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Abstract

Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high 

levels of vaccination against the etiological agent, Bordetella pertussis. In this Review, we 

describe the pathogenesis of this disease, with a focus on recent mechanistic insights into 

virulence factor function. We also discuss the changing epidemiology of pertussis and the 

challenges of vaccine development. Despite decades of research, many aspects of B. pertussis 
physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must 

be addressed to develop improved vaccines and therapeutic strategies.

Pertussis is a highly contagious respiratory disease that is transmitted directly from human to 

human1, most likely via aerosolized respiratory droplets. The primary causative agent, 

Bordetella pertussis, is a Gram-negative bacterium that was first described by Bordet and 

Gengou in 1906 2. The closely related bacterium Bordetella parapertussisHu is responsible 

for a minority of cases (approximately 14%) and is less capable of causing severe disease3. 

Both B. pertussis and B. parapertussisHu are human-specific, and phylogenetic analyses 

indicate that they evolved from Bordetella bronchiseptica or a B. bronchiseptica-like 

ancestor4, 5 (Box 1). B. bronchiseptica infects a broad range of mammals, including humans, 

and although it can cause overt disease such as kennel cough in dogs and atrophic rhinitis in 

pigs, it typically colonizes its hosts chronically and asymptomatically6. Despite differences 

in host range and disease-causing propensity, B. pertussis, B. parapertussisHu and B. 
bronchiseptica are so closely related that they are now considered subspecies. Together, 

these organisms provide a paradigm for understanding bacterial adaptation to humans and 
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the dichotomy between acute disease and chronic asymptomatic infection4, 5. Although 

other Bordetella species have been isolated from humans, they seem to be primarily 

opportunistic human pathogens.

Box 1

Bordetella phylogenomics

The Bordetella genus includes nine species and the “classical” or “mammalian” 

bordetellae (B. pertussis, B. parapertussisHu and B. bronchiseptica) are the most 

important species in the context of mammalian infection. Comparative analyses of their 

genomes have been informative on at least two levels. The first involves comparisons 

between subspecies, which has revealed intriguing clues regarding mechanisms of host 

adaptation and virulence evolution; and the second involves studies of the population 

dynamics of B. pertussis in the context of recent outbreaks and the possibility of vaccine-

driven evolution.

Early studies revealed limited genetic diversity between isolates, arguing that the 

classical bordetellae should be regarded as closely related subspecies and that B. 
pertussis and B. parapertussisHuevolved independently from different B. bronchiseptica-

like ancestors172, 173. This hypothesis suggested that B. bronchiseptica, a zoonotic 

generalist, has the propensity to give rise to host-restricted specialists that cause acute 

disease. Whole genome sequence comparisons support this idea and show that the 

transition by B. pertussis and B. parapertussisHu to the human-restricted niche was 

accompanied by large-scale gene loss, an accumulation of pseudogenes and an expansion 

of IS elements174, 175. Based on this framework, a seminal study characterized a set of 

132 Bordetella isolates from diverse mammalian hosts using a combination of multilocus 

sequence typing, comparative whole-genome microarray analysis and IS typing4. Four 

distinct complexes comprised of related strains were resolved, representing B. pertussis 
(complex II), B. parapertussisHu (complex III) and two distinct B. bronchiseptica 
complexes (I, IV) (see the figure). Surprisingly, although B. bronchiseptica complex I 

isolates were primarily of animal origin (68%), 80% of B. bronchiseptica complex IV 

strains were from humans that had whooping cough-like symptoms. Notwithstanding the 

fact that human isolates were overrepresented in the collection, the clustering of B. 
bronchiseptica strains isolated from humans into a genetically related group was 

intriguing. A follow-up study based on whole-genome sequencing suggested that B. 
pertussis evolved from a B. bronchiseptica complex IV-like ancestor5. These 

observations illustrate the evolutionary dynamics of Bordetella subspecies and raise the 

question of whether complex IV B. bronchiseptica are on a path towards human 

adaptation.

At the other end of the evolutionary spectrum, the resurgence of pertussis has prompted 

numerous efforts to characterize polymorphisms in B. pertussis populations in a search 

for correlations with the introduction of aP vaccines. Although numerous shifts in allelic 

frequencies have been documented in different countries since the vaccines were 

introduced176, 177, a comprehensive analysis of isolates from the United States shows that 

the majority of these polymorphisms predate the wP to aP transition and are not the result 
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of aP-driven selection178. Nonetheless, currently circulating strains in the Americas, 

Asia, Australia and Europe carry a single nucleotide substitution in the PT promoter (the 

ptxP3 allele) that confers a slight (ca. 1.6 fold) increase in PT production compared to the 

previously dominant allele179. ptxP3 strains were present before aP vaccines, but given 

the roles of PT in immunosuppression it has been suggested that their expansion and 

apparent fixation reflects a selective advantage for establishing infection in partially 

immune hosts, regardless of the source of immunity180. Cause and effect is unclear, as is 

the likelihood that such a small difference in PT expression could have such a major 

effect. One of the difficulties in interpreting these studies is their reliance on allelic 

variability in small subsets of genes, raising the possibility that “hitchhiker” mutations 

located elsewhere in the genome are responsible for apparent clonal shifts177. It is 

essential that these analyses continue, but they need to be based on whole genome 

sequences and appropriate sampling of circulating and reference strains.

In the pre-vaccine era, pertussis was widespread and mainly affected young children (1–9 

years old)7. The classical manifestation of the disease, which typically occurs in this age 

group, is characterized by three phases: catarrhal, paroxysmal, and convalescent8. Clinical 

observations combined with results from studies using animal models (Box 2) suggest that 

classical pertussis is initiated by adherence of bacteria to ciliated respiratory epithelium in 

the nasopharynx and trachea9, 10. Adherent bacteria survive innate host defences, such as 

mucociliary clearance and the action of antimicrobial peptides, multiply locally and resist 

elimination by inflammatory cells. Symptoms during this catarrhal phase are similar to those 

of many upper respiratory infections, including the common cold. After one to two weeks, 

the disease progresses to the paroxysmal phase, which can persist from one to ten weeks and 

is characterized by periods of normal airway function interspersed with multiple severe 

spasmodic coughing fits, followed by characteristic inspiratory whoops and often emesis. 

The onset of adaptive immunity correlates with bacterial clearance but not with the cessation 

of symptoms, which typically decline gradually over another month but can persist for much 

longer (the convalescent phase)8. In infants (< 1 year old), pertussis can take a more serious 

course with bacteria disseminating into the lungs causing necrotizing bronchiolitis, intra-

alveolar hemorrhage and fibrinous edema10. In severe cases, extreme lymphocytosis occurs, 

which is positively correlated with intractable pulmonary hypertension, respiratory failure 

and death10.

