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Abstract

Purpose—Introduce a novel compressed sensing reconstruction method to accelerate proton 

resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) 

heating evaluation.

Methods—A compressed sensing approach that exploits sparsity of the complex difference 

between post-heating and baseline images is proposed to accelerate PRF temperature mapping. 

The method exploits the intra- and inter-image correlations to promote sparsity and remove shared 

aliasing artifacts. Validations were performed on simulations and retrospectively undersampled 

data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed 

techniques.

Results—The proposed complex difference constrained compressed sensing reconstruction 

method improved the reconstruction of smooth and local PRF temperature change images 

compared to various available reconstruction methods in a simulation study, a retrospective study 

with heating of a human forearm in vivo, and a retrospective study with heating of a sample of 

beef ex vivo .

Conclusion—Complex difference based compressed sensing with utilization of a fully-sampled 

baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be 

used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due 

to MRI, and may help facilitate and validate temperature-based methods for safety assurance.
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Introduction

In MRI, radiofrequency (RF) energy is applied to induce a detectable signal, while italso 

produces heating in biological tissues. To avoid adverse effects it is desirable to ensure that 

both the core body temperature and local temperature throughout the subject are carefully 

managed (1). Currently this is performed by monitoring the Specific energy Absorption Rate 

(SAR) averaged over the whole subject exposed to RF fields (whole-body SAR) and also 

estimating the maximum local SAR. Monitoring of the whole-body SAR can be 

accomplished fairly well with measurements of absorbed RF power and the mass of the 

subject (2). Estimates of maximum local SAR typically combine measures of power 

absorbed with a priori electric field distribution as calculated with standardized human 

models (3-5), which typically do not match the subject geometry perfectly, resulting in local 

SAR predictions that differ from reality (6-9).

With a variety of MRI techniques it is possible to achieve non-invasive measurement of 

temperature change (10). Among these methods, proton resonance frequency (PRF) shift 

thermography is often preferred for its high sensitivity and speed in tissues with high water 

content (11,12). PRF shift thermography is used routinely in monitoring of ablation 

procedures such as in MR-guided High Intensity Focused Ultrasound (MRgHIFU) (13), and 

has been used to evaluate small temperature changes due to MR-related RF heating in 

phantoms and in vivo (14-17).

Because PRF shift thermography has the potential to provide subject-specific information 

about RF heating and provides information more directly relevant to safety than current 

methods relying only on SAR, it is important to consider its potential utility in MR safety 

assurance. Although temperature increase due to MRI is expected to be a slower process 

than that due to ablation, the demands for high speed in assessing SAR-induced temperature 

increase may be greater than those in MRgHIFU for a variety of reasons. The sequence used 

to assess temperature increase must be interspersed with the imaging sequence being 

assessed without notably lengthening total imaging time. Also, unlike MRgHIFU, the 

location of peak heating is not likely to be known ahead of time, so it is necessary to cover a 

large volume of interest. All these must be accomplished while maintaining adequate 

sensitivity to much smaller temperature changes than ablation. Therefore, methods have 

been proposed recently to improve accelerated PRF thermography for potential real time RF 

safety feedback in phantoms and in vivo (18). A fast PRF imaging method could also 

improve the accuracy for 1) temperature based SAR quantification which has been used for 

transmit array safety testing (19) as well as to validate SAR simulation methods (20), and 

for 2) characterizing tissue thermal properties (21), which could in turn be used as 

calibration information for real-time temperature prediction (22).

Among many methods to accelerate PRF shift thermography and MRI in general, 

compressed sensing (CS) (23) is a promising, relatively new technique that exploits image 

compressibility/sparsity to reconstruct undersampled k-space data without notable loss of 

information. Successful application of CS requires image sparsity in a known space (e.g. 

finite differences, wavelets) and incoherence between the acquisition space and 

representation space. Incoherence between k-space and several sparsifying transforms can 
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be accomplished by using variable-density random undersampling of k-space, where the low 

spatial frequencies are fully-sampled and the undersampling factor increases with distance 

from the center(23). Moreover, CS can be combined with parallel imaging to increase the 

acceleration rate by exploiting joint sparsity in the multicoil image ensemble (24-26). 

