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Abstract

In this paper, we propose a new method for simultaneously segmenting brain scans of glioma 

patients and registering these scans to a normal atlas. Performing joint segmentation and 

registration for brain tumors is very challenging when tumors include multifocal masses and have 

complex shapes with heterogeneous textures. Our approach grows tumors for each mass from 

multiple seed points using a tumor growth model and modifies a normal atlas into one with tumors 

and edema using the combined results of grown tumors. We also generate a tumor shape prior via 

the random walk with restart, utilizing multiple tumor seeds as initial foreground information. We 

then incorporate this shape prior into an EM framework which estimates the mapping between the 

modified atlas and the scans, posteriors for each tissue labels, and the tumor growth model 

parameters. We apply our method to the BRATS 2013 leaderboard dataset to evaluate 

segmentation performance. Our method shows the best performance among all participants.

1 Introduction

Gliomas are the most common primary brain tumors that arise within the brain parenchyma. 

They are commonly categorized according to their malignancies, from low-grade to high-

grade, but nearly all low-grade gliomas eventually progress to high-grade malignancy [8]. 

Glioblastoma is the most malignant form of gliomas and has median survival rates of 12-18 

months. The standard treatment includes partial or complete resection, chemotherapy, and 

radiation therapy [14]. Accurate delineation of glioma and edematous parenchyma is helpful 

for treatment planning and progression monitoring. However, the segmentation of brain 

gliomas is a challenging task of critical importance in medical image analysis, due to the 

complex shape and heterogeneous textures of such tumors. Moreover, multifocal gliomas, 

having 8-10% incidence among gliomas [1], are even more difficult to segment especially 

for methods assuming a single-focal mass.

To perform this challenging task, many techniques have been proposed. They can be 

predominantly classified as either discriminative or generative models [10]. Discriminative 

models extract image features for each voxel and train classifiers using these features guided 

by annotated training data [15, 16]. As these models directly learn classifiers from image 

features, they do not require domain-specific knowledge and can concentrate on the specific 

features relevant to the segmentation. However, their segmentation is restricted to images 

from the same protocol as the training data, since these models are often carefully fitted to 
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the training data. Generative models incorporate prior information about the appearance and 

spatial distribution for each tissue type [2, 12]. For the prior information, the appearance of 

tumor and edema are modeled as outliers to the healthy tissue, or tumor growth models are 

used for localizing tumor structures. However, designing effective prior models requires 

significant efforts and the performance is limited by the range of domain-specific knowledge 

employed.

In this paper, we propose a new method for joint segmentation and registration (JSR) of 

brain gliomas. In order to generate a patient-specific atlas, our method grows tumors on the 

atlas, with parameters estimated at the same time, and registers the scans to this atlas to infer 

the segmentation. Differently from the previous JSR framework of [2], we also allow 

multiple tumor seed points to segment multifocal gliomas. For our method, tumors are 

grown on each seed using a tumor growth model and combined into the single tumor 

probability map. Also, we incorporate a tumor shape prior into the framework by 

introducing an empirical Bayes model [11]. The tumor shape prior is estimated by the 

random walk with restart [5] using tumor seeds as initial foreground information, which 

helps the framework to find accurate tumor shapes for di cult cases. Since this shape prior 

can be considered as another generative model, in principle, our method systematically 

combines two kinds of generative models. In the rest of this paper, we describe the atlas 

generation method for multifocal tumors in Sec. 2 and our JSR framework with shape prior 

using this atlas in Sec. 3. In Sec. 4, we present our quantitative and qualitative evaluations 

and conclude the paper in Sec. 5.

2 Atlas Generation for Multifocal Gliomas

In this section, we use a tumor growth model to embed multifocal masses in an atlas of a 

healthy population. We denote by  the label map and by t the possible tissue type. Then 

we denote by ‘ ’ the tissue type being t at voxel x, namely ‘ ’. The atlas pA is 

defined as a set of probability maps  for white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF), i.e. t ∈ {WM,GM,CSF}, obtained by averaging aligned 

segmentations of healthy brains. We adapt the atlas to the subject space by simulating the 

tumor growth via the diffusion-reaction-advection model of [3].