Box 2

Animal models

One of the greatest challenges in studying the pathogenesis of pertussis has been the 

development of animal models that accurately reflect human disease as the most 

commonly used laboratory animals do not cough and none of them are natural hosts for 

B. pertussis. Nonetheless, the availability of wild-type, knock-out and transgenic mouse 

strains, as well as a plethora of murine-specific reagents, have made mice attractive and 

commonly used model organisms. To establish infection in mice, high numbers of B. 
pertussis must be delivered directly to the lungs, where they multiply for the first week or 

so post-inoculation and are eventually cleared. Although murine models do not mimic 
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classical whooping cough, they have provided insight into the importance of several 

virulence factors, the roles of various host immune responses in controlling infection and 

the potential efficacy of vaccines (as outlined in the main text).

Suckling pigs have been used to model infant pertussis and intrapulmonary inoculation 

with B. pertussis results in low-grade fever, mild cough, hypoglycemia, lymphocytosis, 

weight loss and pneumonia181. In this model, passively transferred immunity provides 

protection for newborn piglets upon challenge182, supporting the recently instituted 

policy of maternal immunization during pregnancy183, 184. Studies with infant and adult 

pigs have also revealed that B. pertussis is susceptible to host antimicrobial peptides, 

whereas B. bronchiseptica and B. parapertussisHu are resistant 185.

The most recent and exciting advance in modelling human pertussis is the development 

of a baboon (Papio anubis) model186. Delivery of B. pertussis to the nasopharynx of 

weanling baboons results in low-grade fever, paroxysmal coughing, lymphocytosis, 

robust production of anti-PT antibodies and protection from subsequent challenge, all of 

which are manifestations of pertussis in humans186. A unique advantage of this model is 

the ability to study transmission, which was demonstrated to occur by contact and via 

aerosols187. Importantly, a recent study showed that aP vaccination provided protection 

against the development of disease symptoms but not against colonization or 

transmission165, which suggests that nonsymptomatic individuals might be capable of 

transmitting the infection to unprotected infants. Use of this model to investigate 

mechanisms of transmission and disease will be crucial for the development of new 

vaccines and therapeutics.

Rodents, rabbits, and swine are not natural hosts for B. pertussis or B. parapertussisHu; 

however, they are commonly infected with B. bronchiseptica in nature. This fact, in 

combination with the close phylogenetic relationships between these subspecies (Box 1) 

and the conservation of many known virulence factors among them, has prompted 

several groups to use B. bronchiseptica infection of natural hosts to study features of 

pathogenesis that are common to B. pertussis and B. parapertussisHu. Studying B. 
bronchiseptica pathogenesis is also of veterinary and clinical importance, as B. 
bronchiseptica is a common pathogen of domestic animals188, 189 and occasionally 

causes disease in humans190. These models have revealed roles for several conserved 

virulence determinants and regulatory factors (see main text), and have also shown that 

several factors are functionally interchangeable between B. pertussis and B. 
bronchiseptica111, 125, 191, thereby validating the use of B. bronchiseptica as model for 

studying B. pertussis virulence and regulatory function. Thus far, the results of these 

studies suggest that host specificity is determined by differences other than sequence 

polymorphisms in highly conserved virulence genes.

Introduction of whole-cell pertussis (wP) vaccines in the late 1940s resulted in a rapid 

reduction in both the incidence of pertussis and death caused by the infection. However, the 

success of these vaccines was undermined by concerns over their safety (Box 3); thus, they 

were replaced with acellular pertussis (aP) vaccines in the late 1990s in many developed 

countries11. Since then, pertussis cases have increased and dramatic epidemic cycles have 
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returned. In 2012, 48,277 cases of pertussis and 18 deaths were reported to the Centers for 

Disease Control and Prevention (CDC), which represents the greatest burden of pertussis in 

the United States in 60 years and similar outbreaks are occurring in other countries12–14. 

However, the epidemiology of contemporary pertussis does not replicate that of the pre-

vaccine era. Disease is now more common in infants and older children (ages 9–19) and, 

strikingly, older children who develop pertussis are often fully vaccinated according to 

current recommendations15, 16. Ominously, studies that have analyzed pertussis incidence 

among children that were born and vaccinated during the transition to aP vaccines have 

found that the rate of infection is significantly higher among children vaccinated with only 

aP vaccines compared to those vaccinated with even a single dose of wP vaccine17. To 

combat the rise of infections in this group, regulatory agencies have called for boosters to be 

administered earlier18. However, the benefit of boosting with aP vaccines is unclear because 

it is unknown whether the re-emergence of pertussis is due simply to waning immunity or to 

fundamental differences in the nature of the immune response induced by aP vaccines 

compared with wP vaccines or with natural infection.

Box 3

Vaccination against pertussis

The introduction of whole cell vaccines (wP) in the 1940s resulted in dramatic decreases 

in morbidity and mortality caused by pertussis, and by the early 1970s pertussis was 

nearly eradicated in the developed world7. Attention then turned to the side-effects 

associated with immunization. The National Childhood Encephalopathy Study (NCES), a 

prospective case-controlled study that was carried out in the U.K. in the late-1970s to 

evaluate acute neurological illnesses in children aged between 2 and 26 months, 

concluded that pertussis vaccination was associated with brain damage192 – although this 

correlation was later demonstrated to be unfounded. Lack of circulating disease was 

misinterpreted as being equivalent to a lack of risk in contracting the disease, and the 

NCES report (among others) led to a precipitous decline in vaccine coverage in many 

countries worldwide. The reported association with brain damage also effected a change 

in manufacturing policies; decreased vaccination compliance combined with a rise in 

legal action associated with previous vaccinations led many pharmaceutical companies to 

abandon the production of wP vaccines. However, the decrease in vaccine coverage 

almost immediately sparked the largest pertussis epidemics since the pre-vaccine era in 

many countries, which resulted in a substantial rise in infant mortality, a much more 

severe outcome than the alleged dangers caused by the wP vaccine. Eventually, public 

concern over the increase in pertussis disease and the number of infant deaths rose and 

vaccine coverage returned to high levels. Efforts to develop improved pertussis vaccines 

were rekindled, with the subsequent development, testing and deployment of aP vaccines. 

Although supposedly safer and undoubtedly less reactogenic than the wP vaccine, we 

now know that aP vaccines are also less effective. The experience with vaccination 

against pertussis clearly highlights the effect that public perception and misperception 

can have on the implementation of public vaccination programs.
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The increased incidence of disease among older children and adults is especially worrisome 

because of the corresponding risk of transmission to non- or incompletely- immunized 

infants1. Compounding the problem, antibiotic treatment has minimal efficacy by the time 

most diagnoses are made and severe cases can be unresponsive to standard therapies for 

respiratory distress (such as mechanical ventilation)10. Therefore, the re-emergence of 

pertussis as a global public health problem presents two challenges: first, the development of 

vaccines that have an acceptable safety profile, provide long-lasting immunity, reduce 

infection burden and prevent transmission; and second, the development of therapeutic 

agents and treatment strategies that reduce morbidity and mortality in vulnerable 

populations. Both goals require a better understanding of the etiological agents of pertussis 

and the mechanisms by which they cause disease.