Conventional CS framework based on minimization of the sum of magnitude values, 

however, may be inefficient for PRF temperature imaging, in which the main contrast is the 

difference of the phase.

Among CS methods proposed for PRF thermography, a temporally constrained 

reconstruction (“TCR”) method has shown good accuracy for PRF temperature 

reconstruction (27-29), with the assumption of temporally smooth evolution of complex MR 

image values. This method has been demonstrated to achieve improved spatial and temporal 

resolution for MR-guided HIFU ablation (29). However, this method may not be the most 

effective in constraining the local and smooth temperature features, which can be important 

for modest and diffusive heating due to RF electromagnetic fields. Another reconstruction 

method for general phase contrast imaging was proposed by constraining the individual 

magnitude and phase (30). This method also did not constrain terms related to PRF-induced 

phase change and thus could not fully exploit the same important temperature features for 

MRI induced heating. These two methods also do not utilize the baseline image for the 

iterative reconstruction, which could provide additional useful information. Finally, another 

model-based method was proposed to directly reconstruct PRF phase maps for thermal 

ablation by exploiting directly the local temperature phase sparsity (31). This method is 

novel in that it does not reconstruct individual MR images related to PRF. However, it may 

also be not suitable for spatially diffuse RF heating applications.

Here, a novel complex difference constrained CS reconstruction method for tracking MRI 

induced RF heating using PRF thermometry is proposed. It exploits both the spatial and 

temporal local and smooth temperature change through the complex difference from a fully-

sampled baseline image. The complex difference is shown to be a good approximation to 

PRF phase change, and with the use of a fully-sampled baseline image, the proposed method 

is shown to effectively exploit the inter- and intra- image correlations between the post-

heating and baseline PRF images. The proposed method is tested in a variety of 

circumstances demonstrating its robustness for volumetric coverage and temporal 

consistency.

Theory

Conventional and Previously-Published Reconstruction Methods

Since the temperature distribution from MRI-induced RF heating varies relatively smoothly 

through space, in principle low-resolution sampling schemes could be used to accelerate 

imaging. However, because most anatomical images contain complex anatomical structures, 

low-resolution sampling would result in Gibbs-ringing artifacts, and volume averaging with 

regions of low water content, adversely affecting the PRF signal.
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For PRF thermography and other phase contrast imaging methods, conventional CS can be 

implemented by separately reconstructing the undersampled k-space data of the baseline and 

post-heating images, as follows (23):

(Eq. 1)

where u and v are the MR image and its corresponding k-space data for either the baseline or 

post-heating images, E the Fourier encoding operator, TV the spatial/temporal total variation 

function commonly used in CS (25). Throughout this report, . The 

weighting coefficients, α1 and α2, are typically chosen as α1 = α2 = 1 in this study and will 

be discussed later.

By this method (“separated CS”), undersampling artifacts of the reconstructed PRF 

temperature change distribution can be partially removed. However, separated CS only 

exploits individual image correlations, not taking advantage of the strong correlations 

between images acquired before and after the temperature change. Moreover, the 

conventional formulation of CS exploits image sparsity by constraining the magnitude using 

an l1-norm approach, while in phase-contrast imaging, the important information resides in 

the phase change, which calls for reevaluating the formulation of the conventional CS 

approach to exploit smoothness or sparsity in the phase images.

Because seperated CS is not applicable for a time series, TCR was proposed based on the 

temporal smoothness of the complex image values(27):

(Eq. 2)

Here, ui and vi denote a time series of images and k-space data for PRF, that includes the 

baseline and post-heating acquisitions. The cost function used in this method does not 

exploit spatial temperature features which could further improve the reconstruction 

performance.

Proposed Complex Difference Constrained Compressed Sensing

A novel CS reconstruction method is proposed here based on three important facts that were 

not utilized in previously published methods. First, it is feasible with many PRF based 

applications to acquire a fully-sampled baseline image before a heating process has started. 

