
Fully automated detection of diabetic macular 

edema and dry age-related macular 

degeneration from optical coherence 

tomography images 

Pratul P. Srinivasan,
1,2,*

 Leo A. Kim,
3
 Priyatham S. Mettu,

4
 Scott W. Cousins,

4
  

Grant M. Comer,
5
 Joseph A. Izatt,

1,4
 and Sina Farsiu

1,4,2,6
 

1 Department of Biomedical Engineering, Duke University, Durham 27708, USA 
2 Department of Computer Science, Duke University, Durham 27708, USA 

3 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard University, Boston, 02114, USA 
4 Department of Ophthalmology, Duke University Medical Center, Durham 27710, USA 

5 Kellogg Eye Center, University of Michigan, Ann Arbor 48105, USA 
6 Department of Electrical and Computer Engineering, Duke University, Durham 27708, USA 

*pratul.srinivasan@duke.edu 

Abstract: We present a novel fully automated algorithm for the detection 

of retinal diseases via optical coherence tomography (OCT) imaging. Our 

algorithm utilizes multiscale histograms of oriented gradient descriptors as 

feature vectors of a support vector machine based classifier. The spectral 

domain OCT data sets used for cross-validation consisted of volumetric 

scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry 

age-related macular degeneration (AMD), and 15 patients with diabetic 

macular edema (DME). Our classifier correctly identified 100% of cases 

with AMD, 100% cases with DME, and 86.67% cases of normal subjects. 

This algorithm is a potentially impactful tool for the remote diagnosis of 

ophthalmic diseases. 

©2014 Optical Society of America 

OCIS codes: (100.0100) Image processing; (170.4470) Ophthalmology; (100.2960) Image 

analysis; (100.5010) Pattern recognition; (110.4500) Optical coherence tomography. 
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1. Introduction 

Optical Coherence Tomography (OCT) is widely used in ophthalmology for viewing the 

morphology of the retina, which is important for disease detection and assessing the response 

to treatment. Currently, the diagnosis of retinal diseases such as age-related macular 

degeneration (AMD) and diabetic retinopathy (the leading causes of blindness in elderly [1] 

and working-age Americans [2], respectively) is based primarily on clinical examination and 

the subjective analysis of OCT images by trained ophthalmologists. To speed up the 

diagnostic process and enable remote identification of diseases, automated analysis of OCT 

images has remained an active field of research since the early days of OCT imaging [3]. 

Over the past two decades, the application of image processing and computer vision to 

OCT image interpretation has mostly focused on the development of automated retinal layer 

segmentation methods [4–18]. Segmented layer thicknesses are compared to the 

corresponding thickness measurements from normative databases to help identify retinal 

diseases [19–22]. Aside from measuring retinal layer thicknesses, a few papers have focused 

on segmenting the fluid regions seen in retinal OCT images such as edema or cystic 

structures, which are often observed in advanced stages of diseases such as diabetic macular 

edema (DME) and wet (exudative) age-related macular degeneration [23, 24]. Despite recent 

advances in the development of multi-platform automated layer segmentation software, for 

the case of “real-world” clinical OCT images (as opposed to experimental images attained 

through long imaging sessions) of severely diseased eyes with significant pathology, 

applications are currently limited to a few boundaries [25] or to the detection of retinal 

diseases in early stages before the appearance of severe pathology [26]. 

A relatively small number of algorithms have been developed for the automatic detection 

of ocular diseases with less emphasis on the direct comparison of retinal layer thicknesses. 

One method used texture and morphological features from OCT images of the choroid to 

differentiate between three image classes using decision trees. The accuracy of this algorithm 

for the detection of (1) neovascular AMD or exudations secondary to diabetic or thrombotic 

edema; (2) diffuse macular edema without blood and exudations or ischemia of the inner 

retinal layers; and (3) scaring fibrovascular tissue was 0.73, 0.83, and 0.69, respectively [27]. 

Another very recent work performed binary classification to differentiate between normal 

eyes and eyes with advanced AMD using kernel principal component analysis model 

ensembles, with a recognition rate of 92% for each class [28]. Using a similar data set from 

advanced AMD and normal subjects, a method based on a Bayesian network classifier 

achieved an area under curve classification performance of 0.94 [29]. Finally, a recent method 

measured inner retinal layer thicknesses and speckle patterns and utilized a support vector 

machine (SVM) classifier to differentiate between normal eyes and eyes with glaucoma [30]. 