In this Review, we discuss our current understanding of the mechanisms used by Bordetella 
spp. to cause respiratory disease, focusing on the roles and functions of virulence factors in 

pathogenesis. For the interested reader, more specialized recent reviews on pertussis toxin 

biology19, 20, virulence gene regulation21, immunity22, 23 and vaccines24 are available, as 

well as an earlier comprehensive review on Bordetella spp. pathogenesis25.

Bordetella spp. virulence regulation

Several Bordetella spp. virulence factors were identified and characterized biochemically 

before genetic tools became available, including pertussis toxin (PT), adenylate cyclase 

toxin (ACT), dermonecrotic toxin (DNT), filamentous hemagglutinin (FHA) and fimbriae 

(Fim). The first transposon mutagenesis screen of B. pertussis identified the genes encoding 

these factors as well as a locus, now known as bvgAS, encoding a two-component 

regulatory system required for their expression26. Reasoning that BvgAS also activates 

expression of genes encoding additional unknown Bordetella spp. virulence factors, 

mutagenesis screens using Tn5lac and Tn5phoA were conducted27, 28. These, together with 

subsequent genome-wide analyses, revealed that BvgAS controls hundreds of genes in 

response to changing environmental conditions, including those encoding surface structures 

and secreted proteins involved in pathogenesis, factors required for survival outside the 

mammalian host, enzymes involved in cellular metabolism and physiology and additional 

regulatory systems29, 30.

The BvgAS phosphorelay

BvgA is a typical response regulator protein with a receiver domain at its N-terminus and a 

DNA-binding helix-turn-helix domain at its C-terminus21 (Fig. 1A). BvgS is a polydomain 

sensor kinase containing two N-terminal venus flytrap (VFT) domains, which are located in 

the periplasm31. C-terminal to the VFT domains is a membrane-spanning region, followed 

by a cytoplasmically-located PAS domain, a histidine kinase (HK) domain, a receiver 

domain and a histidine phosphotransferase (Hpt) domain. During growth in standard 

medium at 37°C, BvgAS is active and uses ATP to phosphorylate a conserved histidine 

within the HK domain32. The phosphoryl group is subsequently relayed to an aspartate in 

the receiver domain, then to a histidine in the Hpt domain and finally to an aspartate in the 

receiver domain of the response regulator BvgA32. Phosphorylated BvgA is competent for 

dimerization and binds to specific DNA sequences to either activate or repress 
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transcription33, 34. Although the signal(s) to which BvgS responds in nature are unknown, 

growth at low temperature (~25°C) or in the presence of MgSO4 or nicotinic acid (so-called 

“chemical modulators” of BvgS) inactivates BvgS; thus, BvgA remains unphosphorylated 

and is unable to regulate transcription.

BvgAS controls multiple phenotypic phases

The genes regulated by the BvgAS phosphorelay fall into four classes and their differential 

regulation results in at least three distinct phenotypic phases (Fig. 1B). Class 1 genes include 

the ptx-ptl operon (which encodes PT and its transport system), cyaA-E (which encodes 

ACT) and the bsc operon (which encodes a Type III Secretion System (T3SS)). These genes 

are maximally expressed when BvgAS is fully active (the so-called Bvg+ phase). Class 2 

genes are expressed maximally in both the Bvg-intermediate (Bvgi) and Bvg+ phase. The 

Bvgi phase occurs when bacteria are grown in the presence of low concentrations of 

chemical modulators or within the first few hours following a switch from Bvg− phase 

conditions to Bvg+ phase conditions. Class 2 genes include fhaB (encoding filamentous 

hemagglutinin (FHA)), fim (encoding fimbriae) and bvgAS itself; thus bvgAS is positively 

autoregulated. Class 3 genes, of which only one (bipA, encoding an outer membrane protein 

of unknown function) has been characterized so far35, 36, are expressed maximally in the 

Bvgi phase. Class 4 genes, which are also known as vrgs (virulence repressed genes), are 

expressed maximally in the Bvg− phase and include genes required for flagella synthesis and 

motility in B. bronchiseptica.

Role of BvgAS-mediated gene regulation

The conservation of BvgAS among Bordetella spp. and its ability to control multiple 

phenotypic phases in response to environmental cues suggests that it has an important and 

conserved role in the infectious cycle. Because B. pertussis and B. parapertussisHu strains 

are unable to survive extended periods of time outside of the human host (unpublished 

observations from various research groups), it was hypothesized that BvgAS-mediated gene 

regulation must occur within the mammalian respiratory tract. However, experiments with 

mutants that were locked in either the Bvg+ or Bvg− phase, or that expressed Bvg− phase 

factors ectopically in the Bvg+ phase, showed that the Bvg+ phase is necessary and 

sufficient for respiratory infection; that the Bvg− phase is unable to survive in vivo; and that 

failure to repress Bvg– phase factors (such as flagella) is detrimental to the development of 

infection37–40. Moreover, recent studies with sensitive reporter systems have provided 

strong evidence that switching to the Bvg− phase does not occur in vivo41, 42. In B. 
bronchiseptica, the Bvg− phase is required for survival under nutrient-limiting conditions, 

such as those that might be encountered in an external environment43. It has been 

hypothesized that the Bvgi phase is important for transmission, and with the development of 

the baboon model (Box 2), this hypothesis is now testable. Although additional regulatory 

systems are undoubtedly important during the Bordetella spp. infectious cycle, their precise 

roles have not yet been determined.
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Toxins

Pertussis toxin

One of the first identified and most extensively characterized B. pertussis virulence factors, 

pertussis toxin (PT), sometimes referred to as lymphocytosis-promoting factor for its ability 

to induce lymphocytosis in mammals44. The presumed requirement of PT for the 

development of infection and the observed positive correlation between PT-specific 

immunity and bacterial clearance led to the hypothesis that pertussis, like cholera and 

diphtheria, is a toxin-mediated disease45. However, although PT is important for 

pathogenesis, it is now clear that pertussis results from the coordinated function of many 

different bacterial factors46.

PT is an ADP-ribosylating AB5-type toxin47 (Fig. 2a). The holotoxin is composed of one 

catalytic subunit (A) and five membrane-binding/transport subunits (B), which are 

assembled in the periplasm and then exported by the type IV secretion system encoded by 

the ptl locus48. PT holotoxin can bind nearly any sialic acid-containing glycoprotein49 and 

thus multiple receptors have been identified and characterized in a broad range of cell types 

in vitro20; however, the specific cell types targeted by PT in vivo are unknown. After 

binding, PT enters the host cell by receptor-mediated endocytosis and follows a retrograde 

transport pathway to the Golgi apparatus and then the endoplasmic reticulum (ER) (Fig. 

2b)50. The A subunit exits the ER, possibly by hijacking the ER-associated degradation 

pathway that normally expels misfolded proteins51. In the cytoplasm, the A subunit 

catalyzes the transfer of ADP-ribose from NAD+ to a cysteine residue near the C-terminus 

of the alpha subunit of heterotrimeric G-proteins, some of which are inhibitory G-proteins. 