It is often the post-heating images (acquired during and after heating) that would benefit 

from rapid acquisition. Since mild temperature changes due to RF heating would result in 

minimal changes in image magnitude, and small changes in PRF phase (10), the post-

heating image would be quite similar to the baseline image in both magnitude and phase 

overall, and thus knowledge of the baseline image could greatly facilitate the iterative 

reconstruction process. Second, temperature changes either due to diffuse RF heating or 

ablation should not only be temporally smooth but also spatially smooth with piecewise 

local variations in accordance with the bioheat equation (32) considering tissue types 

normally have similar thermal conductivities. Finally, PRF phase changes due to 

temperature elevation can be well-approximated by complex differences based on 
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trigonometric principles, especially when the image magnitude and phase are generally close 

between baseline and post-heating images as discussed above. A CS reconstruction method 

designed with these novel features could result in better reconstruction accuracy than 

existing methods:

(Eq. 

3)

Here, ui are a series of post-heating images with their undersampled k-space data vi, and u0 

is the fully-sampled baseline image with v0i being the portion of the fully-sampled k-space 

data that shares the same k-space locations as vi. For input of a time series of ui, the TV 

operator performs an image-domain spatial-temporal finite complex difference operation 

(otherwise only the image-domain spatial finite complex difference would be performed). 

The l1 and TV penalties enforce sparsity and smoothness of the complex difference 

approximated PRF phase changes to improve reconstruction accuracy. Unless otherwise 

specified, the weighting coefficients were chosen as α1 = 1 and α2 = 1 in this study, for 

equal importance of local and smooth features of the target temperature distribution to be 

reconstructed.

A nonlinear conjugate gradient (CG) algorithm (23) was employed to solve the 

minimization problem given in Eq. 3. The undersampled complex difference image {ui′-u0′} 

reconstructed by zero-filled fast Fourier transform (FFT) from undersampled k-space data 

{vi-v0i} was used as the initial guess. For each CG iteration, {ui-u0} is reconstructed from 

{vi-v0i} based on the minimization as in Eq. 4. After that, the output {ui-u0} is summed with 

u0 to get ui. Then, the k-space of the estimated ui is updated with its already-collected data 

vi. The resulting image domain data ui is then used to calculate the initial guess for {ui-u0} 

for the next CG iteration. The number of CG iterations is set to 15 in this study which 

guaranteed convergence in all cases.

Methods

The proposed complex difference constrained CS method was evaluated in three scenarios: 

1) a simulation study based on a modified Shepp-Logan phantom, 2) a retrospective 

undersampling study with heating of a human forearm in vivo to evaluate volumetric 

coverage, and 3) a retrospective undersampling study with heating of a large sample of beef 

ex vivo to evaluate temporal consistency. Both experiments were performed on a Siemens 3 

Tesla Trio MRI system (Siemens AG, Health Sector, Erlangen, Germany). The human 

experiment was performed in compliance with institutional policies on human subject 

research and informed consent of the volunteer. Four oil phantoms were used in both 

experiments as references to remove unwanted gradient system phase drift by using 

polynomial fitting up to the first order (12,33,34). This phase drift correction was applied 

after all image reconstruction methods were performed. Fully sampled k-space data were 

acquired and retrospectively undersampled with variable-density Cartesian sampling 

patterns all generated based on published literature (23).
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To evaluate the effect of the proposed reconstruction method, temperature root-mean-square 

error (RMSE) was calculated as

To evaluate both global and peak temperature accuracy, masks are generated respectively by 

thresholding the baseline anatomical image for global temperature accuracy so that the 

phase change in the air is not included, and thresholding the fully-sampled PRF temperature 

change image (for regions having temperature change larger than 60% of the highest 

temperature change) for peak temperature accuracy.

