The tracheophytes evolved roots and vascular tissue
for the transport of water and nutrients, with lycophytes being
the most basal group that has these structures. The next clade
that branches off from the tracheophyte tree comprises ferns and
their allies such as horsetails. These ‘euphyllophytes’ represent
the most basal group of land plants having true leaves.
Thereafter, seeds evolved facilitating the dispersal of the corre-
sponding plants. Seed plants comprise the ancestral gymnosperms
and angiosperms. According to most molecular analyses, extant
gymnosperms, comprising conifers, gnetophytes, cycads and
Ginkgo, are monophyletic (Bowe and Coat, 2000; Chaw et al.,
2000; Xi et al., 2013). However, the phylogenetic relationships
between the different gymnosperm groups remain equivocal;
nevertheless, the most recent comprehensive analyses suggest
that cycads plus Ginkgo form a clade that is sister to all remaining
extant gymnosperms (Wu et al., 2011; Xi et al., 2013).
Angiosperms evolvedhavingflowersthatdevelopovulesenclosed
in carpels, and seeds protected and distributed by fruits as new
structural features. Hence, the evolution of some land plant
lineages is characterized by the addition of new structures
leading to more complex body plans.

Whole genome sequences are available for several green algae
species, the moss Physcomitrella patens, the spikemoss (lyco-
phyte) Selaginella moellendorffii and a number of angiosperms
(The Arabidopsis Genome Initiative, 2000; Goff et al., 2002;
Derelle et al., 2006; Tuskan et al., 2006; Jaillon et al., 2007;
Merchant et al., 2007; Rensing et al., 2008; Banks et al., 2011).
Hence, the complete set of MADS-box genes in the genomes of
green algae, moss, spikemoss and angiosperms can be evaluated.
While only one or two MADS-box genes have been identified in
green algae, moss and spikemoss genomes encode around 20
MADS-box genes (Gramzow et al., 2012; Barker and Ashton,
2013). This number further increases in angiosperms, which
have roughly about 100 MADS-box genes (Parenicova et al.,
2003; Leseberg et al., 2006; Arora et al., 2007).

With these data, it is also possible to infer the minimal ances-
tral sets of MADS-box genes in the MRCA of plants, land plants,
vascular plants and angiosperms. The MRCA of plants probably
encoded only few MADS-box genes, but at least one Type I and
one Type II gene (Gramzow and Theissen, 2010). In contrast, the
MRCA of mosses and vascular plants and the MRCA of vascular
plants both probably encoded at least two Type I, one MIKCC-
and one MIKC*-group gene. The MRCA of extant angiosperms
probably already possessed at least three Type I, 11 MIKCC- and
two MIKC*-group genes, a great increase as compared with the
ancestor of vascular plants. Looking at these numbers it appears
likely that the increase in the number of MADS-box genes is cor-
related with the increasing complexity of land plants and hence,

given the function of these genes in developmental control of
extant organisms, that MADS-box genes are probably involved
in the phenotypic evolution of plants (Theissen et al., 2000).

Due to the previous lack of whole genome data for ferns and
allies and gymnosperms, the set of MADS-box genes in the
MRCA of euphyllophytes and seed plants, respectively, could
not be reliably inferred. From studies aiming at the isolation of
MADS-box genes from gymnosperm transcriptomes, it is
known that gymnosperms have several MIKCC-group genes
that are orthologous to those known from angiosperms (Becker
et al., 2000; Futamura et al., 2008; Carlsbecker et al., 2013).
Hence, the MRCA of seed plants also probably contained at
least ten MIKCC-group genes. However, whether the MRCA
of extant seed plants contained even more MIKCC-group genes
and what the ancestral number of Type I and MIKC*-group
genes is in seed plants is not known.

Recently, the genomes of Picea abies, Picea glauca and Pinus
taeda have been sequenced (Birol et al., 2013; Nystedt et al.,
2013). Together with the increasing amount of transcriptome
data (Wegrzyn et al., 2008; Lorenz et al., 2012), it is now possible
to get a much more detailed picture about the ancestral set of
MADS-box genes in seed plants and correlate MADS-box
gene evolution with the evolution of seeds and flowers. Here
we use this treasure trove of data to get a more detailed picture
of the dynamics of MADS-box gene evolution during the
origin of seed plants and the diversification of conifers.

MATERIALS AND METHODS

Identification of MADS-box genes

The whole genome assembly of Picea abies (Nystedt et al., 2013)
wasdownloadedfromUmeaUniversity inJuly2012(nowavailable
at http://congenie.org/). The whole genome assembly of Picea
glauca (Birol et al., 2013) was downloaded from SMarTForests
(http://www.smartforests.ca/) in January 2013 and the 0.8 version
of the assembly of Pinus taeda was downloaded from
PINEREFSEQ (http://pinegenome.org/pinerefseq/). Similarly,
transcriptome data were downloaded from Dendrome (http://
dendrome.ucdavis.edu/; Wegrzyn et al., 2008). Further-more, tran-
scriptome data described by Lorenz et al. (2012) were downloaded
from the NCBI Short Read Archive (Sayers et al., 2012).

The scaffolds of the whole genome assemblies as well as the
assembled transcriptomes were translated in all six possible
reading frames to create amino acid sequences using a custo-
mized perl script. These amino acid sequences were searched
for MADS domains using hmmsearch of the HMMer package
(Eddy, 1996) with a customized Hidden Markov Model for
plant MADS domains (Gramzow and Theißen, 2013). For the
whole genome data, all results with a length of at least 30
amino acids were kept and used for phylogeny reconstruction.
For transcriptome data, the complete transcript sequences were
obtained for each of the HMM results with a length of at least
30 amino acids. The identified transcript sequences were
assembled separately for each gymnosperm species using
Sequencher v 5.1 (Gene Codes Corp., Ann Arbor, MI, USA)
with a minimum match percentage of 95 and a minimum
overlap of 20. For the assembled transcript sequences, the open
reading frames (ORFs) were then determined using Batch ORF
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Finder at greengene.uml.edu or ORF Finder at NCBI (Sayers
et al., 2012). The ORFs were translated into protein sequences.

To determine which transcript sequences of P. abies, P. glauca
and P. taedacorrespond to which MADS-domain sequences iden-
tified from these genomes, we conducted local BLAST searches
(Altschul et al., 1990) using the transcript sequences as query
sequences and the whole genome assemblies of the P. abies,
P. glauca and P. taeda genomes as database. If a transcript se-
quence had a match with more than 97 % sequence identity over
a length of approx. 180 nucleotides to a genomic region that was
identified to have a MADS-domain by hmmsearch, only the tran-
script sequence was kept and the MADS-domain sequence identi-
fied from the genome was removed from the dataset. As the
number of transcript sequences for which no genomic region
was identified was quite high using these stringent criteria, we
later also considered shorter BLAST results.

The remaining MADS-domain-containing sequences identi-
fied from gymnosperm genomes and transcriptomes were
combined and identical sequences were kept only once using the
function ‘Remove Redundancy’ with a threshold of 100 of the
program Jalview (Waterhouse et al., 2009). The MADS-
domain-containing sequences remaining after this step were
named using a two- or three-letter code for the species from
which the sequences were identified followed by the keyword
‘MADS’ and incrementing numbers.