Amongst other downstream effects, this modification eliminates the ability of these 

inhibitory G proteins to inhibit adenylate cyclase activity and blocks other G protein 

regulated enzymes and pathways20, 52, leading to dysregulation of the immune response.

PT has an extraordinarily broad range of pharmacological effects in cell culture and animal 

models, which has confounded efforts aimed at identifying its precise role(s) during human 

infection. PT inhibits the migration of cells that express G-protein coupled chemokine 

receptors in vitro, such as neutrophils, monocytes and lymphocytes53. In mouse models, 

production of PT by B. pertussis correlates with decreased proinflammatory chemokine and 

cytokine production, decreased recruitment of neutrophils to the lungs and increased 

bacterial burdens early in infection54, 55. Experiments in which alveolar macrophages are 

depleted with clodronate suggest that PT initially targets these cells56. PT production at the 

peak of infection correlates with exacerbated inflammation and pathology in the airways57. 

While these and other observations in animal models suggest that PT contributes to the 

establishment of infection by suppressing early inflammation and inhibiting the microbicidal 

action of inflammatory cells, in addition to contributing to inflammatory pathology at the 

peak of infection, it is unknown whether PT produces these effects during human infection. 

However, it has been shown that PT production positively correlates with the extreme 

lymphocytosis that occurs in primary human pertussis cases58, and antibodies against PT 

protect against severe disease59.
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Adenylate cyclase toxin

Adenylate cyclase toxin (ACT, Fig. 2c, d), which is a member of the RTX (repeats in toxin) 

toxin family, is encoded by cyaA and produced by all Bordetella subspecies that infect 

mammals19. ACT is secreted by the cyaBDE-encoded Type I secretion system and is 

palmitoylated by the product of cyaC60, 61. The toxin contains two distinct functional 

modules: the C-terminal domain, which contains the RTX repeats, mediates binding to 

target cells and forms cation-selective pores in plasma membranes62, 63; and the N-terminal 

domain is a calmodulin-dependent adenylate cyclase that converts ATP to cyclic AMP 

(cAMP)64, 65. Recent studies indicate that ACT can adopt multiple conformations and that 

these forms are distinct in their ability to effect pore formation or adenylate cyclase 

translocation into the host cell66. Thus, the observed effects of ACT on different cell types 

are the result of a combination of ion permeability, increased levels of cAMP (leading to 

perturbation of downstream signalling events) and possibly the depletion of intracellular 

ATP.

Although ACT can intoxicate many cell types, it binds with high affinity to CR3 (CD11b/

CD18, Mac-1), which is present on neutrophils, macrophages and dendritic cells67, and early 

work correlated ACT-dependent cAMP production in human neutrophils with inhibition of 

phagocytosis and oxidative burst68. More recent studies have shown that ACT blocks 

complement-dependent phagocytosis by macrophages69. In addition, this toxin also 

suppresses activation and chemotaxis of T-cells70. The significance of these in vitro 
observations is unclear; however, a recent study using the baboon model and clinical 

samples from humans showed that the concentrations of ACT in B. pertussis-infected 

respiratory tissues are significantly lower than the amount of purified protein used in most in 
vitro studies71. In mouse models, ACT-deficient bacteria are cleared faster than wild-type 

bacteria, and studies with immunodeficient and neutropenic mice suggest that ACT has a 

crucial role in enabling bacteria to resist neutrophil-mediated clearance72, 73. These data, in 

addition to the fact that ACT is one of the few virulence factors that is conserved and 

produced by all pathogenic Bordetella species5, suggest that ACT has the potential to be an 

effective antigen in future vaccine formulations74.

Type III Secretion

For reasons of experimental tractability, the Bordetella spp. Bsc type III secretion system 

(T3SS) is most extensively studied in B. bronchiseptica and induces caspase-independent 

necrotic death in a diverse array of cell types in vitro75. Mutations that eliminate T3SS 

activity decrease bacterial persistence in the lower respiratory tract following intranasal 

inoculation of rats and mice76, 77. Infection of mice with T3SS-defective B. bronchiseptica 
mutants also results in a more robust antibody response and re-stimulated splenocytes from 

animals infected with these mutants show increased production of pro-inflammatory IFN-γ 

and decreased production of anti-inflammatory IL-1078. Consistently, IFN-γ facilitates 

clearance of B. bronchiseptica from the lower respiratory tract, whereas IL-10 delays it 78. 

Together, these observations suggest that the Bsc T3SS has an immunomodulatory role that 

promotes persistence in the lower respiratory tract but the mechanistic basis of this 

phenomenon remains to be determined.
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Remarkably, and despite concerted efforts by several research teams, only a single effector 

protein, BteA, has been definitively identified as a translocated substrate of the Bsc 

T3SS79, 80. BopN, a homolog of YopN (which regulates type III secretion in pathogenic 

Yersinia spp.) has been proposed as a second effector81 but thus far, evidence that BopN is 

translocated by the Bsc system is lacking. BteA is both necessary and sufficient for 

cytotoxicity in vitro, and mutations in bteA recapitulate the phenotypes associated with 

eliminating T3SS activity in vitro and in vivo77, 79. Following translocation into host cells, 

the N-terminal targeting domain results in BteA localization to ezrin-rich lipid rafts that 

underlie sites of bacterial attachment82. However, the mechanisms responsible for the potent 

cytotoxicity of BteA remain unclear.

Type III secretion is tightly regulated in Bordetella spp. The bteA and bsc genes are 

transcriptionally activated by the alternative sigma factor BtrS, which is activated by 

BvgAS83. Expression of the bcs genes is also up-regulated by iron starvation84. In addition 

to these regulatory mechanisms, the partner-switching proteins BtrU, BtrV and BtrW 

mediate a cycle of serine phosphorylation and dephosphorylation events that regulate 

secretion activity83, 85.

Perhaps the most pressing question regarding the Bsc T3SS relates to its potential role 

during human infection. A requirement of T3SS activity for B. pertussis cytotoxicity has not 

been documented, despite the fact that T3SS genes are intact, highly conserved, transcribed 

and regulated, in addition to the observation that bteA alleles are functionally 

interchangeable between subspecies82, 83. Fortunately, recent studies are beginning to shed 

light on this paradox. Although Bsc activity is not generally observed with laboratory-

adapted B. pertussis strains, the tip complex of the T3SS, Bsp22, is secreted by clinical 

isolates in vitro, and mutations in the ATPase gene, bscN, result in elevated production of 

pro-inflammatory cytokines and accelerated clearance of B. pertussis from the lungs of 

aerosol-infected mice86. Furthermore, T3SS activity seems to be lost following laboratory 

passage of B. pertussis and regained after passage in mice86, 87.