For temperature based assessment of RF heating, it is desired to collect PRF images more 

often when the temperature is increasing more rapidly. Assuming a temperature increase ΔT 

for every high-SAR sequence duration Δtheating, with a PRF sequence with duration ΔtPRF 

applied (expecting ΔtPRF < < Δtheating) in each cycle, we propose to define a temporal 

resolution as follow for the reported results.

Simulation Study

As the first demonstration, a smooth phase shift distribution was applied to the Shepp-Logan 

phantom to simulate heating. The distribution was designed and scaled to maximum 

temperature changes of 1 °C and 3 °C, corresponding to about 5 degrees and 15 degrees of 

PRF phase change between the baseline (u0) and the post-heating (u) images respectively. 

Such relationships between temperature change and phase change is realistic for PRF 

thermography at 3T with a TE of 10 ms. The post-heating simulated image also had a 5% 

decrease in magnitude per degree of temperature increase (from u0 to u) in the heated 

region-of-interest (ROI) to represent any possible T1 increase due to heating (10). Complex 

noise corresponding to two different anatomic image SNR levels in the heated region (150 

for 1 °C max temperature increase, and 50 for 3 °C max temperature increase), were added 

to the baseline and post-heating images to evaluate the proposed CS reconstruction method 

for different combinations of heating and anatomic image SNR levels. Thus the two cases 

share the same PRF SNR level, defined as the maximum temperature increase multiplied by 

anatomic SNR, as consistent with ref 10. A variable-density undersampling mask with R=4 

reduction factor was applied to the k-space data. The undersampled baseline and post 

heating images were reconstructed with zero-filled FFT and are denoted as u0′ and u′. For 

evaluation of the proposed method, a low resolution undersampling mask that shared the 

same undersampling ratio as the previous variable-density undersampling mask was also 

applied to the fully-sampled k-space data, and the reconstruction result from both low 

resolution zero-filled FFT and separated CS were compared to the proposed “Complex 

Difference” result. RMSEs in the heated ROI were calculated by comparing the 
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reconstructed PRF temperature images against the fully-sampled gold standard with no noise 

added.

Retrospective Study on in vivo Human Forearm Heating

To evaluate volumetric coverage of the proposed complex difference constrained CS 

reconstruction method, a forearm of a human volunteer was heated using an in-house 

external RF coil inside an MRI system. This RF heating coil was a circular surface coil (8 

cm diameter, matched to 50 Ω, tuned to 153 MHz to minimize possible coupling to transmit 

or receive coils). It was built to provide localized and controllable heating to ensure safety to 

the human volunteer while mimicking high-SAR heating to be monitored in practice. It was 

positioned against the ventral side of the forearm (Fig. 1) inside a transmit-receive extremity 

coil used for imaging. A frequency synthesizer (PTS 200, PTS, MA, USA) and a manually-

adjustable RF power amplifier (LA200UELP, Kalmus, WA, USA) were used to heat the 

forearm for 2 minutes with 31.4 W power. The heating was monitored with PRF 

temperature imaging with fully-sampled Cartesian k-space datasets on 5 interleaved 2D 

slices acquired before and after the heating, with parameters 10 ms TE, 100 ms TR, 128 × 

128 matrix size, 160 × 160 mm2 FOV, 10 mm slice thickness, 10 mm spacing between the 

slices, 40° flip angle, and 1.5 kHz receiver BW, 4 averages for the baseline image, and 1 

average for the post-heating image. The proposed reconstruction method was applied to the 

dataset retrospectively undersampled with the same undersampling trajectory for all slices 

(R=4) in different Cartesian directions (U-D: Up-Down, L-R: Left-Right), and the fully-

sampled PRF temperature maps served as the gold standard.