Phylogeny reconstruction

The reduced dataset of MADS-domain sequences identified
from gymnosperm genomes and transcriptomes were aligned
with all MADS-domain proteins from Arabidopsis thaliana,
Oryza sativa, Populus trichocarpa, Vitis vinifera, Amborella tri-
chopoda, Selaginella moellendorffii and Physcomitrella patens
and with MADS-domain proteins annotated from gymnosperms
and ferns as far as known using hmmalign (Eddy, 1996) with a
hidden Markov model for plant MADS domains (Gramzow and
Theißen, 2013) and the –trim option to remove non-homologous
residues from the alignment. Furthermore, amino acids corre-
sponding to insert states were removed from the alignment.
The alignment was used to reconstruct a phylogeny using the
RAxML program (Stamatakis, 2006) with the -f option to
conduct a rapid bootstrap analysis with 1000 replicates and
search for the best-scoring maximum-likelihood (ML) tree in
one program run at the CIPRES Science gateway (Miller et al.,
2010). Based on this ML phylogeny, MADS-domain sequences
from gymnosperms were classified into Type I and Type II
MADS domains depending on their grouping relative to the
Type I and Type II MADS-domain sequences of the other
species which had been classified previously (Parenicova et al.,
2003; Leseberg et al., 2006; Arora et al., 2007; Diaz-Riquelme
et al., 2009; Gramzow et al., 2012; Barker and Ashton, 2013).

We then aligned Type I and Type II MADS-domain sequences
separately using sequences from the same species as described
above and the program Probalign (Roshan and Livesay, 2006).
For Type I MADS-domain proteins, the alignment was cropped
to contain only the MADS domain, and for Type II proteins, the
alignment was cropped to contain only the MADS and K
domains. Phylogenies for these two datasets were reconstructed
using RAxML as described above.

Based on the ML phylogeny for Type II proteins, these proteins
were separated into 11 clades. To test the stability of these clades,
separate datasets were compiled containing all the MADS
sequences belonging to a specific clade according to the Type II
ML phylogeny plus MADS sequences from other clades of
A. thaliana, V. vinifera and O. sativa. Separate phylogenies for
each of the 12 clades were constructed as described above for
Type I and Type II phylogenies. Finally, datasets for each clade
were compiled containing the MADS proteins belonging to the
corresponding clade in the Type II as well as in the separate phy-
logeny. SEP3 from A. thaliana was used as a representative of the
outgroup for all clades except the clade containing AGL2-,
AGL6-, FLC- and SQUA-like genes, in which AGL12 of
A. thaliana was used as an outgroup representative, and the
clade containing AG-like genes in which AGL15 of A. thaliana
was used. Alignments and phylogenies were constructed as
described above. For each clade, two phylogenies were recon-
structed in this way, one containing all MADS proteins belonging
to this clade and another only containing MADS proteins with
transcript support. To test the stability of the phylogenies for the
different clades of Type II proteins, we also reconstructed phylo-
genies withMrBayes (Ronquist andHuelsenbeck,2003) wherewe
only includedMADSproteins with transcript support.We used the
WAG model of amino acid substitutions (Whelan and Goldman,
2001), generated 6 million generations, sampled every 1000th
phylogeny and excluded the first 25 % from further analysis.

Gene expression data

Information about gene expression as revealed by transcrip-
tome data was obtained from the NCBI expressed sequence tag
database and the NCBI short read archive (Sayers et al., 2012).

RESULTS

Number of MADS sequences in gymnosperms

Our search of genome and transcriptome data for Gnetum gnemon
and 18 conifer species (Fig. 1) identified 1064 MADS-domain
sequences (Table 1, Supplementary Data Table S1). In species
for which whole-genome information is available, Picea abies,
PiceaglaucaandPinustaeda, 261,121and367MADSsequences
were found, respectively. However, there is evidence of transcrip-
tion only for 49, 23 and 60 of these MADS sequences, respective-
ly. We found a total of 43 sequences in transcriptome data of
P. abies, P. glauca and P. taeda for which we did not find a corre-
sponding sequence in the genome. This number decreases to 19
transcriptome sequences that were not found in the genomes
when less stringent criteria were used. The fact that we did not
find some transcript sequences in the genomes may be due to
the incomplete knowledge of gymnosperm genomes. For
P. abies and P. glauca, only about 61 % of the whole genome
has been sequenced (Birol et al., 2013; Michael and Jackson,
2013; Nystedt et al., 2013). While most of the missing sequence
is supposed to represent repetitive elements, some genes may
have also escaped sequencing so far. We believe, however, with
our combination of genome and transcriptome data, that we
have made a major leap towards a complete overview of the
MADS-box genes in gymnosperm genomes.
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Based on our RAxML phylogeny (Supplementary Data Fig.
S1), we classified the identified MADS sequences into Type I
and Type II. Bootstrap values are quite low. However, the group-
ing of the known MADS-box genes is correct and thus the clas-
sification of the gymnosperm sequences into Type I and Type II
should also be accurate in most cases. Only 35 gymnosperm
MADS sequences were classified as Type I. Even for the
species for which whole-genome information is available, the
percentage of Type I sequences is always less than 5 % of all
MADS sequences. In contrast, 1029 gymnosperm MADS
sequences were classified as Type II. In the species for which

whole genome information is available, P. abies, P. glauca and
P. taeda, the number of Type II sequences is 249, 118 and 350,
respectively.

Type I genes

In our phylogenies of Type I genes there are two major branches
that may represent large clades (Fig. 2, Supplementary Data
Fig. S2). One putative clade contains genes classified as Ma genes
in A. thaliana, P. trichocarpa and O. sativa (Parenicova et al.,
2003; Leseberg et al., 2006; Arora et al., 2007) and MADS-box
genes from V. vinifera, gymnosperms, S. moellendorffii and
P. patens. The other clade comprises genes classified as Mb
and Mg genes in A. thaliana, P. trichocarpa and O. sativa and
MADS-box genes from V. vinifera, gymnosperms, S. moellen-
dorffii and P. patens. This suggests that there are two ancient
clades of Type I MADS-box genes in land plants. Again, the
bootstrap values supporting the two groups are quite low but
our results concur with previous studies (Gramzow et al., 2012).

As mentioned above, the number of Type I genes identified in
gymnosperms is very low. The 35 Type I genes of gymnosperms
are distributed approximately evenly between the two clades
with 14 genes belonging to putative clade I (Ma) and 21 genes
belonging to putative clade II (Mb/Mg). Evidence of transcrip-
tion exists only for few of these genes. Our analysis of transcrip-
tome data revealed that two genes of clade I are expressed in
mixed shoot tissues. For clade II, four genes were found in tran-
scriptome data derived from bud, male cone and embryo tissues.

Clades of Type II genes

Based on our phylogeny of Type II sequences (Supplementary
Data Fig. S3), we defined 11 branches (putative clades, hereafter
termed ‘clades’ for simplicity) for separate analyses (MIKC*,
AGL2/AGL6/FLC/SQUA, DEF/GLO/OsMADS32/GGM13,

Sequoia
Cypressaceae

Taxaceae
Cephalotaxaceae
Sciadopityaceae
Araucariaceae
Podocarpaceae

Pinaceae

Gnetaceae

Cryptomeria
Taxus
Cephalotaxus
Sciadopitys
Wollemia
Podocarpus
Pinus
Picea
Pseudotsuga
Cedrus
Gnetum
Angiosperms
Ferns
Lycophytes
Mosses
Liverworts

FI G. 1. Relationships of conifer genera considered here, modified after Chaw
et al. (1997) and Gugerli et al. (2001). Gnetum, angiosperms, ferns, lycophytes,
mosses and liverworts are shown as outgroup representatives; Gnetum is shown
on a dashed line due to the unresolved position. The different colours of the
branches are used in the following figures to indicate the host taxa of the corre-

sponding genes.