Tracheal cytotoxin

Tracheal cytotoxin (TCT) is a disaccharide-tetrapeptide monomer of peptidoglycan that is 

produced during cell wall remodelling88. Although most Gram-negative bacteria recycle this 

molecule89, 90, B. pertussis does so inefficiently and releases a large amount of TCT into the 

extracellular environment. TCT is the only known B. pertussis virulence factor that is not 

regulated by BvgAS. In hamster tracheal rings, TCT functions synergistically with 

lipooligosaccharide to stimulate the production of pro-inflammatory cytokines (TNF-α, 

IL-1α, IL-1β, and IL-6) and iNOS, resulting in destruction and extrusion of ciliated cells 

from the epithelial surface91, 92. The biological activity of TCT depends on NOD1, a 

cytosolic pattern recognition receptor that senses bacterial peptidoglycan and induces the 

production of pro-inflammatory mediators93. NOD1-dependent detection of TCT seems to 

be host specific, as human NOD1 poorly detects TCT whereas mouse NOD1 does so 

efficiently93. Although it has been postulated that TCT-mediated cytopathology contributes 

to the characteristic cough in pertussis, the lack of relevant animal models has prevented 
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testing of this hypothesis. Thus, the contribution of TCT to pertussis pathogenesis in humans 

remains unclear.

Dermonecrotic toxin

Subcutaneous injection of B. pertussis or B. bronchiseptica cells into mice results in the 

formation of necrotic lesions due to the activity of dermonecrotic toxin (DNT)94. Consistent 

with a role in infection, DNT production is positively regulated by BvgAS 26, 29 and there is 

evidence that DNT contributes to the ability of B. bronchiseptica to induce turbinate atrophy 

and lung pathology in swine95. DNT has transglutaminase activity, can activate Rho 

GTPases96, 97 and inhibits osteogenic cell differentiation in vitro, suggesting that the toxin 

acts directly on host cells98, 99. However, as DNT lacks a signal sequence for export and is 

not secreted from bacterial cells grown in culture94, 100, it may actually function within the 

bacterial cytoplasm during infection, possibly by facilitating bacterial survival within a 

specific host niche and hence functioning indirectly in pathogenesis.

Surface Structures

Filamentous hemagglutinin

Filamentous hemagglutinin (FHA, Fig. 3a) is a large rod-shaped protein and, together with 

FhaC, serves as a prototypical member of the Two-Partner Secretion (TPS) pathway 101. It is 

initially synthesized as an ~370 kDa preproprotein (FhaB) that undergoes processing to 

produce the mature ~250 kDa FHA as it is translocated across the cytoplasmic membrane by 

the Sec translocation system and across the outer membrane by FhaC102. The N-terminal 

signal peptide is likely removed by leader peptidase and the C-terminal prodomain is 

processed by SphB1 and other as yet unidentified factors103, 104. Mature FHA is oriented 

with its mature C-terminus (the MCD) distal to the bacterial surface, and a substantial 

amount of FHA is also released into culture supernatants when the bacteria are grown in 
vitro104.

FHA is both necessary and sufficient to mediate bacterial adherence to several eukaryotic 

cell types in vitro105, 106. However, FHA is only one of several factors contributing to 

bacterial adherence to tracheal explants9, 107, suggesting that additional adhesins are 

important for adherence in vivo. Studies using cultured, non-ciliated cells have reported that 

FHA binds to CR3, Very Late Antigen V (VLA-5) and Leukocyte Response Integrin/

Integrin Associated Protein (LRI/IAP) complexes, and an RGD motif located in the centre 

of the FHA molecule is implicated in this process108–110. More recent studies that have 

examined B. bronchiseptica infection of animal and cell culture models have shown that the 

FHA molecules produced by B. pertussis and B. bronchiseptica are functionally 

interchangeable. These studies have also demonstrated that production of an FHA protein 

containing an RAE motif instead of RGD results in no observable differences and that the 

MCD is required for function111. Whether FHA interacts with CR3, VLA-5, LRI/IAP or 

other mammalian receptors during infection has yet to be determined.

Experiments in which B. bronchiseptica is delivered in a small volume to the nasal cavities 

of rats and pigs have revealed FHA is essential for progression of the infection from the 

upper to the lower respiratory tract111, 112. In mouse models, in which large numbers of 
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bacteria are delivered directly into the lungs, FHA-deficient B. bronchiseptica strains induce 

a more robust inflammatory response than wild-type bacteria73, 111. This response is 

characterized by increased production of proinflammatory cytokines and chemokines in lung 

tissue (such as TNF-α, KC, MCP-1 and IL-17) and increased recruitment of neutrophils to 

the lungs during the first four days post-inoculation73. Animals that do not succumb to 

inflammation-mediated pulmonary damage clear the FHA-deficient bacteria from their lungs 

much faster than animals inoculated with wild-type bacteria73, 111. These data suggest that 

FHA enables B. bronchiseptica to modulate inflammation during the establishment of 

infection, thereby facilitating bacterial persistence. It is currently unknown whether FHA 

exerts these effects by binding directly to host receptors while attached to the bacterial cell 

surface or after release from the bacterial cell. Furthermore, it has been suggested that FHA 

serves as a scaffold to direct the delivery of other virulence factors (such as ACT113); 

however, the in vivo relevance of this activity has not been determined.

Fimbriae

Bordetella spp. produce type 1 pili, which are also known as fimbriae (Fig. 3b). The putative 

chaperone (FimB), usher (FimC) and tip adhesin (FimD) proteins are encoded by the 

fimBCD operon, which is located between the fhaB and fhaC genes114. The genes encoding 

the two primary major fimbrial subunits, fim2 and fim3, are located elsewhere on the 

chromosome and can undergo phase variation115. Alternative major fimbrial subunit genes 

(fimA, fimN and fimX) have also been identified116–118. Although in vitro adherence assays 

using cultured cells have yielded variable results119, 120, studies with tracheal explants 

indicate a role for fimbriae in mediating adherence to ciliated respiratory epithelium9, 107. 

Studies with both B. pertussis and B. bronchiseptica have demonstrated a requirement for 

fimbriae during colonization of the lower respiratory tract in rodents120, 121, and mice 

inoculated with Fim-deficient B. pertussis display a more robust inflammatory response than 

mice inoculated with wild-type bacteria122. Similarly to FHA, fimbriae seem to be involved 

in adherence and/or suppression of the initial inflammatory response to infection, potentially 

contributing to persistence.

Pertactin

Pertactin (PRN) is a member of the classical autotransporter family of outer membrane 

proteins (Fig. 3c)123. The surface-localized ‘passenger’ domain forms a β-helix with β-

strands connected by short turns or, in a few cases, large extrahelical loops124. Similarly to 

fimbriae, studies using non-ciliated mammalian cells to investigate a role for PRN in 

adherence or invasion have yielded equivocal results112, 125. Studies using ciliated rabbit 

tracheal explant cultures suggest that PRN contributes to B. pertussis adherence to ciliated 

respiratory epithelium9, although experiments with mice failed to identify a role for PRN in 
vivo126. However, in the case of B. bronchiseptica, studies indicate that PRN is involved in 

mediating resistance to neutrophil-mediated clearance and promoting persistence in the 

lower respiratory tract112, 125. In recent years, B. pertussis strains that do not produce PRN 

have been isolated from pertussis patients127, raising the concern that such strains have been 

selected due to the presence of anti-PRN antibodies generated in response to immunization 

with PRN-containing aP vaccines. Whether vaccine driven evolution of B. pertussis strains 
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is actually occurring is currently under investigation, as it has decisive implications for the 

development of new and improved vaccines.