Retrospective Study on ex vivo Beef Heating

To evaluate the temporal consistency of the proposed reconstruction method and to compare 

it with previously-published methods including “TCR” (27), a 6.8 kg beef roast was imaged 

for 12 time frames separated by 11 interspersed heating periods lasting one minute each. The 

first time frame served as the baseline image, and the remaining 11 frames were used to 

calculate 11 PRF temperature maps. The GRE imaging was performed with the MRI system 

body coil and 100 ms TR, 10 ms TE, 300 × 300 mm2 FOV, 128 × 128 matrix size, 1 axial 

slice with 8 mm thickness, 40° flip angle, and 1.5 kHz receiver BW. The heating for each 

heating period was applied using the system body coil with 1 min of a modified turbo spin 

echo sequence (70° flip angle hard pulse as the refocusing pulses with 15% duty cycle). To 

ensure a gold standard with adequate PRF temperature SNR to be collected, the images were 

acquired with 2 averages (short term). The proposed reconstruction method was applied to 

half of each dataset (no averaging) undersampled to simulate an acceleration factor of R = 3, 

and compared to the fully-sampled data from 2 averages. To maximize temporal sparsity for 

the proposed method, different undersampling patterns (in the left-right direction) were 

generated to undersample the k-space data for each time frame. The undersampled k-space 

data for each timeframe was reconstructed in two ways: 1) based on data from the current 

and previous time frames (denoted as “Previous”, practical for MRI RF safety monitoring), 

and 2) based on data from all 12 frames (denoted as “All”, practical for temperature 

characterization). The proposed complex difference constrained CS method was compared 

to low resolution imaging, separated CS, and TCR (Eq. 2). The global RMSEs of time 

frames #2~#12 with different reconstruction methods were recorded. The reconstruction 
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accuracy was also evaluated against a fiber optic temperature probe (AccuSens; OpSens, 

Quebec, Canada) inserted into the sample.

Finally, to demonstrate the effectiveness of each term in the proposed cost function in Eq. 4 

and to further compare the proposed complex difference method with TCR, the 

undersampled beef dataset was reconstructed with variations of the proposed method and 

TCR (essentially setting α1 and α2 to either 1 or 0). For variations of TCR, l1 and spatial TV 

of ui were added to the cost function in Eq. 2:

(Eq. 4)

Results

The results of the simulation study with a modified Shepp-Logan phantom are first shown in 

Fig. 2. The complex difference image {u-u0} is sparser than the individual images (standard 

Shepp-Logan image, not shown), as expected due to the fact that temperature does not vary 

abruptly. Both complex magnitude and phase difference images (|u′-u0′| and angle(u′/u0′)) 

given by the subtraction of undersampled baseline (u0′) from post-heating images (u′) 

contain less aliasing artifacts than would normally be expected from any individual 

undersampled magnitude or phase image (not shown). With the same data undersampling, 

the l1 norm of complex difference increased by only 3% (from {u-u0} to {u′-u0′}), compared 

to a 15% increase for individual post-heating image u (not shown). Even though a fully-

sampled baseline (u0) is available, using the undersampled baseline (u0′) rather than the 

fully-sampled baseline (u0) in these subtraction operations also greatly improved the 

accuracy with a much smaller increase in l1 norm, due to cancellation of aliasing artifacts 

from similar image features in the post-heating and baseline images. These important 

features demonstrate not only that l1-minimization based CS method can be used to 

reconstruct the target complex difference based on k-space difference, but also that a 

complex difference based CS method should outperform individual image based CS method 

(such as separated CS) due to the smaller l1 increase of complex difference than the 

individual post-heating image.

The effectiveness of the proposed reconstruction method on the simulation study is further 

demonstrated in Fig. 3. With different combinations of anatomic image SNR level and 

maximum temperature increase but the same PRF SNR, the proposed method showed very 

similar improvements in PRF image quality and RMSE over low resolution imaging with 

zero-filled FFT or separated CS.

The results of the in vivo human forearm heating experiment are shown in Fig. 4 and Fig. 5. 

The fully-sampled magnitude and phase images of both baseline (u0) and post-heating 

images (u) are first shown in Fig. 4(a), followed by absolute PRF phase change images (|

angle(u/u0)|), PRF temperature change images (PRF(u/u0)), complex difference magnitude 

images (|u-u0|), and the relative magnitude difference image (||u|-|u0|| / |u0|) as in Fig. 4(b). 