TABLE 1. Number of MADS sequences identified from gymnosperm genome and transcriptome data

Order Family Abbreviation Total Type I Type II

Gnetales Gnetaceae Gnetum gnemon GgMADS 41 0 41
Coniferales Pinaceae Cedrus atlantica CaMADS 13 0 13

Picea abies PaMADS 253 (41) + 8 12 249
Picea glauca PgMADS 107 (9) + 14 3 118
Picea sitchensis PsMADS 17 1 16
Pinus banksiana PbMADS 2 0 2
Pinus contorta PcMADS 14 0 14
Pinus lambertiana PlMADS 41 0 41
Pinus palustris PpaMADS 21 0 21
Pinus pinaster PpiMADS 10 0 10
Pinus taeda PtaMADS 346 (39) + 21 17 350
Pseudotsuga menziesii PmeMADS 40 0 40

Podocarpaceae Podocarpus macrophyllus PmaMADS 16 1 15
Araucariaceae Wollemia nobilis WnMADS 11 0 11
Sciadopityaceae Sciadopitys verticillata SvMADS 22 1 21
Taxaceae Taxus baccata TbMADS 3 0 3
Cephalotaxaceae Cephalotaxus harringtonia ChMADS 35 0 35

Cryptomerica japonica CjMADS 10 0 10
Cupressaceae Sequoia sempervirens SsMADS 19 0 19

For species for which whole-genome information is available the numbers are given as follows: number of MADS sequences identified from genome data
(number of MADS sequences identified from genome data and supported by transcriptome data) + number of MADS sequences identified from transcriptome
data for which the genomic locus could not be identified.
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60 Angiosperm
Ma-like genes

Angiosperm
Ma-like genes

Angiosperm
Ma-like genes

Angiosperm
Ma-like genes

Angiosperm
Ma-like genes

Ma

Mb/g

Angiosperm
Ma-like genes

Angiosperm
Ma-like genes

Angiosperm
Mb-like genes

Angiosperm
Mb-like genes

Angiosperm
Mg-like genes
PtaMADS274_G

PaMADS34

PtaMADS316_G
PtaMADS275_G
PtaMADS236_G

PtaMADS277_G
PtaMADS310_G

PtaMADS37
PgMADS58_G

PaMADS33
PaMADS235a_G

PaMADS235b_G
PaMADS270_G

PaMADS306_G
PtaMADS207_G

PtaMADS212_G
PsMADS10

PPTIM7 (Moss)
SmMADS11 (Lycophyte)

SmMADS12 (Lycophyte)
PaMADS303_G
PaMADS302_G

PgMADS83_G
PgMADS91_G

Angiosperm
Mb-like genes

PPTIM4 (Moss)
PPTIM5 (Moss)

SmMADS14 (Lycophyte)
SmMADS15 (Lycophyte)
PPTIM2 (Moss)
PPTIM3 (Moss)

SvMADS11
PaMADS154_G
PtaMADS104_G

PtaMADS287_G
PtaMADS296_G

PtaMADS165_G
PaMADS147_G
PtaMADS153_G

PtaMADS83_G
PtaMADS167_G

PtaMADS173_G
PmaMADS15

PaMADS263_G
PaMADS276_G

OsMADS71

2

21

0
2

0
62

8
1

5

19

2
1

0

12

98

30

12
5 59

100

62

13
14
11
13
28

37
32

98

100

4

89

50
31

42

38
61

23
41

72

8

80
97

84
66

80

87

22

19

1

4

21

37

15

31
100

53

31

FI G. 2. Phylogeny of Type I MADS-box genes. The two major putative clades of Type I genes, Ma and Mb/g (Gramzow et al., 2012), are marked by labelled lines on
the right. The colours of the branches correspond to the colours of the gymnospermgenera in Fig. 1. Abbreviations of gymnosperm gene names are described in Table 1.
Lycophyte sequences are from Selaginella moellendorffii and moss sequences are from Physcomitrella patens. Clades of angiosperm genes are collapsed into triangles
and their classification according to (Parenicova et al., 2003; Leseberg et al., 2006; Arora et al., 2007) is shown on the right. Numbers at nodes denote bootstrap values.

The fully resolved phylogeny is available as Supplementary Data Fig. S2.
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AGAMOUS, AGL12, AGL15, AGL17, GpMADS4, StMADS11,
TM3andTM8).Allof thesecladescontaingymnospermsequences
(Table 2).

MIKC*-group genes. In our type II phylogeny, 50 gymnosperm
sequences grouped together with MIKC*-group genes from
mosses, ferns and angiosperms (Supplementary Data Fig. S3).
Only eight of these are supported by expression data. The
bryophyte sequences branch off before the differentiation of the
S- and P-clade, each containing sequences from ferns, gymnos-
perms and angiosperms (Supplementary Data Fig. S4). In the phyl-
ogeny containing only sequences with expression data (Fig. 3),
PaMADS17 is the only gymnosperm member of the S-clade.
Interestingly, also 39 genomic sequences from P. taeda without
evidence of transcription belong to the S-clade in our phylogeny.
Ten gymnosperm sequences (seven with evidence of transcription)
form the P-clade together with sequences from ferns and angio-
sperms. The association of the gymosperm sequences to the P-
and S-clades in our MrBayes phylogeny is consistent with that in
our RAxML phylogenies (Supplementary Data Fig. S4). The iden-
tified MIKC*-group genes of the P-clade, PaMADS29,
PaMADS31 and PaMADS26 from P. abies, show expression in
stem, wood, vegetative shoots and female cones. PaMADS26
was also identified from male cones. cDNA of GgMADS1 from
G. gnemon was isolated from female cones. In contrast, the expres-
sion of the single S-clade gene PaMADS17 was detected only in
male cones.

AGL2/AGL6/FLC/SQUA-like genes. Recently, it was established
that FLC-like genes belong to the superclade of AGL2-, AGL6-
and SQUA-like genes (Ruelens et al., 2013). Hence, we here
analysed these genes together. In our phylogenies, two large sub-
clades can be defined, one consisting of AGL2- and AGL6-like
genes and the other consisting of FLC- and SQUA-like genes

(Supplementary Data Fig. S5a). Of the gymnosperm sequences
identified here, 19 belong to the clade of AGL2/AGL6-like
genes and 67 belong to the clade of FLC/SQUA-like genes.
When we restrict our phylogeny to sequences for which we have
evidence of transcription, the AGL2- and the AGL6-like genes
of angiosperms form sister clades as well as the FLC- and
SQUA-like genes of angiosperms, with the exception of FLC-
like genes from rice, which cluster within a clade of gymnosperm
sequences (Fig. 4). This suggests that the duplications giving rise
to AGL2- and AGL6-like genes and to FLC- and SQUA-like
genes occurred in angiosperms and that the MRCA of extant
seed plants possessed at least one AGL2/AGL6-like gene and at
least one FLC/SQUA-like gene. As the bootstrap values for our
RAxML phylogenies were quite low we also reconstructed a phyl-
ogeny using MrBayes (Supplementary Data Fig. 5c). The
sister-group relationships of AGL2- and AGL6-like genes and
of FLC- and SQUA-like genes of angiosperms was confirmed
in our MrBayes phylogeny with stronger support (posterior
probability of 0.51 and 0.90, respectively). However, all
gymnosperm sequences appear more closely related to AGL2/
AGL6-like genes than to FLC/SQUA-like genes in our MrBayes
phylogeny.