Additionally, we recently introduced an SVM-based classification method for differentiating 

wild-type from rhodopsin knockout mice utilizing their volumetric OCT scans with 100% 

accuracy [31]. 
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A very exciting work in this field, which is the closest to what we propose in this paper, is 

a method by Liu and colleagues. In their work, the authors used multiscale Local Binary 

Pattern (LBP) features to perform multiclass classification of retinal OCT images for the 

detection of macular pathologies [32]. While this method shows excellent results, it was 

limited, in that it requires manual input to select a single fovea-centered good-quality OCT 

image (signal strength of 8 or above in a Cirrus system) per volume, and detects diseases 

within the entire eye using only that image. 

Here, we present an alternative fully automated method that detects retinal diseases within 

eyes. This method uses Histogram of Oriented Gradients (HOG) descriptors [33] and SVMs 

[34] to classify each image within a spectral domain (SD)-OCT volume as normal, containing 

dry AMD, or containing DME. Our algorithm analyzes every image in each SD-OCT volume 

to detect retinal diseases and requires no human input. Section 2 introduces our classification 

method, Section 3 demonstrates the accuracy and generalizability of our classifier through 

leave-three-out cross-validation, and Section 4 outlines conclusions and future directions. 

2. Methods 

This section introduces our method for detecting retinal diseases by classifying SD-OCT 

images. The core steps are outlined in Fig. 1 and described in detail in the following 

subsections. 

 

Fig. 1. Overview of the algorithm for classifying SD-OCT volumes. 

2.1 Image denoising 

SD-OCT images are corrupted by speckle noise, so it is beneficial to denoise them to reduce 

the effect of noise on the classification results. B-scan averaging or other special scanning 

patterns [35, 36] reduces noise but decreases the image acquisition speed. Thus, to improve 

the quality of our captured images, we denoise individual B-scans in the SD-OCT volume 

using the sparsity-based block matching and 3D-filtering (BM3D) denoising method that is 

freely available online [37]. Each B-scan is resized to 248 rows by 256 columns for consistent 

and non-excessive feature vector dimensionality using the MATLAB command imresize and 

then denoised with BM3D. 

2.2 Retinal curvature flattening 

SD-OCT images of the retina have a natural curvature (which is further distorted due to the 

common practices in OCT image acquisition and display [38]) that varies both between 

patients and within each SD-OCT volume. Following [5], to reduce the effects of the 

perceived retinal curvature when classifying SD-OCT images, we flatten the retinal curvature 

in each image. 
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Fig. 2. Retinal curvature flattening. (a) SD-OCT image. (b) Image with retinal curvature 

flattened. 

To flatten the retinal curvature in each SD-OCT image, we first calculate a pilot estimate 

of the retinal pigment epithelium (RPE) layer. From our prior knowledge that the RPE is one 

of the most hyper-reflective layers within a retinal SD-OCT image, we assign the outermost 

of the two highest local maxima in each column of the denoised image as the estimated RPE 

location. Next, we calculate the convex hull around the pilot RPE points, and use the lower 

border of the convex hull as an estimate of the lower boundary of the retina. We remove 

outliers by applying a [1 × 3] median filter (MATLAB notation) to this estimate. To create 

the roughly flattened image, we fit a second-order polynomial to the estimated retinal lower 

boundary points and shift each column up or down so that these points lie on a horizontal line. 

Figure 2 demonstrates this flattening, where Fig. 2(b) is the version of Fig. 2(a) with the 

retinal curvature flattened. 

2.3 Image cropping 

To focus on the region of the retina that contains morphological structures with sufficient 

variation between disease classes, we crop each SD-OCT image before extracting the feature 

vector. In the lateral direction, each image is cropped to the center 150 columns. In the axial 

direction, each image is cropped to 45 pixels, 40 above and 5 below the mean lower boundary 

of the retina. 

2.4 Feature vector extraction 

To effectively describe the shape and appearance of morphological structures within each 

image, we use HOG descriptors. The HOG descriptor algorithm divides the image into 

connected regions, called cells, and the shape of local objects is described by counting the 

strength and orientation of the spatial gradients in each cell. In summary, the image is divided 

into small spatial cells, and a 1-D histogram of the directions of the spatial gradients, 

weighted by the gradient magnitudes, is calculated for each cell. To encourage the descriptors 

to be invariant to factors such as illumination and shadowing, these gradient values are 

contrast-normalized over larger overlapping spatial blocks. The descriptor vector v for each 

block is normalized using the L2-Hys method from [33], vv/(||v||
2
2 + ε 

2
)

1/2
 where ε is a 

small constant, followed by limiting the maximum value of v to 0.2 and then renormalizing. 