The complex difference magnitude images (|u-u0|) show very similar smooth and local 

features as the absolute PRF phase change images (|angle(u/u0)|) and PRF temperature 

Cao et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



change images (PRF(u/u0)), illustrating that the proposed complex difference based CS 

method is able to constrain PRF temperature related features. The magnitude difference in 

percent ratio image shows that changes of image magnitudes can be found with the changes 

of in vivo temperature in this study. It should be noted that the anatomic SNR of the forearm 

in the post-heating image is about 55, and thus the peak PRF SNR of this study is generally 

smaller than 385.

The robustness of the proposed method on different 2D imaging slices with a variety of 

temperature change patterns is demonstrated in Fig. 5. For almost all cases, the proposed 

method shows markedly improved temperature features (indicated with arrows) compared to 

low resolution with zero-filled FFT as well as separated CS. The temporal resolution would 

be improved from about 1.83 s/°C to 0.46 s/°C with R = 4 undersampling with the proposed 

method. The only exception found is with undersampling in the U-D direction for slice 5, 

where the proposed method is not as clearly advantageous. This is probably because the 

peak temperature increase was located at the skin, separated by PRF-insensitive fat from the 

muscle, and such local PRF phase change of the skin was severely corrupted by the fat when 

undersampled in the U-D direction. Therefore, care should be taken when using this method 

to monitor RF heating at the skin. However, equally poor performance was also found for 

separated CS and low resolution imaging which could also be affected by fat, and the 

proposed method shows overall better guarantee for accuracy of the proposed method over 

the other two methods.

For the ex vivo beef heating study, the magnitude image is shown in Fig. 6 with the location 

of the inserted temperature probe. The reconstruction accuracy and robustness of the 

proposed method are demonstrated in Fig. 7 and Table 1. Generally, the proposed method 

achieved good accuracy for all frames of the dataset, demonstrating its potential usage in 

temperature monitoring and heating characterization due to RF pulses. As shown in Table 1, 

the result from the proposed reconstruction method is significantly better than other existing 

methods such as separated CS and TCR. These results show that, in practice, a lengthening 

of about 21% of original MR scan time due to additional PRF based RF heating monitoring 

would be reduced to about 7%, if this reconstruction method is used. The temporal 

resolution would be improved from about 1.83 s/°C to 0.6 s/°C with R=3 undersampling. It 

should be emphasized that the dataset was collected with the system body coil having 

limited anatomic SNR (about 40 for 1 average, and thus the peak PRF SNR of this dataset 

ranged from 60 of the 3rd timeframe to 280 of the 7th timeframe). The method should 

achieve better reconstruction accuracy when monitoring temperature increase with more 

closely-fitting receive coils. The temporal consistency is further validated with the 

temperature probe reading shown in Fig 8. Temperature measurement by fully-sampled PRF 

images achieved very good agreement with the temperature probe reading, especially at 

large temperature increase and PRF SNR. This validated the accuracy of our correction 

method for system phase drift to monitor subtle heating. The undersampled PRF temperature 

readings reconstructed with the proposed method achieved excellent fidelity with the fully-

sampled PRF temperature readings, demonstrating again its robustness for temporal 

consistency.
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Finally, the proposed reconstruction method is compared with the TCR method on the beef 

dataset with their different variations, as shown in Fig. 9. These results show clear 

improvement in reconstruction accuracy of the proposed method compared to all variations 

of TCR. It should be noted, that because TVtemporal(ui) = TVtemporal(ui – u0), the 

improvement in reconstruction accuracy in the left column demonstrates the effectiveness by 

using a fully-sampled baseline image to efficiently exploit sparsity between baseline and 

post-heating PRF images. From the left to the middle column, the effect of the proposed 

method in exploiting spatially smooth temperature features with the inclusion of the 

TVspatial (ui – u0) term is clearly shown. Also, because the spatial temperature increase is 

predominantly smooth for this dataset, it is expected the inclusion of the complex difference 

l1 term would yield little effect.