Lipopolysaccharide

B. pertussis, B. parapertussisHu and B. bronchiseptica produce different forms of 

lipopolysaccharide (LPS). B. pertussis produces a penta-acylated lipid A linked to a 

complex core trisaccharide, B. bronchiseptica produces hexa-acylated lipid A linked to a 

similar, if not identical, complex core trisaccharide and O-antigen repeats and B. 
parapertussisHu produces a hexa-acylated lipid A linked to an altered core structure and O-

antigen repeats128–130. Because it lacks O-antigen, B. pertussis LPS is often referred to as 

lipooligosaccharide (LOS)131. The genes required for synthesis of O-antigen in B. 
bronchiseptica and B. parapertussisHu are repressed by BvgAS132; however, some O-antigen 

is produced under Bvg+ phase conditions and mutants unable to produce O-antigen display 

defective virulence in mouse models132, 133.

In mice, B. bronchiseptica LPS is sensed by TLR4, resulting in an early TNF-α response 

and recruitment of neutrophils to the lungs134, 135. Although B. parapertussisHu LPS and B. 
pertussis LOS can stimulate murine TLR4, they do so less efficiently and TLR4−/− mice are 

only modestly impaired in their ability to control infection by these organisms136–138. In 

addition, it has been reported that B. pertussis LOS stimulation of murine dendritic cells 

results in the development of anti-inflammatory regulatory T cells136. On the basis of these 

observations it has been suggested that B. pertussis and B. parapertussisHu have evolved to 

be less inflammatory than B. bronchiseptica and that diminished inflammation might 

facilitate persistence during human infection136, 137. However, subsequent studies have 

demonstrated that human and murine TLR4-MD-2-CD14 complexes differ in their ability to 

recognize different forms of lipid A. Although murine TLR4-MD-2-CD14 responds 

similarly to both penta- and hexa-acylated lipid A, human TLR4-MD-2-CD14 responds 

robustly to hexa-acylated lipid A but only weakly to penta-acylated lipid A139. Furthermore, 

as opposed to murine TLR4-MD-2-CD14, which responds to B. pertussis lipid A regardless 

of whether the phosphate groups are modified or not, human TLR4-MD-2-CD14 responds 

more robustly to lipid A containing glucosamine (GlcN)-modified phosphate groups than to 

lipid A with unmodified phosphates140. Although it seems that the majority of B. pertussis 
LOS contains GlcN-modified phosphate groups141, the fact that it is penta-acylated suggests 

that its ability to stimulate TLR4 in humans is even weaker than its ability to stimulate 

TLR4 in mice. These data provide additional support for the hypothesis that B. pertussis and 

B. parapertussisHu strains have evolved to be relatively non-inflammatory in humans. 

However, they also raise concerns about extrapolating conclusions drawn from murine 

studies to humans, as the TLR4-MD-2-CD14-dependent immune responses clearly differ in 

these hosts.

Additional surface proteins

Many additional BvgAS-activated genes encode known or predicted surface-localized or 

secreted proteins and are suspected to have roles in pathogenesis29, 142. BrkA, TcfA, BapC, 

BatB, Vag8, SphB1 and Phg are BvgAS-activated classical autotransporter proteins, and 

their putative roles in pathogenesis include mediating adherence, serum resistance, evasion 
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of antibody-mediated clearance and proteolytic processing of other surface 

proteins103, 143–148. BipA and BcfA are BvgAS-regulated members of the intimin/invasin 

family, and although their roles in pathogenesis are unknown35, 149, immunization of mice 

with BcfA can accelerate clearance of B. bronchiseptica following intranasal challenge150, 

suggesting that these poorly characterized surface molecules should be considered for the 

development of new vaccines containing different or additional antigens.

Metabolic proteins

Many BvgAS-regulated genes encode proteins that are probably involved in metabolism, 

respiration and other physiological processes29, 142, presumably reflecting the diversity of 

environmental conditions encountered by Bordetella spp. as they travel within and outside 

the mammalian respiratory tract. Among these factors, those involved in the acquisition and 

use of iron have been the focus of most studies. In addition to producing and using the 

siderophore alcaligin151, B. pertussis and B. bronchiseptica can use a variety of 

xenosiderophores (including enterobactin152) and haem iron sources such as hemoglobin153. 

Most, if not all, of these iron acquisition mechanisms are required during murine respiratory 

infection154, 155, demonstrating the necessity of iron for bacterial survival, the variety of 

mechanisms used by the host to sequester iron and the reciprocal array of mechanisms used 

by the bacteria to acquire this essential element.

In addition, accumulating evidence suggests that biofilm production by pathogenic 

Bordetella spp. in vitro and during infection may contribute to colonization of the 

respiratory tract. This process is regulated by a complex program of both Bvg-dependent 

and Bvg-independent gene expression156–159, with genes that promote biofilm formation 

being maximally expressed in the Bvgi phase156. Bvg-independent production of an 

exopolysaccharide via expression of the bps locus and the presence of extracellular DNA are 

also required for biofilm production157, 160, 161. Recent evidence suggests that the second 

messenger cyclic-di-GMP is also crucial for the regulation of biofilm formation162.

Current and future challenges

Despite high rates of immunization with aP vaccines, epidemics of pertussis have recently 

occurred in the US, Europe, Australia and Japan (CDC, Australian Government Department 

of Health and Aging, Japanese National Institute of Infectious Diseases)163, 164 and similar 

outbreaks seem imminent in developed countries throughout the world. Moreover, 

irrespective of socioeconomic status, the highest rates of mortality are in infants, who are 

also the most difficult population to treat and protect. In considering these challenges and 

looking ahead, we suggest three priorities for future studies.

The first priority is to improve the robustness and duration of protection conferred by 

vaccination, which will require further study of the immunological responses to infection 

and vaccination (Box 4). The deficiencies of current aP vaccines are well documented, 

including the striking observation that aP vaccination of baboons only protects against 

disease symptoms but not colonization or transmission165. Numerous efforts are in progress 

to overcome these deficiencies24, such as the inclusion of additional antigens in aP vaccines, 

reformulation with adjuvants that favour Th1/Th17 responses as opposed to the Th2-type 
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immunity generated by alum-adjuvanted vaccines as well as the development of live, 

attenuated B. pertussis vaccines166. The latter approach has significant advantages, 

including the ability to generate mucosal immunity, but the issue of public acceptance looms 

large. In a similar vein, it is interesting to note that outside of North America, Europe and 

parts of Asia, wP vaccines remain in widespread use and approaches to decrease their 

reactogenicity while retaining immunogenicity should be considered167. The known efficacy 

of these vaccines combined with the cost effectiveness of this approach might be of more 

benefit to people than the development of improved but more costly vaccines composed of 

purified proteins. It is important to remember that the development and approval of novel 

vaccines will be a prolonged process. In light of recent findings concerning the lack of 

protection against colonization or transmission by aP vaccination165, maximizing the 

efficacy of current vaccines through prenatal vaccination, additional boosting and additional 

strategies is imperative.