The feature vector for each image consists of the collected normalized histograms from all the 

blocks. Figure 3 displays a visualization of the HOG descriptors, with Fig. 3(a) as the original 

SD-OCT image, Fig. 3(b) as the denoised, flattened, and cropped image, and Fig. 3(c) as a 

visualization of the HOG descriptors for each block. 
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Fig. 3. HOG descriptor visualization. (a) Original SD-OCT image. (b) Denoised, flattened, and 
cropped image. (c) HOG descriptor visualization for each block. 

In our implementation, we use the MATLAB command extractHOGFeatures with a [4 × 

4] cell size, [2 × 2] cells per block, a block overlap of [1 × 1] cells, unsigned gradients, and 9 

orientation histogram bins. Furthermore, to consider structures at multiple scale levels, we 

extract HOG feature vectors at four levels of the multiscale Gaussian lowpass image pyramid 

and concatenate them into a single feature vector for each image. The image pyramid is 

calculated using the MATLAB command impyramid, which uses the separable kernel 

W(m,n) = w(m)w(n) with w = [(1/4)-(a/2),1/4,a,1/4,(1/4)-(a/2)] from [39] with a = 0.375. 

2.5 Image classification 

For multiclass classification of each SD-OCT image, we train separate SVMs in a one-versus-

one fashion. In our experiments, we have three classes: Normal, AMD, and DME. We train a 

multiclass classifier, composed of three linear SVMs, to classify Normal vs. AMD, Normal 

vs. DME, and AMD vs. DME. Our classifier is implemented in MATLAB using the functions 

svmtrain and svmclassify. 

To classify an image, the extracted feature vector is classified using all three SVMs, and 

the class that receives the most votes is chosen as the classification for the image. An entire 

SD-OCT volume is classified as the mode of the individual image classification results. 

2.6 SD-OCT data sets 

The SD-OCT data sets used for cross-validation consisted of volumetric scans acquired from 

45 patients: 15 normal patients, 15 patients with dry AMD, and 15 patients with DME. All 

SD-OCT volumes were acquired in Institutional Review Board-approved protocols using 

Spectralis SD-OCT (Heidelberg Engineering Inc., Heidelberg, Germany) imaging at Duke 

University, Harvard University, and the University of Michigan. Table 1 shows the scanning 

protocol for these subjects. Figure 4 displays example images from SD-OCT volumes of each 

of our three classes, demonstrating varying degrees of pathology and the intraclass variability 

displayed in our data sets. 

During the cross-validation, 65 images from 2 AMD patients and 3 DME patients that 

were unrepresentative of their classes were excluded when training the classifier. This does 

not limit the fully-automated property of the proposed method, because all images were used 

for testing. To facilitate comparison and future studies by other groups, we have made all the 

images used in the study available at: http://www.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm. 
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Fig. 4. Example SD-OCT images from normal (column 1), AMD (column 2), and DME 

(column 3) data sets. Note that the third and fourth rows are from the same subjects. The first 
three rows show the hallmark B-scans from each disease group. The B-scans in the fourth row 

of the diseased eyes show that classification based on a single B-scan may not be reliable (e.g. 

the DME B-scan in the fourth row maybe mistaken for a case of dry-AMD). 
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Table 1. SD-OCT scanning protocol for the study subjects. 

Type Axial 

Resolution 

(µm) 

Lateral 

Resolution 

(µm) 

Azimuthal 

Resolution 

(µm) 

Scan 

Dimensions 

(mm × mm) 