Discussion

In this work, we propose, validate, and demonstrate a complex difference constrained CS 

reconstruction method, for mapping MRI-induced RF heating effects with PRF thermometry 

by reconstructing the PRF temperature change with constraints on the complex difference 

from a fully-sampled baseline image. The proposed formalism should provide improved 

acceleration in situations where the expected temperature is either smooth, local or a 

combination of both. The effectiveness of the proposed complex difference constrained 

method is demonstrated in a variety of cases by comparing it with classic and similar 

existing CS methods for both volumetric coverage and temporal consistency.

Although the TCR algorithm could also be viewed as constraining the complex difference 

(although only between adjacent time frames), there are major conceptual differences 

between the proposed formalisms and TCR. The formalism we propose utilizes a more 

direct relationship between “PRF temperature” (approximated by complex difference) and 

the collected k-space data. This encoding relationship has been demonstrated to be highly 

compressible and efficient in promoting sparsity (Fig 2). Utilization of complex difference 

based cost functions is also shown to be more capable in directly constraining the smooth 

and local features of the target temperature maps than TCR (Fig. 4, 7 and 9). Although |u-u0| 

shows similar smooth and local features as the target PRF temperature map, it cannot be 

directly converted to the accurate PRF image, and therefore there is need to further 

reconstruct u, which becomes possible with the availability of the baseline image u0. These 

important features together are shown to be effective for improving volumetric coverage and 

temporal resolution for temperature measurement. Fortuitously, the method is also expected 

to reduce off-resonance induced image distortion artifacts of fast EPI-based PRF 

thermometry methods (18) proposed to accomplish similar goals for temperature based RF 

safety assurance as our work.

It should be noted that although the proposed method is completely different in design 

principle compared to TCR, they share similar formalism and thus several aspects of the 

proposed complex difference constrained method not fully evaluated here can be expected to 

be very similar to TCR. These include determination for optimal number of CG iterations 

and optimal weighting coefficients for each terms of the cost function. However, these are 

general issues of the CS formalism (23), and we have tested the method with the same set of 
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parameters and found them robust for all the datasets. Finally, it is expected that the 

proposed method can be combined with parallel imaging for further acceleration if large 

volumetric coverage is needed (24). Parallel imaging may also help decrease the scanning 

time of the baseline image.

It should also be pointed out that complex difference approximated PRF phase shift could be 

weighted by tissue anatomical features and RF coil field inhomogeneities, especially when 

the heating pattern is vastly diffusive, and a large RF coil is used for transmission or 

reception. Based on the ex vivo heating dataset, the proposed method still out-performed 

other existing methods. Although a phase difference constrained approach could potentially 

exploit smooth temperature features more uniquely without other anatomical or coil field 

weightings, direct constraint of PRF phase shift may be challenged by phase wrapping, non-

linear relationship between phase and collected k-space data, and temperature related 

magnitude changes. We believe this work has laid out a good foundation to explore and 

compare possible phase difference constrained methods in the future.

Another potential limitation of the proposed method for temperature based RF heating 

evaluation is that it is based on conventional PRF implementation, which requires baseline 

images be collected, and would thus be generally sensitive to motion. However, for 

valuation of mild temperature changes due to MRI induced RF heating, baseline images are 

indispensible for phase drift correction. We have demonstrated the utility of this approach in 

realistic situations and saw no detrimental effects from slight motion (in vivo forearm 

heating) and the phase correction was shown to be successful over a long heating period (ex 

vivo beef heating). Application of the method to the torso may present challenges due to 

motion that warrants further investigation. Motion effects could perhaps be corrected by co-

registration, or utilization of a library of baseline images collected from a full physiology 

cycle with the aid of triggering and navigation (35).

Conclusion

In this work, we propose a novel CS reconstruction method for PRF temperature mapping 

based on the complex difference between the post-heating and baseline images. 