Unlike most previous methods assuming only a single mass, such as [2], we allow multiple 

tumor seeds and grow tumors for each given seed location. We then merge each result into 

the single spatial probability map of tumor (TU). If we assume the subject shows M tumors, 

then each tumor i ∈ {1, … , M} is characterized by seed location oi, its size ri, and other 

shared tumor parameters including the diffusion coefficient for white matter DWM and the 

proliferation coefficient p1. Therefore, each tumor growth is completely defined by the 

parameters qi ≜ {oi, ri, DWM, p1}, and the tumor probability di and its associated 

deformation (mass effect) ui are obtained. We also define q as the set of all tumor 

parameters q = {q1, … , qM}. The merged tumor probability  and mass effect 

u(x) at voxel x are simply defined as the sum of each estimation, that is, 

 and . We then construct spatial 
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probability maps for GM and CSF (t ∈ {GM, CSF}) by deforming the atlas via the mass 

effect u and weighting them with the complement of :

(1)

For the spatial probability map for edema (ED), we model the close proximity of edema to 

tumor via the Heaviside function H(·) (H(a) = 0 for a ≤ 0 and H(a) = 1 for a > 0) resulting in

(2)

where we multiply 0.5 to avoid preference of edema over WM. The spatial probability for 

WM is defined by the complement of spatial probability maps of the other tissue types:

(3)

After growing tumors on the atlas, a set of tissue type Θ is now defined as {TU, ED, WM, 

GM, CSF}. A sample set of the spatial probabilities is shown in Fig. 1 (c)-(f). These spatial 

probabilities are modified from the atlas shown in Fig. 1 (h)-(i) using the tumor growth 

model.

3 Joint Segmentation-Registration with Shape Prior

Having defined the spatial probabilities , we now describe our JSR framework 

using the atlas we constructed in the previous section as well as shape priors for tumor. The 

parameters of our JSR framework include the tumor parameters q, the mapping h from the 

subject space Ω to the atlas space, and the tissue specific means and covariances Φ. We then 

find optimal parameters by solving the following problem:

(4)

where Y consists of the subject images,  is the aligned atlas 

obtained by warping the tumor grown atlas  via h, and  is the image 

likelihood defined as the multivariate Gaussian for Φ. p(q, h∣η*, x) is the prior function for 

{q, h} to be used as part of an empirical Bayes approach [11], and we assume the 

probability distribution of hyperparameters η given Y , i.e. p(η∣Y), is sharply peaked at. For 

this prior function, we assume deformed atlas for tumor  tends to match the 

tumor shape prior  as follows

(5)

where Z is a normalization constant and λ is a parameter controlling the weight of the shape 

prior on this function. If λ = 0, our problem turns into the JSR problem of [2] when a single 

tumor seed is used. The tumor shape prior  is inferred directly from images 

utilizing tumor seed locations using the random walk with restart (RWR) [5]. This method is 

suitable for estimating heterogeneous tumor regions as it showed strong performance in 
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finding weak boundaries and separating textures in cluttered scenes. Now, we briefly 

describe the RWR method.

Given subject images Y, let us construct an undirected graph  with nodes 

and edges . We assume G is defined on 26-connected neighborhoods. For each edge 

eij, we assign the weight wij which measures the likelihood for having the same label 

between node vi and vj:

(6)

where yi is a multi-modal intensity vector for node vi and σ is a constant for normalizing 

intensity differences. Then we define the adjacency matrix W = [wij]N×N, the degree matrix 

D = diag(D1, … ,DN) with , and the transition matrix P = D−1 × W. We also 

define  as starting locations of the random walker where  if vi is within 

distance s from tumor seed points and  otherwise. The random walker iteratively steps 

to a neighboring location with the probability proportional to the edge weight. Also, it has a 

restarting probability c to return to the seed points. Our shape prior for tumors is calculated 

as the steady-state probability of the random walker for the transition matrix P:

(7)

where xi is a location of a node vi. In Fig. 1 (g), we show the tumor shape prior obtained 

using (7) on the subject scan shown in (a)-(b). This shape prior shows high probability 

values in the tumor region.

Returning to the JSR problem (4), we obtain q*, h*, and Φ* via an implementation of the 

Expectation Maximization (EM) algorithm [13]. The EM algorithm iteratively determines 

the solution by computing the posterior

(8)

in the E-Step and updating the parameters in the M-Step by sequentially maximizing the 

following cost function

(9)

In detail, Φ’ is obtained from arg maxΦ Q{(q’, h’, Φ’)} using a closed form of [7] and h’ is 

obtained from arg maxh Q{(q’, h, Φ’); (q’, h’, Φ’)} which iteratively can be solved as in [2]. 

For updating q, we maximize Q(q, h’, Φ’); (q’, h’, Φ’)} using a derivative-free pattern 

search library [4] as there {exists no analytical expression for the derivatives of this function 

with respect to q. We iterate E-Step and M-Step until convergence is achieved. After 

convergence, we assign {q’, h’, Φ’} to {q*, h*, Φ*}, respectively. We show aligned spatial 

probabilities in Fig. 1 (j)-(m) optimized via the EM algorithm. These spatial probabilities 
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and the tumor posterior (computed using (8)) shown in (n) now fit well to healthy tissue and 

pathological regions shown in (a)-(b).