Analysing transcriptome data, we found expression of gymno-
sperm genes belonging to the AGL2/AGL6 clade in shoots,
needles and reproductive tissues. FLC/SQUA-like genes from
gymnosperms were identified in transcriptome data from a
wide variety of tissues (roots, shoots, stems, bark and female
cones).

DEF/GLO/OsMADS32/GGM13-like genes. In our phylogenies,
OsMADS32-like genes cluster with DEF-like, GLO-like and
GGM13-like genes (Supplementary Data Fig. S3). Conse-
quently, we analysed these clades together. Based on our Type II
phylogeny including MADS sequences identified from genome

TABLE 2. Number of gymnosperm genes in different clades of Type II MADS-box genes

Species MIKC*
AGL2/AGL6/
FLC/SQUA

DEF/GLO/
OsMADS32/
GGM13 AGAMOUS AGL12 AGL15 AGL17 GpMADS4 StMADS11 TM3 TM8

S. sempervirens 0 0 0 0 0 0 0 0 8 4 4
C. japonica 0 1 6 1 0 0 0 0 0 0 1
T. baccata 0 0 0 0 0 0 0 0 1 1 1
C. harringtonia 0 3 0 0 0 0 0 0 6 10 13
S. verticillata 0 1 0 0 0 0 0 0 0 6 14
W. nobilis 1 0 0 0 0 0 0 0 4 0 6
P. macrophyllus 0 1 1 0 0 0 0 0 6 1 6
P. taeda 1 (41) 11 (38) 2 (64) 3 (24) 4 (15) 0 (0) 0 (4) 0 (2) 7 (20) 25 (77) 6 (58)
P. pinaster 0 1 0 0 0 0 0 0 2 4 3
P. palustris 0 1 0 0 0 0 0 0 0 15 5
P. lambertiana 0 6 1 0 1 0 0 2 6 19 6
P. contorta 0 1 0 0 0 0 0 1 2 8 2
P. banksiana 0 0 0 0 0 0 0 0 0 1 1
P. abies 4 (5) 2 (15) 8 (20) 2 (15) 0 (5) 0 (1) 0 (13) 2 (9) 14 (53) 14 (85) 4 (27)
P. glauca 0 (1) 3 (10) 1 (8) 2 (5) 1 (6) 0 (0) 0 (6) 0 (4) 7 (26) 8 (32) 1 (17)
P. sitchensis 0 1 0 1 0 0 0 0 5 6 3
P. menziesii 0 1 2 2 0 0 0 0 1 31 3
C. atlantica 0 2 0 0 0 0 0 0 3 8 0
G. gnemon 2 4 3 4 0 0 0 0 4 2 18
Sum 8 (50) 39 (86) 24 (105) 15 (52) 6 (27) 0 (1) 0 (23) 5 (18) 76 (147) 163 (310) 97 (188)

Generally, the number of expressed genes is given. For P. taeda, P. abies, P. glauca and sum, the total number of genes including those solely identified from
genome data without evidence of transcription is given in parentheses.
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and transcriptome projects, 105 sequences belong to this clade
(Supplementary Data Fig. S3a). In our separate phylogenies for
this superclade, DEF- and GLO-like genes from angiosperms
form sister clades that in turn are sister clades to OsMADS32-
like genes of angiosperms (Supplementary Data Fig. S6a). This
suggests that there have been two duplications near the base of
extant angiosperms giving rise first to OsMADS32- and DEF/
GLO-like genes and then to DEF- and GLO-like genes. A clade
of 60 MADS sequences from gymnosperms is sister to the DEF/
GLO/OsMADS32-superclade. GGM13-like genes from angio-
sperms form a clade in our phylogeny to which 45 MADS
sequences from gymnosperms are related.

When we exclude gymnosperm MADS sequences solely pre-
dicted on genomic sequences (Fig. 5), 24 MADS sequences
from eight gymnosperm species cluster with DEF/GLO/
OsMADS32-like genes from angiosperms and nine MADS
sequences from five gymnosperm species cluster with
GGM13-like genes from angiosperms. The phylogeny and distri-
bution of the sequences suggests that there has been at least one
DEF/GLO/OsMADS32-like gene and one GGM13-like gene in
the MRCA of extant seed plants. In our MrBayes phylogeny,
some gymnosperm sequences are sister to the OsMADS32- and
to the DEF-like genes from angiosperms, respectively, rather
than being ancestral to a superclade of DEF-, GLO- and
OsMADS32-like genes from angiosperms (Supplementary Data
Fig. 6c).

Gymnosperm DEF/GLO/OsMADS32-like sequences are
mainly derived from transcriptome data of male reproductive
tissues. GGM13-like genes were mainly identified from
mixed tissues. Only for GGM13-like genes of P. abies are specific
tissues, namely female reproductive organs, given.

AGAMOUS- and AGL12-like genes. In our phylogenies, 52 of all
identified gymnosperm MADS sequences belong to the
AGAMOUS clade (Supplementary Data Fig. S7a). When we
exclude sequences for which no evidence of transcription exists,
15 sequences remain. In this reduced phylogeny, all AG-like
genes of gymnosperms are sister to the AG-like genes of angio-
sperms, suggesting that the MRCA of extant seed plants had at
least one but may not have had more than one AG-like gene
(Fig. 6). Furthermore, the AG-like genes of gymnosperms form
three subclades in our RAxML phylogeny and two subclades in
our MrBayes phylogeny (Supplementary Data Fig. 7c), indicating
that the MRCA of extant gymnosperms may have possessed at
least two to three AG-like genes. Interestingly, AG-like sequences
derived from transcripts were identified from a variety of tissues,
including roots, shoots, stems, bark, leaves and reproductive
organs.

The sister group of AG-like genes are the AGL12-like genes
(Becker and Theissen, 2003). We identified 27 AGL12-like
sequences from gymnosperms, where there is evidence of tran-
scription for six of them (Fig. 7, Supplementary Data Fig. S8).
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Expression was mostly found in mixed tissues, twice in root and
once in shoot and/or needles. Our phylogeny suggests that one
AGL12-like genewas present in the MRCA of extant seed plants.

AGL15- and AGL17-like genes. In our Type II phylogeny, one se-
quence of P. abies clusters with AGL15-like genes from angio-
sperms and 23 sequences from P. taeda, P. abies and P. glauca
cluster with AGL17-like genes of angiosperms (Supplementary
Data Figs S3, S9 and S10). However, all of these gymnosperm
sequences have been identified solely from genomic sequences
and no evidence of transcription exists for these genes.
Alignments reveal strong similarity of at least some of these
gymnosperm sequences to the AGL15- and AGL17-like MADS
sequences of angiosperms, respectively (Figs 8 and 9).

Nevertheless, the alignments also reveal three positions each
where the gymnosperm sequences are different from all of the
angiosperm MADS sequences of the respective clades. Hence,
further analyses are needed to confirm or deny the association of
the gymnosperm sequences to the clades of AGL15- and
AGL17-like genes.

GpMADS4-like genes. We found 18 sequences belonging to the
gymnosperm-specific clade of GpMADS4-like genes
(Supplementary Data Fig. S3). The known genes DAL10 of
P. abies and GpMADS4 of G. parvifolium constitute the
GpMADS4-subclade together with 13 other gymnosperm
sequences (Supplementary Data Fig. S11). DAL21 of P. abies
forms another subclade together with three other gymnosperm
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sequences, termed the DAL21-subcladehere.Theseclades arealso
stable in our MrBayes phylogeny (Supplementary Data Fig. S11b).
For both subclades, there are three genes supported by expression
data (Fig. 10), where expression was found in bark, shoots,
stems, needles, buds and cones.