A-scans B-scans 

Normal 3.87 12 63 6.1 × 6.1 512 97 

Normal 3.87 12 62 5.9 × 6.0 512 97 

Normal 3.87 12 63 6.1 × 6.1 512 97 

Normal 3.87 12 63 6.1 × 6.1 512 97 

Normal 3.87 11 59 5.6 × 5.7 512 97 

Normal 3.87 11 60 5.8 × 5.8 512 97 

Normal 3.87 11 58 5.6 × 5.6 512 97 

Normal 3.87 12 61 5.9 × 5.9 512 97 

Normal 3.87 11 61 5.8 × 5.9 512 97 

Normal 3.87 12 62 6.0 × 6.0 512 97 

Normal 3.87 12 129 6.2 × 6.3 512 49 

Normal 3.87 12 64 6.1 × 6.2 512 97 

Normal 3.87 11 60 5.8 × 5.8 512 97 

Normal 3.87 12 64 6.1 × 6.2 512 97 

Normal 3.87 12 62 5.9 × 6.0 512 97 

AMD 3.87 11 120 5.8 × 5.9 512 49 

AMD 3.87 11 120 5.8 × 5.9 512 49 

AMD 3.87 6 124 6.0 × 4.6 1024 37 

AMD 3.87 11 122 5.8 × 4.5 512 37 

AMD 3.87 12 122 5.9 × 4.5 512 37 

AMD 3.87 11 122 5.8 × 4.5 512 37 

AMD 3.87 6 62 5.9 × 4.5 1024 73 

AMD 3.87 11 119 5.7 × 4.4 512 37 

AMD 3.87 6 60 5.8 × 4.4 1024 73 

AMD 3.87 6 62 5.9 × 4.5 1024 73 

AMD 3.87 11 122 5.8 × 4.5 512 37 

AMD 3.87 11 122 5.8 × 4.5 512 37 

AMD 3.87 11 122 5.8 × 4.5 512 37 

AMD 3.87 6 59 5.7 × 4.3 1024 73 

AMD 3.87 11 122 5.8 × 4.5 1024 37 

DME 3.87 11 120 8.7 × 7.3 768 61 

DME 3.87 12 120 8.8 × 7.3 768 61 

DME 3.87 12 120 8.7 × 7.3 768 61 

DME 3.87 12 232 8.7 × 7.2 768 31 

DME 3.87 12 121 8.9 × 7.4 768 61 

DME 3.87 12 126 9.1 × 7.6 768 61 

DME 3.87 12 120 8.7 × 7.3 768 61 

DME 3.87 11 118 8.6 × 7.2 768 61 

DME 3.87 12 118 8.7 × 7.2 768 61 

DME 3.87 11 60 5.8 × 5.8 512 97 

DME 3.87 12 66 6.3 × 6.4 512 97 

DME 3.87 11 61 5.8 × 5.9 512 97 

DME 3.87 12 62 6.0 × 6.0 512 97 

DME 3.87 12 62 5.9 × 6.0 512 97 

DME 3.87 11 61 5.8 × 5.9 512 97 

 

3. Results 

To assess the performance of our classification algorithm and its ability to generalize to an 

independent data set, we used leave-three-out cross-validation to efficiently utilize all data 

sets and to avoid bias in our results by excluding any data. Using our data set of 45 SD-OCT 

volumes, we performed 45 experiments. In each experiment, the multiclass classifier was 
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trained on 42 volumes, excluding one volume from each class, and tested on the three 

volumes that were excluded from training. This process results in each of the 45 SD-OCT 

volumes being classified once, each using 42 of the other volumes as training data. The cross-

validation results can be seen in Table 2. 

The fully automated algorithm was coded in MATLAB (The MathWorks, Natick, MA) 

and tested on a 4-core desktop computer with a Windows-7 64-bit operating system, Core i7-

4770 CPU at 3.4 GHz (Intel, Santa Clara, CA), and 12 GB of RAM. When utilizing the 

proposed [45 × 150] pixels cropped region, the average computation time was 0.25 seconds 

per image (averaged over 1000 trials per image). The SVM training process took 57.23 

seconds per set of three one-versus-one classifiers. Note that the SVM training is a one-time 

process and in practice does not add to the overall computation time for the image 

classification. When using smaller [30 × 100] or larger [60 × 200] fields-of-view, the 

classification time was 0.19 seconds and 0.29 seconds, respectively. The training time for the 

former and latter cases was 54.15 and 65.78 seconds, respectively. 

Table 2. Fraction of volumes correctly classified during cross-validation. 

Class Fraction of Volumes Correctly Classified 

Normal 13/15 = 86.67% 

AMD 15/15 = 100% 

DME 15/15 = 100% 

4. Conclusion 

This paper presented a novel method for the detection of retinal diseases using OCT. This 

method was successfully tested for the detection of DME and dry AMD. The proposed 

method does not rely on the segmentation of inner retinal layers, but rather utilizes an easy to 

implement classification method based on HOG descriptors and SVM classifiers. This is a 

potentially important feature when dealing with diseases that significantly alter inner retinal 

layers and, thus, complicate the layer boundary segmentation task. Moreover, our algorithm 

achieved perfect sensitivity and high specificity in the detection of retinal diseases despite 

utilizing images captured with different scanning protocols, which is often the case in real-

world clinical practice. 