Representation in complex difference space increases sparsity and removes shared aliasing 

artifacts, which enables higher accelerations than existing methods as demonstrated in 

simulations, ex vivo, and in vivo experiments. The method is quite general that its 

application may not be restricted to mild heating and could provide rapid temperature 

feedback in ensuring RF safety for high field MRI scanners.
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Figure 1. 
RF heating coil placed against the forearm of a volunteer. The locations of five imaged 

slices are labeled with indexes and black lines.
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Figure 2. 
Complex difference magnitude (top row) and phase difference (bottom row) of the baseline 

(u0) and post-heating (u) images by simulation. Undersampled images are denoted with ′. 

The l1 norms of each magnitude images are listed, with 3% increase from {u-u0} to {u′-u0′}, 

compared to 15% increase from u to u′ (not shown). All magnitude images are shown on the 

same color scale.

Cao et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Reconstructed PRF images and corresponding spatial reconstruction errors with different 

combinations of max temperature increase and image SNRs (same PRF SNRs) and various 

reconstruction methods, with RMSEs in the heated ROI listed on the lower right of each 

reconstructed image.
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Figure 4. 
(a) Fully-sampled magnitude and phase of the post-heating and baseline images, and (b) 

their corresponding absolute phase change images, PRF temperature change images, 

complex difference magnitude images, and magnitude difference ratio images (in percent), 

all from the multi-slice in vivo forearm heating study. The slight-motion-induced mis-

registration artifacts are denoted with white arrows.
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Figure 5. 
Reconstruction results from undersampled k-space dataset for in vivo human forearm 

heating. Results here demonstrate improved accuracy and volumetric robustness of the 

proposed method by using different undersampling directions (Left-Right and Up-Down) of 

the same Cartesian trajectory and different reconstruction methods on all five imaged slices. 

Visible differences from fully-sampled case are denoted with white arrows. The RMSEs are 

shown below each error images for peak temperature error and global temperature error 

(peak / global). These slices correspond to slices 1~5 in Fig. 4.
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Figure 6. 
Anatomic image from the beef heating study. Black arrow shows the location where a fiber 

optic temperature probe was inserted.
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Figure 7. 
Reconstructed PRF images with different reconstruction methods from the 12-frame time 

series. For TCR and Complex Difference, reconstructions using only current and previous 

time frames (denoted as “Previous”) and using all time frames (denoted as “All”) are 

reported.
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Figure 8. 
Evaluation of temporal consistency of the proposed reconstruction method by comparing 

temperature probe readings with PRF based temperature change values at the location of 

probe insertion reconstructed with fully-sampled data with 2 averages, fully-sampled data 

with 1 average, and undersampled data reconstructed by the proposed method with 1 

average and R=3. Using the probe reading as the gold standard, the RMSEs of the three 

cases are respectively, 8.1%, 8.1%, and 7.8%.
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Figure 9. 
Reconstructed temperature change maps and corresponding RMSE for variations of the 

proposed method and TCR from time frame 11.

Cao et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cao et al. Page 23

Table 1

Global RMSEs of the reconstructed PRF images of different time frames from the 12- frame time series. For 

TCR and Complex Difference, RMSEs for reconstructions using only current time frame (denoted as 

“Single”), current and previous time frames (denoted as “Previous”), and using all time frames (denoted as 

“All”) are reported.

Time Frame R=1 (1 Average) R=3, Low Resolution R=3, Separated CS R=3, TCR R=3, Complex Difference

Previous All Single Previous All

#2 43% 69% 92% 83% 93% 57% 57% 57%

#3 28% 47% 56% 61% 64% 41% 40% 40%

#4 21% 33% 42% 45% 48% 32% 30% 29%

#5 16% 30% 35% 38% 41% 26% 25% 23%

#6 13% 26% 27% 35% 35% 23% 22% 21%

#7 11% 26% 26% 33% 31% 21% 20% 19%

#8 10% 26% 23% 29% 28% 20% 18% 17%

#9 8.7% 24% 23% 26% 26% 20% 17% 16%

#10 7.5% 24% 23% 25% 23% 17% 16% 15%

#11 6.6% 24% 20% 23% 23% 18% 15% 14%

#12 6.5% 24% 19% 22% 22% 17% 14% 14%
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