StMADS11-like genes. In our phylogenies, 147 gymnosperm
sequences cluster together with StMADS11-like genes from
angiosperms, of which 76 gymnosperm sequences have expres-
sion data support (Supplementary Data Fig. S12a). There are
two subclades of StMADS11-like genes fromconifers in our phyl-
ogeny (Fig. 11), suggesting that there was a duplication of an an-
cestral StMADS11-like gene near the base of extant conifers. We
termed the two resulting subclades PaMADS19-like and
PaMADS20-like genes after the P. abies gene with the lowest

number in the corresponding clade. These two subclades
also appear in our MrBayes phylogeny (Supplementary Data
Fig. S12c). For the PaMADS19 subclade, sequences of all the
conifer species studied here were found with the exception of
those of S. verticillata. The subclade PaMADS20 contains only
sequences of P. macrophyllus and the family Pinaceae. In both
subclades several species-specific duplications occurred, for
example in S. sempervirens, W. nobilis, C. harringtonia,
P. macrophyllus and species of the family Pinaceae. Expression
of gymnosperm StMADS11-like genes was found mainly in
shoots, but also in other tissues such as roots, stems, wood, bark
and needles.

TM3-like genes. The clade of TM3-like genes includes 310
gymnosperm sequences from the species studied here, 163 of
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which have expression support, and four sequences from Pinus
radiata (Supplementary Data Fig. S13). In our reduced phylogeny
there are two main clades of gymnosperm sequences, one
comprising genes from the conifer species S. verticillata,
S. sempervirens, T. baccata and C. harringtonia (Fig. 12), and the
other containing sequences of G. gnemon, P. macrophyllus and
Pinaceae species. The clade of Pinaceae TM3-like genes can be
further subdivided into three subclades, termed DAL19-, DAL3-
and PrMADS4-like genes here. There are a number of species-
specific expansions of TM3-like genes, for example in Pinaceae,
S. verticillata, S. sempervirens and C. harringtonia. The
MrBayes phylogeny shows different subclades to those observed
in our RAxML phylogenies (Supplementary Data Fig. S13c).

Hence,eventhough thesheernumberofTM3-likegenes inconifers
indicatesanumberofduplications, the timingandextentofduplica-
tions cannot be determined based on our data. Transcripts of
TM3-like genes were isolated from various tissues, such as
shoots, stems, needles, buds, and female and male cones.

TM8-like genes. The angiosperm TM8-like genes group with 188
MADS-sequences from gymnosperms (Supplementary Data
Fig. S14a). For 97 sequences expression data are available. In
the reduced phylogeny including only genes with expression
data, two subclades are evident, termed as GgMADS2-like and
GgMADS25-like genes (Fig. 13). The clade of GgMADS2 con-
tains numerous sequences of the family Pinaceae and 16
sequences of G. gnemon. The Pinaceae sequences can be further
subdivided into the subclades PaMADS15 and PaMADS24.
Transcript-based sequences belonging to these two subclades
were isolated from buds, shoots, needles and stems and only one
sequence of P. taeda PtaMADS27, belonging to the PaMADS15
subclade, was found to be expressed in roots. The clade of
GgMADS25-like genes contains sequences of non-Pinaceae con-
ifers and two sequences from G. gnemon. The clades of
GgMADS25-like genes also appears in our MrBayes phylogeny
(Supplementary Data Fig. S14c). However, the genes belonging
to the GgMADS2-like clade in our RAxML phylogeny are split
into twocladesthat are notsisterclades inourMrBayesphylogeny.
Expression of genes from this clade was also found in a variety of
tissues, such as shoots, needles and male strobili.
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DISCUSSION

Large total numberof MADS-box genes but low percentage of Type I
genes in conifer genomes

The total number of MADS-box sequences identified from the
three sequenced conifer genomes ranges from 121 to 367 with
an average of 249. In sequenced angiosperm genomes, this
number ranges from 60 to 265 where the average number is 116
(Gramzow and Theißen, 2013). Hence, the number of putative
MADS-box genes (including pseudogenes) in conifers is on
average much higher than in angiosperms. This is consistent
with the large genome size of gymnosperms. The genomes
studied here of Picea abies, Picea glauca and Pinus taeda have
genome sizes of more than 20 Gbp (Birol et al., 2013; Nystedt
et al., 2013). Despite the large genome sizes, there is no evidence
for genome duplications in the gymnosperm lineage (Nystedt
et al., 2013). The total number of genes also seems to be higher
in gymnosperms than in most angiosperms. In P. abies, 70 968
protein-coding loci were predicted, of which 28 354 were consid-
ered to be of high confidence (Nystedt et al., 2013). Hence, the
large number of MADS-box genes we found in gymnosperm
genomes correlates with the large genome size and gene number
in gymnosperms. However, many of the MADS-box genes we
found are probably pseudogenes. We identified premature stop
codons in the MADS boxes of 17 sequences from P. abies, eight
sequences from P. glauca and 22 sequences from P. taeda. A com-
plete analysis of the number of pseudogenes in the MADS-box
gene family is not possibleyet due to the short length of some scaf-
folds on which MADS-boxes have been identified. A large frac-
tion of pseudogenes has also been identified for other gene
families in gymnosperms, such as phytochrome, cdc2 and
WUSCHEL-type homeobox genes (Kinlaw and Neale, 1997;
Kvarnheden et al., 1998; Garcia-Gil, 2008; Hedman et al.,
2013). How many of the identified MADS-box genes in conifers
are functional remainstobe determined.The numberof genes sup-
ported by transcripts identified for P. abies, P. glauca and P. taeda
ranges only from 23 to 60. This low number of MADS-box genes
for which transcriptome data were found may have several
reasons. First, the number of different tissues sampled was low
to moderate. For P. abies, 22 transcriptome samples of different
tissues were determined (Nystedt et al., 2013) while for P. taeda
and P. glauca six and eight transcriptome datasets, respectively,
were available (Wegrzyn et al., 2008; Lorenz et al., 2012).
Furthermore, many MADS-box genes are known to be expressed
at low level or only at specific stages of development (Becker and
Theissen, 2003; De Bodt et al., 2003; Nam et al., 2004; Bemer
et al., 2010). Hence, more transcriptome data may help to identify
more MADS-box genes as expressed genes. However, as

mentioned above, a numberof the MADS-box genes we identified
may also be pseudogenes.

In contrast to the large overall number of identified MADS-box
genes in conifer genomes, the numberof Type I MADS-box genes
ranges from only three to 17 in the sequenced conifer genomes.
Only two angiosperm genomes examined so far have fewer than
17 Type I MADS-box genes, namely Cucumis sativus (11) and
Zea mays (14) (Gramzow and Theißen, 2013). Percentage-wise,
the difference between the amount of Type I genes in conifer
and angiosperm genomes is even clearer: in all angiosperm
genomes that have been examined, the percentage of Type I
genes is greater than 20 % of all MADS-box genes, while in exam-
ined conifers, the percentage is always lower than 5 %. For angio-
sperms, it has been shown that Type I genes have higher
birth-and-death rates than Type II genes (Nam et al., 2004). Our
phylogeny of Type I genes shows lineage-specific expansions of
Type I genes for conifers, similar to what is observed for Type I
genes in angiosperms (Fig. 2). However, there are fewer clades
of conifer Type I genes, which generally also have fewer genes
than the clades of angiosperm Type I genes (Supplementary
Data Fig. S2). Hence, either the birth rate of Type I genes is
lower or the death rate of Type I genes is higher in conifers than
inangiosperms.Further studiesare neededtoclarify theevolution-
ary patterns of Type I genes in conifers.