Box 4

Immunity to pertussis

Clinical studies suggest that both humoral and cell-mediated immunity are important for 

controlling human pertussis. Measurements of B. pertussis-specific T cell proliferation, 

cytokine production and titers of different IgG subclasses from human samples suggest 

that naive infection causes primarily a Th1 response, resulting in pro-inflammatory 

cytokine and opsonizing antibody production, combined with the stimulation of antigen 

presenting cells193, 194. wP vaccines also stimulate a Th1 response195, 196, whereas aP 

vaccines seem to produce a mixed Th1/Th2 response196–198. Many studies have 

demonstrated that vaccination with aP vaccines produces antibody responses that are 

equal to or exceed those produced by vaccination with wP vaccines194, 196, 198, yet the 

immunity induced by aP vaccines is inefficient, which underscores the importance of 

investigating and evaluating cell-mediated immune responses induced by vaccination and 

infection. Studies that have evaluated human infection or vaccination have not 

comprehensively addressed the role of Th17 responses, which result in pro-inflammatory 

cytokine production and stimulation of professional phagocytes. However, studies with 

the baboon infection model show that infection causes a mixed Th1/Th17 response that is 

long-lived and protective against colonization following subsequent challenge186, 199. 

Immunological data from animal models mostly agree with these findings23, 165, 199. 

Regardless of the natural immune response to infection, efficacious vaccines need to be 

long lasting, prevent transmission and reduce disease burden. As B. pertussis is primarily 

an extracellular respiratory pathogen, it is likely that an effective immune response will 

require the induction of a mixed Th1/Th17 response that stimulates the production of 

opsonizing, toxin-neutralizing and mucosal antibodies, along with memory T cells that 

produce cytokines to recruit and activate professional phagocytes at the site of infection. 

As such, there is a pressing need to re-evaluate antigens, adjuvants and immunization 

routes to achieve these goals.

A second priority is to mitigate infant mortality. Nearly 90% of all deaths due to pertussis 

occur in infants that are less than four months of age168, and the most frequent cause is 
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intractable pulmonary hypertension associated with marked lymphocytosis and 

bronchopneumonia. Currently, the only efficacious therapy for severe cases is rapid 

leukodepletion, which is only available at advanced critical care centres169, 170. Respiratory 

samples obtained during autopsies show luminal aggregates of leukocytes occluding small 

pulmonary arteries, along with an abundance of B. pertussis10, 171. The pathology of fatal 

pertussis pneumonia appears to be largely caused by pertussis toxin. Thus, in addition to 

protecting susceptible infants by maternal vaccination or by vaccination at birth, it is also 

imperative to pursue approaches for limiting PT activity during infection. Potential 

therapeutic modalities include humanized monoclonal antibodies and small molecules to 

target PT interactions with host cell receptors or the enzymatic activity of PT, as well as 

regulatory factors such as the BvgAS system.

Finally, although animal models have proven useful, we need to enhance our understanding 

of human disease. Decades of research on B. pertussis virulence determinants have primarily 

been based on tissue culture models and murine infections. These studies have shown what 

adhesins, toxins and other virulence factors can do under laboratory conditions, but very 

little, if anything, is known about what they really do during human disease. Specificity is 

the rule for human adapted pathogens and it can manifest at several levels including gene 

expression, virulence factor delivery, binding specificity and activity. Perhaps the most vivid 

illustration of our lack of understanding of B. pertussis is that we still don’t know why 

infection makes people cough!
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Glossary

paroxysmal 
coughing

Multiple, rapid coughing attacks that are characteristic of 

pertussis

B. parapertussisHu Two clades of bacteria have been classified as B. parapertussis. 

Those isolated from humans are designated B. parapertussisHu 

and those isolated from sheep are designated B. parapertussisOv

Lymphocytosis An increase in the number of lymphocytes (T-cells, B-cells and 

NK cells) in the bloodstream

type IV secretion 
system

A protein complex that is homologous to the conjugative 

machinery that spans the cell envelope. Type IV secretion 

systems (T4SS) are capable of both secretion and uptake of DNA 

and proteins

clodronate bisphosphonate clodronate is a chemical that, when delivered to 

macrophages via phagocytosis of clodronate containing 

liposomes, causes apoptotic cell death

Melvin et al. Page 16

Nat Rev Microbiol. Author manuscript; available in PMC 2014 October 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



type I secretion 
system

A protein complex that spans the inner and outer membrane of 

Gram-negative bacteria, the Type I secretion machinery consists 

of an ABC transporter protein, a membrane fusion protein and an 

outer membrane protein and is responsible for the secretion of 

various molecules

oxidative burst (Respiratory burst)The rapid production of reactive oxygen 

species (such as hydrogen peroxide and superoxide radicals), 

typically by neutrophils and monocytes, which assist in 

combating bacterial and fungal infections

Rho GTPases A family of small signalling GTPases within the Ras superfamily. 

Rho GTPases are found in eukaryotic cells and are involved in a 

wide range of cellular activities

Pattern recognition 
receptors

Proteins of the innate immune system that recognize pathogen-

associated molecular patterns (PAMPs); for example the toll-like 

receptor 4 (TLR4), which recognizes lipopolysaccharide

Two-Partner 
Secretion (TPS) 
pathway

A secretion pathway consisting of two proteins, a large 

exoprotein (TspA) and an outer membrane pore-forming β-barrel 

protein (TspB)

Sec translocation 
system

A protein complex that transports molecules across the 

cytoplasmic membrane

phase variation A mechanism by which bacteria vary the expression of genes 

encoding extracellular structures, such as flagella and fimbriae, 

typically as a means to avoid host immunity. This is frequently 

accomplished by DNA rearrangement or slip-strand mispairing

autotransporter Family of proteins found in Gram-negative bacteria that consist of 

an N-terminal passenger domain and a C-terminal β-barrel. The β-

barrel is responsible for transporting the passenger domain into 

the extracellular space and anchoring the protein to the outer 

membrane

intimin/invasin 
family

Virulence factors that mediate invasion and adherence

alternative sigma 
factor

Protein factors that associate with RNA polymerase and are 

important for promoter recognition and transcription initiation. 

They are typically induced under different environmental 

conditions. Alternative sigma factors differ from primary sigma 

factors, which are required for transcription of essential genes

Siderophore Iron chelating compounds secreted by microorganisms to 

scavenge iron for cellular metabolism. Xenosiderophores refer to 

siderophores that can be utilized across different species
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IS (insertion 
sequence) element

A short, transposable DNA sequence

multilocus sequence 
typing

A molecular method that is used to characterize microorganisms 

by comparing the sequences of housekeeping genes
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Online summary

• Bordetella pertussis, the causative agent of whooping cough, has reemerged as a 

public health threat despite broad vaccine coverage.