Our algorithm is relatively robust with respect to the analysis field-of-view defined by the 

cropped area in Section 2.1. While our results report the more conservative and large [45 × 

150] region, we could achieve similar performance for a 50% smaller in each direction field-

of-view of [30 × 100] region on each B-scan. Using a smaller field-of-view is beneficial as it 

reduces the memory requirements compared to the larger field-of-view case. However, there 

is a possibility that in some cases, a smaller field-of-view analysis window would miss the 

pathology appearing in the more peripheral regions. Similarly to the above cases, when we 

increased the analysis field-of-view to a very large [60 × 200] region, we misclassified only 

two subjects. However, the misclassified cases were one DME subject and one Normal 

subject. We should note that the memory requirements of the very large field-of-view case 

were significantly higher than the previous cases, and it could not be executed on PC 

computers with less than 12GB of RAM memory. An uncropped ([248 × 256]) field-of-view 

case could not be run on our test computer due to heavy memory requirements. 

Noting that we used the exact same algorithmic parameters for all subjects in our study, 

one of the exciting characteristics of our algorithm is its robustness with respect to the 

imaging parameters, including resolution. As explained in Section 2.1, we resize all input 

images to a fixed image size. Thus, although our input data was captured with different 

scanning protocols, resulting in different pixel pitch and resolutions as illustrated in Table 1, 

we used the exact same algorithmic parameters, including crop size, for all images in our data 

set. Indeed, it is foreseeable that in a certain study, images could be captured by a 

significantly different imaging protocol as compared to the common clinical protocols used in 
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this paper. In such cases, the cropping parameters might need to be adjusted to provide a 

similar pixel pitch as in this study; however, the investigation of such cases is out of the scope 

of this paper. 

In Section 2.2, we used a second order polynomial approximation of the retina curvature. 

Such an approximation is computationally attractive due to its simplicity and relative 

robustness to image and vessel shadow artifacts, as compared to more complex models. 

However, while this model has experimentally proven to be adequate for our classification 

method, it is indeed a very rough approximation of the true anatomy of the eye. Indeed, many 

retinal layer segmentation algorithms, especially those using graph cuts based on Dijkstra’s 

shortest path, should utilize more complex models and techniques to better approximate the 

retinal curvature to achieve the desired flattening accuracy [12]. 

Additionally, in Section 2.2, to attain a roughly flattened retina, we shifted the columns by 

integer values. In some cases, such integer shifts can produce slight retinal layer 

discontinuities in the flattened image, as seen in Fig. 3(c). If desired, more visually appealing 

flattened images can be attained by using interpolation to achieve subpixel column shifts. 

Since the interpolation will slightly increase the computational cost, it might be best reserved 

for use in cases where the axial resolution of the OCT system is critically low, as in the case 

of time-domain OCT systems, where interpolation might improve the classification accuracy. 

The analysis of a single B-scan is often not sufficient for the diagnosis of retinal diseases. 

For example, one criterion for the characterization of intermediate dry-AMD, as defined in 

the Age-Related Eye Disease Study (AREDS), is finding 50 distinct medium-sized drusen 

[40]. These drusen can appear on several B-scans, requiring multi-frame analysis. Thus, we 

advocate utilizing several B-scans for the detection of retinal diseases. In our study, we 

experimentally found out that if 33% or more of the images in the volume are classified as 

AMD/DME, we achieved the best diseases detection rate. It is reasonable to assume that such 

detection rate should be lowered for studies of the very early stages of AMD and DME or 

other diseases such as macular hole, which have a more localized pathologic manifestation. 

This fully automated technique is a potentially valuable tool for remote diagnosis 

applications. Thus, part of our ongoing work is to extend the application of this algorithm to 

other retinal diseases such as macular hole, macular telangiectasia, macular toxicity, and 

central serous chorioretinopathy. However, we emphasize that the independent application of 

this algorithm is not the most appropriate method for the detection of all diseases with retinal 

manifestations. For example, the detection of the earliest stages of diabetic retinopathy [26] or 

glaucoma [16] is expected to be significantly more accurate when using layer segmentation 

methods. We expect that the most efficient fully automated remote diagnostic system for 

ophthalmic diseases would incorporate both of these approaches. The development of such a 

comprehensive method is part of our ongoing work. 
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