Strengths and weaknesses of MADS-box gene phylogenies

In general, the support values in our phylogenies are quite low.
This may be due to large datasets including quite diverse
sequences and is common for MADS-box gene phylogenies
in plants (Gramzow and Theißen, 2013). Therefore, we used
two independent phylogenetic reconstructions using ML and
Bayesian methods to test the stability of clades. Furthermore,
we often observe paraphyletic relationships between the differ-
ent gymnosperm sequences (Figs 2–6, 9, 11 and 13). Long
branch attraction may, at least partially, explain the apparent
paraphyletic relationship even though the methods we used
here are less prone to long branch attraction than other phylogen-
etic methods (Bergsten, 2005). Also, some of the gymnosperm
sequences are very short and may not provide enough informa-
tion for the phylogenetic reconstruction algorithms to correctly
place them in the phylogeny. Hence, the paraphyletic pattern
of gymnosperm genes may often be an artefact and we largely
ignored paraphyletic relationships and rather assumed mono-
phyly of gymnosperm genes when estimating the number
of MADS-box genes in the MRCAs of seed plants and
gymnosperms.
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Number of MADS-box genes in the MRCA of extant seed plants

According to our phylogenies, the MRCA of extant seed
plants contained at least 13–16 different MADS-box genes
(Fig. 14). Of these, at least two were Type I genes [one Type I
gene of clade I (Ma) and one Type I of clade II (Mb/Mg)], at
least two were MIKC*-group genes [one MIKC*-group gene
of the S clade and one MIKC*-group gene of the P clade (Nam
et al., 2004)] and at least 9–12 were MIKCC-group genes (one
each of the following clades: AGL2/AGL6, FLC/SQUA, DEF/
GLO/OsMADS32, GGM13, AG, AGL12, StMADS11, TM3
and TM8; and possibly AGL15, AGL17 and GpMADS4). For
MIKCC-group genes, the presence of AGL15- and AGL17-like
genes needs to be verified as thus far gymnosperm genes with
high similarity to the angiosperm AGL15- and AGL17-like
genes have been identified solely based on genomic data and no
evidence of transcription exists. Furthermore, support values for
the corresponding clades are quite low and alignments of the
MADS domains do not give a clear signal of whether the gymno-
sperm sequences belong to the AGL15- and AGL17-clades or not.
The clade of GpMADS4-like genes is specific to gymnosperms.
The deep branching of this clade in relation to the other ancient
clades of Type II genes was not clear in our phylogenies. As it
does not form a clear clade with another ancient clade of Type II
genes, we hypothesize that this clade was present in the MRCA

of seed plants and was subsequently lost in angiosperms. Given
that phylogenies from previous studies also did not reveal any
clear association of this clade with another major clade of
MADS-box genes (Melzer et al., 2010; Carlsbecker et al.,
2013), this hypothesis seems reasonable. However, it remains pos-
sible that phylogenic reconstructions have failed to place
GpMADS4-like genes correctly thus far. Hence, more transcript
sequences from gymnosperms may help to clarify the origin of
AGL15-, AGL17- and GpMADS4-like genes.

Our work extends previous studies and increases the minimum
number of MADS-box genes identified in the MRCA of extant
seed plants by one to four. Earlier studies recognized the presence
of two ancient clades of Type I genes that trace back close to the
MRCA of land plants (Gramzow et al., 2012). At this stage,
however, no gymnosperm Type I genes of clade I (Ma) could
be identified but only a few gymnosperm Type I genes of clade
II (Mb/g). Here we demonstrate that Type I genes of clade I are
also present in gymnosperms. Similarly, the presence of two
ancient clades of MIKC*-group genes that originated in the
MRCA of euphyllophytes, the P- and the S-clade, has been
described (Kwantes et al., 2012; Gramzow et al., 2012). In these
previous studies, however, only gymnosperm members of the
P-clade had been found whereas here we identified gymnosperm
genes of both clades. At least eight MIKCC-group genes were
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predicted to be present in the MRCA of seed plants (Becker et al.,
2000; Melzer et al., 2010). Our analyses reveal that this number
should be increased to 9–12. In contrast to previous studies
(Becker et al., 2000; Melzer et al., 2010; Kim et al., 2013), our
phylogenies indicate that the duplication giving rise to AGL2-
and AGL6-like genes may be specific to angiosperms and that

the genes previously thought to be orthologues of AGL6-like
genes in gymnosperms are actually orthologues to an ancestral
AGL2/AGL6-like gene (Fig. 4). According to our scenario, only
one AGL2/AGL6-like gene, instead of one AGL2- and one
AGL6-like gene, was present in the MRCA of extant seed
plants. Consequently, we do not have to assume a loss of
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AGL2-like genes in gymnosperms but two consecutive duplica-
tions at the base of angiosperms giving rise first to AGL2- and
AGL6-like genes and then to SEP1- (AGL2-) and SEP3-
(AGL9-) like genes. In line with a recent study (Ruelens et al.,
2013), FLC- and SQUA-like genes of angiosperms form a clade
in our phylogenies with the exception of FLC-like genes from
rice. Neighbouring this clade are a number of MADS-box genes
from gymnosperms. This suggests that FLC/SQUA-like genes
are present in gymnosperms and that the MRCA of extant seed
plants possessed at least one FLC/SQUA-like gene. Previous
studies could not identify SQUA-like genes in gymnosperms
(Becker et al., 2000; Melzer et al., 2010). Furthermore, our
study indicates that AGL15-, AGL17- and GpMADS4-like
genes were also present in the MRCA of extant seed plants.
However, this finding needs to be tested with additional data, as
described above. Finally, our study clarifies the origin of
OsMADS32-like genes, which had previously been thought to
be specific to monocots (Sang et al., 2012). In our phylogeny,
we identify an OsMADS32-like gene in the basal angiosperm
species Amborella trichopoda, Am.tr.OsM32 (Supplementary

Data Fig. S6) as confirmed by other studies (The Amborella
Genome Project, 2013). The clade of OsMADS32-like genes is
sister to a clade of DEF- and GLO-like genes (Fig. 5), suggesting
that OsMADS32-like genes originated by a duplication of an an-
cestral DEF/GLO/OsMADS32-like gene near the base of extant
angiosperms.

Number of MADS-box genes in ancestral gymnosperms

From our phylogenies, we can infer some duplications in the
lineage leading to the MRCA of gnetophytes (represented by
Gnetum) and conifers after the lineage that led to angiosperms
split off (Fig. 14). One duplication each happened in the TM8-
clade, leading to GgMADS2- and GgMADS25-like genes, and
in the GpMADS4-clade, generating GpMADS4- and DAL21-
like genes. Hence, the number of MIKCC-group MADS-box
genes is nearly as high in the MRCA of gnetophytes and conifers
(14) as in the MRCA of angiosperms (17). If recent phylogenetic
reconstructions are correct (Wu et al., 2011; Xi et al., 2013), data
from Ginkgo and cycads will be required to determine whether the
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but as data from cycads and Ginkgo are missing we cannot infer presence in the MRCA of all extant gymnosperms.
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two gene duplications discussed above pre-date even earlier diver-
sifications of extant gymnosperms than the split between gneto-
phytes and conifers.