• Reemergence of this disease correlates with a transition from the use of whole-

cell pertussis vaccines to acellular component vaccines and the epidemiology of 

pertussis has shifted while the overall number of cases of pertussis has 

increased.

• Bordetella spp. serve as paradigms for studying global virulence control 

systems, bacterial toxins, type V secretion proteins and the evolution of 

pathogens.

• Bordetella spp. produce many virulence factors that contribute to pathogenesis, 

including toxins, adhesion factors, iron acquisition systems and surface 

structures.

• Considering the fact that Bordetella pertussis is a strict human pathogen, the 

development of appropriate animal models has been challenging. However, a 

novel baboon infection and transmission model provides a promising new 

research avenue.

• Future goals include improving the efficacy of vaccines, protecting 

unvaccinated infants from infection and developing better treatment strategies 

for infants who do become infected with B. pertussis. Reaching these goals 

requires a more thorough understanding of the mechanisms used by B. pertussis 
to establish infection and cause disease.
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Figure 1. The BvgAS master regulatory system
(a) BvgS is a polydomain histidine sensor kinase containing (from the N- to the C-terminus) 

two periplasmically-located venus flytrap domains (VFT1 & VFT2), a transmembrane 

domain, a PAS domain (PAS), a histidine kinase domain (HK), a receiver domain (Rec) and 

a histidine phosphoryl transfer domain (Hpt). BvgA is a response regulator protein with an 

N-terminal receiver domain (Rec) and a C-terminal helix-turn-helix domain (HTH). BvgS is 

activate at 37°C, autophosphorylates at a conserved histidine in the HK domain, and 

transfers the phosphoryl group to the Rec, the Hpt and then to the Rec domain of BvgA. 

Phosphorylated BvgA (BvgA-P) activates expression of virulence-associated genes (vags; 

which are subdivided into class 1 and 2 genes) and represses expression of virulence-

repressed genes (vrgs; known as class 4 genes). BvgS is inactive and remains 

unphosphorylated when bacteria are grown at a low temperature (~25°C) or at 37°C in the 

presence of chemical modulators (such as MgSO4 or nicotinic acid). (OM-outer membrane, 

CM-cytoplasmic membrane) (b) BvgAS controls four classes of genes and three distinct 

phenotypic phases. The Bvg+ phase occurs when BvgAS is fully active and is characterized 

by maximal expression of genes encoding adhesins (class 2 genes, such as fhaB, fim2 and 

fim3, expression levels indicated by an orange line) and toxins (class 1 genes, such as cyaA-
E, ptx-ptl and bsc genes, expression levels indicated by a red line), and minimal expression 

of class 3 and class 4 genes (expression levels indicated by purple and blue lines, 

respectively). The Bvg+ phase is necessary and sufficient to cause respiratory infection (i.e., 
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in vivo). The Bvg– phase occurs when BvgAS is inactive and is characterized by maximal 

expression of class 4 genes and minimal expression of class 1, 2, and 3 genes. (Note that 

regulation of some vrgs is indirect; when BvgAS is inactive, it does not repress frlAB, a 

positive regulator at the top of the motility regulon, and it does not activate bvgR, a negative 

regulator of vrg loci.) The Bvg– phase is required for growth under nutrient limiting 

conditions, such as may be encountered in the environment (i.e., ex vivo). The Bvgi phase 

occurs when BvgAS is partially active and is characterized by maximal expression of class 3 

genes and minimal expression of class 1, 2, and 4 genes. The only class 3 gene characterized 

so far is bipA, which is activated by BvgA under Bvgi phase conditions and repressed by 

BvgA under Bvg+ phase conditions. The Bvgi phase may be important for transmission 

between hosts, but this has not been fully elucidated.
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Figure 2. Toxin-mediated virulence of Bordetella spp
(a) Pertussis toxin (PT, PDB ID 1PRT), is an AB5-type toxin composed of one catalytic 

subunit (A subunit) and five membrane-binding/transport subunits (B subunits)47. PT is 

assembled in the bacterial periplasm and exported by a type IV secretion system. (b) On 

binding to a sialoglycoprotein host cell receptor, PT is endocytosed and trafficked through 

the Golgi to the endoplasmic reticulum. In the endoplasmic reticulum, the B5 complex binds 

to ATP and dissociates from the A subunit. The A subunit is then transported into the 

cytoplasm and traffics on exosomes to the cytoplasmic membrane, where it ADP-ribosylates 

the α subunit of heterotrimeric G proteins. This modification alters the ability of G proteins 

to regulate multiple enzymes and pathways, including their ability to inhibit cyclic AMP 

(cAMP) formation. The overall result of these modifications is an initial suppression of 

inflammatory cytokine production and inhibition of immune cell recruitment to the site of 

infection. (c) Bordetella spp. adenylate cyclase toxin (ACT) is composed of two primary 

domains, a calmodulin-responsive adenylate cyclase enzymatic domain (yellow) and an 

RTX domain (black), which are connected by hydrophobic segments (green). (d) The RTX 

domain of ACT interacts with CR3 receptors that are expressed on host cell membranes 

from a wide range of cell types. The hydrophobic segments of the linker region (green) form 

pores in the membrane that enable the passage of ions and translocation of the adenylate 

cyclase domain into the cytoplasm. Adenylate cyclase activity is stimulated by binding to 

calmodulin in the host cell. The combined effects of ACT intoxication and pore formation 

result in inhibition of complement-dependent phagocytosis, induction of anti-inflammatory 

cytokines, suppression of pro-inflammatory cytokines and inhibition of immune cell 

recruitment.
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Figure 3. Presentation of filamentous hemagglutinin, fimbriae and pertactin on the Bordetella 
cell surface
(a) Filamentous hemagglutinin (FHA) is a TpsA exoprotein (blue) that is translocated across 

the outer membrane through its cognate TpsB pore protein (red), FhaC. This translocation 

occurs via the two-partner secretion pathway. Processing during translocation removes the 

C-terminal prodomain (yellow) from the full-length FhaB protein to produce the mature 

~250 kDa FHA protein. FHA is required for adherence to ciliated epithelial cells and for 

persistence during infection, possibly by directly or indirectly modulating the host immune 

system. (b) Bordetella spp. fimbriae are type 1 pili. FimB is similar to chaperone proteins 

that traffic major fimbrial subunits (Fim2 and Fim3, in this case) to the membrane usher 

FimC. FimB and FimC are necessary for fimbrial secretion and FimD (the tip subunit) is 

necessary for fimbrial assembly. Fimbriae are required for persistence during infection, 

possibly by functioning similarly to FHA by directly or indirectly modulating the immune 

system. Furthermore, studies have suggested that fimbriae are necessary for adherence to 

ciliated epithelial cells. (c) Pertactin is a classical autotransporter. The C-terminal ~30 kDa 

region (red) forms a channel in the outer membrane (om) that is required for translocation of 

the ~70 kDa β-helical passenger domain (blue) to the cell surface. Although the precise role 

of pertactin is unclear, data suggests that pertactin may contribute to virulence by resisting 

neutrophil-mediated clearance.
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