4 Experiments

Our method is semi-automatic and requires minimal user inputs including seed point and 

radius for each tumor to initialize q and one sample point for each tissue class to initialize 

means of Φ. For preprocessing, we co-registered all four modalities (T1, T1-CE, T2, and 

FLAIR), corrected MR field inhomogeneity, and scaled intensities to fit [0, 255]. We solved 

the tumor growth model on a lattice of 64×64×64 nodes for efficiency reasons. To 

differentiate enhancing tumor (ET) and others (NT) including necrosis and non-enhancing 

core within tumor regions, we assume all sub-structures of tumor are equally probable, i.e. 

. In experiments, we substitute TU in Θ as 

{ET, NT}. To find best λ in (5), we measured Dice scores for the tumor core region over λ ∈ 

[0, 60] using the training data consisting of 10 subjects having manual segmentations. As 

shown in Fig. 2, Dice scores were not significantly different on λ ∈ [10, 60] (p > 0.1 using 

the Wilcoxon signed-rank test) and we chose λ = 40 for all experiments. For the shape prior 

in (7), we used c = 0.0004 as suggested by [5], s = 5mm, and σ = maxij{∥yi − yj∥
2}/60.

We tested our method to the BRATS 2013 leaderboard data via the BRATS online tools [9]. 

The leaderboard data set is the main data set used for comparing results of participants of 

BRATS [10] and it consists of 21 high-grade and 4 low-grade glioma subjects. When 

segmentation results are uploaded to the online tools the performance is measured using 

manual segmentation labels which are not available for download. The performance 

measures include Dice scores, positive predictive value (PPV), and sensitivity for three 

interest regions: whole (complete abnormal regions including tumor and edema), core 

(tumor regions), and active (enhancing regions of tumor). The top 4 results among 16 

participants excerpted from [9] are shown in Table 1. Zhao and Guo used generative models 

based on a learned MRF model on supervoxel clusters and active contours with manual 

initializations, respectively. Tustison used a discriminative model based on the decision 

forest [16]. Note that Tustison and Zhao are fully-automatic methods and might therefore be 

at a disadvantage in this comparisons. The details of performance measures and participants’ 

methods are described in [10]. Our method (Kwon) performed best among all participants 

and showed highest average ranks for all regions. The score gap with respect to other 

participants for the core region is bigger than those of the other regions, which means our 

method performed especially well for segmenting core regions. The average running time of 

our method was 85 min on an Intel Core i7 3.4 GHz machine with Windows operating 

system. Considering it usually takes under 10 min for the user input, the total running time is 

comparable to Tustison [10].

In Fig. 3, segmentation and registration results from our method are displayed. The spatial 

probabilities aligned to the scan in (d)-(g) show that they fit well to the scan. The tumor 

shape priors in (h) help to align spatial probabilities for tumor as they initially estimate 

tumor regions reasonably well. However, our method also showed robust estimation of 

tumor regions when the shape prior leaked into nearby regions as indicated by arrow in the 

fourth row of (h). The spatial probabilities for tumor were not expanded to this leaked region 
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as the image likelihood for tumor kept lower values than those of healthy tissues on this 

region during the EM iterations. As a result, segmentations in (c) show visually reasonable 

tissue estimation especially for ET, NT, and ED regions.

5 Conclusion

In this paper, we proposed a new joint segmentation and registration method for multifocal 

glioma images. This method allows multiple tumor seed points to grow each focal mass and 

combines them to single tumor density for modifying a normal atlas into one with tumors 

and edema. To perform robustly on tumors having complex shapes and heterogeneous 

textures, we incorporate a tumor shape prior directly estimated from images into our 

framework. We then find the optimal solution via the EM algorithm. Our method was 

evaluated on the BRATS 2013 leaderboard data set and showed the best performance among 

all participants. Although we only quantitatively validated our segmentation results, our 

method also produces mappings between a normal atlas and subject scan and simultaneously 

estimates tumor parameters. These additional results of our method could be used for 

understanding brain tumor development and for the development of location-based 

biomarkers. We also expect that our method could improve the registration of pre-operative 

and post-recurrence brain scans for multifocal gliomas [6].
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Fig. 1. 
An example of spatial probabilities for multifocal glioma. We show subject scans in (a)-(b), 

normal atlas in (h)-(i), spatial probabilities  obtained by growing tumors on 

normal atlas in (c)-(f), tumor shape prior in (g), spatial probabilities  aligned to 

the scan in (j)-(m), and tumor posterior  in (n).

Kwon et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 October 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Box plots of Dice score (core) for varying λ ∈ [0, 60]
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Fig. 3. 
Segmentation and registration results for 6 subjects selected from the BRATS 2013 

leaderboard data set. The top 4 rows show a single-focal glioma and bottom 2 rows show 

multi-focal gliomas. We show subject images in (a)-(b), segmentation results in (c) 

(indicating ET, NT, ED, WM, GM, and CSF in blue, red, cyan, white, gray, and yellow 

colors, respectively), spatial probabilities  in (d)-(g), and tumor shape priors in 

(h).
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