Inferred functions of MADS-box genes in the MRCA of seed plants

Type I MADS-box genes. Only a few studies of Type I MADS-box
gene functions have been published so far (Portereiko et al.,
2006; Yoo et al., 2006; Bemer et al., 2008; Colombo et al.,
2008; Kang et al., 2008; Steffen et al., 2008). These studies
suggest as commonality a role for Type I MADS-box genes in
female gametophyte, embryo and seed development in angio-
sperms (Gramzow and Theissen, 2010). Expression of one
gymnosperm Type I gene was also found in embryo. Hence, a
role in embryo development may be an ancestral function of
Type I genes in seed plants. The expression of other gymnosperm
Type I genes in a wide range of tissues (e.g. shoots, needles and
cones) may represent transcriptional noise, indicate additional
functions of gymnosperm Type I genes or restriction of Type I
gene functions in angiosperms. Unfortunately, there are current-
ly no data available, such as detailed gene expression pattern or
mutant phenotypes, that would clarify the function of Type I
genes in gymnosperms.

MIKC*-group genes. In ferns, these genes are expressed in male
and hermaphroditic gametophytic tissue and in sporophytic
tissue such as roots and stipes (Kwantes et al., 2012). In contrast,
their expression is usually restricted to male gametophytic tissue
(pollen) in basal and in derived angiosperms (Kwantes et al.,
2012; Liu et al., 2013). The identified gymnosperm MIKC*-
group genes are expressed in gametophytic and sporophytic
tissues as well, indicating that no restriction to male gametophyt-
ic tissue occurred before the split of angiosperms and gymno-
sperms. Our analyses of transcriptome data reveal that P-clade
genes are expressed in vegetative shoots, wood, and female
and male reproductive organs, while the S-clade gene was
found to be expressed in male reproductive organs. The broad
expression pattern of genes of the P-clade suggests diverse func-
tions during plant development, whereas S-clade genes seem to
have a more restricted function in specifying male organs in gym-
nosperms. However, further investigations are needed to clarify
the functions of MIKC*-group genes of extant gymnosperms.
The data suggest that MIKC*-group genes may have had a role
in the development of both male and female reproductive
organs and in the development of vegetative tissues in the
MRCA of extant seed plants. After the divergence of the lineages
that led to extant gymnosperms and angiosperms, MIKC*-group
genes became functionally restricted to the male gametophyte
in angiosperms while they may have kept a broader role in
gymnosperms.

AGL2/AGL6- and FLC/SQUA-like genes. The gymnosperm
AGL2/AGL6-like genes identified here are expressed in shoots,
needles and reproductive tissues. DAL1 and DAL14 from
P. abies, which have been described as AGL6-like genesprevious-
ly, are expressed in male and female cones (Carlsbecker et al.,
2004, 2013). DAL1 is additionally expressed in vegetative
tissues and has therefore been proposed to be involved in vegeta-
tive development and to regulate phase change from juvenile to
adult (Carlsbecker et al., 2004). Angiosperm AGL2- and
AGL6-like genes have roles in the transition to flowering and in

lateral organ and flower development (Pelaz et al., 2000; Koo
et al., 2010; Yoo et al., 2011). It has also been shown that some
AGL6-like genes can act redundantly with AGL2-like genes in
flower organ formation (Rijpkema et al., 2009). Combining this
information suggests that ancestral AGL2/AGL6-like genes may
have had roles in the transition to reproductive development and
in the development of vegetative and reproductive organs.
Angiosperm FLC-like genes have roles in developmental phase
changes (Michaels and Amasino, 2001; Deng et al., 2011). The
expression of gymnosperm FLC/SQUA-like genes identified
here in a number of vegetative tissues may point to a similar role
for these genes. Furthermore, gymnosperm FLC/SQUA-like
genes are expressed in female cones. The function of
SQUA-like genes in angiosperms in the development of the
sterile organs of the flower and in meristem identity specification
(Mandel et al., 1992; Ferrándiz et al., 2000) may represent a new
function for these genes in angiosperms.

DEF/GLO/OsMADS32-like and GGM13-like genes. The gymno-
sperm genes that are sister to the clades of DEF-, GLO- and
OsMADS32-like genes of angiosperms were found to be
expressed in male reproductive tissues. This is consistent with pre-
vious reports about the expression of GGM2 of G. gnemon in male
cones, of DAL11, DAL12 and DAL13 of P. abies in male bud mer-
istems, and of PrDGL of P. radiata as well as of CjMADS1 and
CjMADS2 of C. japonica in male strobili (Mouradov et al.,
1999; Winter et al., 1999; Fukui et al., 2001; Sundstrom and
Engstrom, 2002). Similarly, DEF- and GLO-like genes in angio-
sperms are expressed in male reproductive organs and in petals
and specify stamen and petal identity (Schwarz-Sommer et al.,
1990; Goto and Meyerowitz, 1994). These expression patterns
point to an ancestral function of DEF/GLO/OsMADS32-like
genes in the development of male reproductive organs. In contrast,
gymnosperm GGM13-like genes are mainly expressed in female
reproductive organs (Becker et al., 2002; Carlsbecker et al.,
2013; Lovisetto et al., 2013), which is again consistent with
what is known about the expression of GGM13-like genes in
angiosperms (Becker et al., 2002; Yang et al., 2012). Hence,
these genes may have an ancestral function in the development
of female reproductive organs.

AG-like and AGL12-like genes. In previous publications, expres-
sion of gymnosperm AG-like genes has been observed mainly
in reproductive organs, such as DAL2 of P. abies in female
cones, JcMADS2 of Juniperus communis, TdMADS3 of
Thujopsis dolabrata and CjMADS4 of C. japonica in seed cones
and pollen cones, and SAG1 of P. mariana and GGM3 of
G. gnemon in male and female cones (Rutledge et al., 1998;
Tandre et al., 1998; Winter et al., 1999; Englund et al., 2011;
Groth et al., 2011). However, GBM5 of G. biloba was reported
to be expressed not only in reproductive organs, but also in vege-
tative leaves (Jager et al., 2003). Interestingly, our analysis of tran-
scriptome data reveals expression of gymnosperm AG-like genes
in many different tissues ranging from roots via shoots and leaves
to reproductive organs. The possibly wide expression pattern of
gymnosperm AG-like genes as observed in G. biloba and in tran-
scriptome data does not completely comply with the function of
AG-like genes in angiosperms in the development of reproductive
organs and roots (Yanofsky et al., 1990; Liljegren et al., 2000;
Pinyopich et al., 2003; Moreno-Risueno et al., 2010). The expres-
sion of gymnosperm AG-like genes in other tissues may represent

Gramzow et al. — MADS-box genes in conifers1424



just transcriptional noise, or the ancestral function of AG-like
genes in the MRCA of seed plants might have been broader, and
AG-like genes in angiosperms lost functions outside of roots
and reproductive organs.

The expression of gymnosperm AGL12-like genes in roots and
shoots/needles was found in trancriptome data here and had previ-
ously been described for DAL5 of P. abies (Carlsbecker et al.,
2013). This fits with the expression of AGL12-like genes from
angiosperms in roots, leaves and floral meristems and their func-
tion in root development and transition to reproductive develop-
ment (Tapia-López et al., 2008). Hence, the ancestral function
of AGL12-like genes in the MRCA of extant seed plants probably
involved root development and phase change to reproductive
development.

AGL12-like genes form the sister clade of AG-like genes
(Becker and Theissen, 2003). The probably broad functions of
the ancestral AG-like gene as described above and the probable in-
volvement of the ancestral AGL12-like gene in root development
and transition to reproductive development suggest that the
ancestral AG/AGL12-like gene had broad functions as well, and
that the functions of AGL12-like genes were restricted to root
development and phase change to reproductive development
early after the duplication leading to AG- and AGL12-like
genes before the divergence of angiosperms and gymnosperms.

AGL15- and AGL17-like genes. The presence of AGL15- and
AGL17-like genes in the MRCA of extant seed plants is not
clear but is suggested by our phylogeny. For possible gymno-
sperm AGL15- and AGL17-like genes, no expression data are
available. From angiosperms, some functions of AGL15- and
AGL17-like genes are known, such as root and leaf development
and transition to reproductive development (Zhang and Forde,
1998; Adamczyk et al., 2007; Kutter et al., 2007; Han et al.,
2008). It is possible that MADS-box genes are involved in
these processes in gymnosperms as well and that putative
AGL15- and AGL17-like genes carry out these functions also
in gymnosperms.

GpMADS4-like genes. Expression of GpMADS4 was detected in
female reproductive organs (Shindo et al., 1999). However, this
was the only tissue studied. The GpMADS4 orthologues GGM7
and DAL10 were found to be expressed during the development
of female and male cones (Becker and Theissen, 2003;
Carlsbecker et al., 2003, 2013). DAL10 has been hypothesized to
be involved in meristem determination of reproductive buds estab-
lishing reproductive identity (Carlsbecker et al., 2013). In contrast
to genes of the GpMADS4-subclade, DAL21 of the DAL21-
subclade is specifically expressed in female cones (Carlsbecker
et al., 2013). Hence, the ancestral GpMADS4-like gene in gym-
nosperms may have had a function in determining both types of re-
productive structures. After the duplication event during
gymnosperm evolution, the function of the DAL21-subclade
may have been restricted to the development of female cones.
According to our phylogeny, GpMADS4-like genes were
present in the MRCA of seed plants but lost in angiosperms.
Speculation about the function of GpMADS4-like genes in the
MRCA of seed plants is difficult, but their expression patterns in
extant gymnosperms suggest a role in reproductive organ develop-
ment also in the MRCA of extant seed plants. This role may have
been taken over by other genes or may have become dispensable in

angiosperms leading to a loss of GpMADS4-like genes in angio-
sperms.

Expansions of the clades of StMADS11-, TM3- and TM8-like genes
in gymnosperms

By far the highest numbers of MADS-box genes in gymno-
sperms were found for the StMADS11, TM3 and TM8 clades.
MADS-box genes belonging to these clades were identified in
nearly all gymnosperm species studied.

We identified two large subclades, PaMADS19- and
PaMADS20-like genes of conifer StMADS11-like genes.
Similarly, four subclades, SVP-, ZMM17-, MPF1- and MPF2-
like genes, have been defined for angiosperm StMADS11-like
genes (Khan and Ali, 2013). Angiosperm StMADS11-like
genes are mainly expressed in vegetative tissues such as roots,
leaves and shoots (Borner et al., 2000; Lee et al., 2000;
Michaels et al., 2003; Fornara et al., 2008; Wingen et al.,
2012). Different functions have been described for these genes.
AGL24 and SVP of A. thaliana act as promoter and repressor of
floral transition, respectively (Hartmann et al., 2000; Michaels
et al., 2003). The three StMADS11-like genes of rice,
OsMADS22, OsMADS47 and OsMADS55, are involved in the
negative regulation of brassinosteroid responses (Fornara et al.,
2008; Lee et al., 2008) and MPF2 of Physalis floridana is import-
ant for male fertility and the development of the ‘inflated calyx
syndrome’ (He and Saedler, 2005). The identification of
conifer StMADS11-like genes from transcriptome data of
mixed shoots, developing buds and roots indicates that these
genes may have diverse functions in conifers as well.

We observed two basal duplications of TM3-like genes from
Pinaceae resulting in the three subclades DAL19-, DAL3- and
PrMADS4-like genes. In P. radiata an expansion of the clade
of TM3-like genes has been previously suggested (Walden
et al., 1999). The four sequences studied by Walden et al.
(1999) are distributed over the three subclades of our phylogeny.
All PrMADS genes are expressed in male cones, roots, needles
and shoots with the exception of PrMADS6, which is not
expressed in roots. Furthermore, four TM3-like genes have
been identified from P. abies previously (Tandre et al., 1995;
Carlsbecker et al., 2013; Uddenberg et al., 2013) of which two
– DAL3 and DAL19 – are expressed in seedlings, cambium,
vegetative shoots, and female and male cones at different devel-
opmental stages. This indicates that conifer TM3-like genes may
be involved in the development of different tissues. DAL19 is
hypothesized to be involved in phase change from vegetative
to reproductive development (Uddenberg et al., 2013). The
angiosperm genes of the TM3-clade AGL20/SOC1 from
A. thaliana, its paralogues AGL19, AGL42, AGL71 and
AGL72, and the rice genes OsMADS50 and OsMADS56 act as
key regulators of flowering time (Lee et al., 2000; Tadege
et al., 2003; Schonrock et al., 2006; Ryu et al., 2009;
Dorca-Fornell et al., 2011). Hence, a function in the transition
to reproductive growth may have already been performed by
the ancestral TM3-like gene in the MRCA of extant seed
plants. Subsequently, some TM3-like genes evolved other func-
tions, such as AGL14/XAL2 from A. thaliana, which is involved
in root development (Garay-Arroyo et al., 2013) and AGL42/
FYF, which is involved in flower senescence/abscission (Chen
et al., 2011). Similarly, diversification of the TM3-like genes
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of conifers could have led to different functions similar to the
evolution of TM3-like genes in angiosperms.

TM8 was first described in tomato where its transcripts were
detected in gynoecia, stamens and petals (Pnueli et al., 1991).
The TM8-like gene ERAF17 of cucumber is expressed in
sepals, petals and ovaries of female flowers but not in male
flowers (Ando et al., 2001). TM8-like genes have been lost in a
number of angiosperm lineages such as Brassicaceae and
Poaceae (Parenicova et al., 2003; Arora et al., 2007). In gymno-
sperms three TM8-like genes from G. biloba and one TM8-like
gene from T. baccata were described and their expression pat-
terns were examined recently (Lovisetto et al., 2012).
GbMADS11 and GbMADS6 from G. biloba are expressed in
leaves, male strobili and ovules, whereas GbMADS7 is expressed
only weakly in these tissues. The TbTM8 gene from T. baccata is
expressed strongly in ovules and developing arils. Two transcript
sequences from C. japonica were identified from male strobili.
The sequences from P. abies identified here were detected only
in wood tissues and buds. Other conifer sequences were isolated
from needles, shoot tips and wood tissues as well. Given the
diverse expression patterns of TM8-like genes in gymnosperms
and angiosperms, it is difficult to infer a function for the ancestral
TM8-like gene in the MRCA of seed plants. Judged by the
number of gene duplications and gene losses observed for this
clade, it seems that TM8-like genes are a clade of fast evolving
genes, which have acquired different functions in different
species of conifers as well as of angiosperms.

CONCLUSIONS

We show that the minimal number of Type I genes was much
lower than the minimal number of Type II MADS-box genes
in the MRCA of seed plants. Our analysis of transcriptome
data reveals that gymnosperm MADS-box genes are expressed
in a great variety of tissues, indicating diverse roles of MADS-
box genes for the development of gymnosperms. Our study
is the first that provides a comprehensive overview about
MADS-box genes in conifers and thus will provide a framework
for future work on MADS-box genes in seed plants.
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