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Abstract: Bioresorbable vascular scaffolds (BVS) have gained significant 

interest in both the technical and clinical communities as a possible 

alternative to metallic stents. For accurate BVS analysis, intravascular 

optical coherence tomography (IVOCT) is currently the most suitable 

imaging technique due to its high resolution and the translucency of 

polymeric BVS struts for near infrared light. However, given the large 

number of struts in an IVOCT pullback run, quantitative analysis is only 

feasible when struts are detected automatically. In this paper, we present an 

automated method to detect and measure BVS struts based on their black 

cores in IVOCT images. Validated using 3 baseline and 3 follow-up data 

sets, the method detected 93.7% of 4691 BVS struts correctly with 1.8% 

false positives. In total, the Dice’s coefficient for BVS strut areas was 0.84. 

It concludes that this method can detect BVS struts accurately and robustly 

for tissue coverage measurement, malapposition detection, strut distribution 

analysis or 3D scaffold reconstruction. 

©2014 Optical Society of America 

OCIS codes: (100.6950) Tomographic image processing; (110.4500) Optical coherence 

tomography. 
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1. Introduction 

In coronary artery disease (CAD), plaques build up in the vessels and obstruct the oxygen-

rich blood supply to the heart muscle, which can cause angina or eventually a heart attack. 

Nowadays, stenting after angioplasty is one of the main treatment options for CAD. Stents are 

tiny tube-like devices that are usually made of metal meshes, designed to support the vessel 

wall to prevent the acute vessel recoil after the plain-old balloon angioplasty [1]. The first 

introduced stent was the bare metal stent (BMS), with a known risk of neointimal hyperplasia 

(NIH) which re-narrows of the vessel lumen [2]. The drug-eluting stent (DES) emerged as an 

alternative to the BMS. It can alleviate NIH significantly, but later, multiple risk factors 

became evident, such as late stent thrombosis and late acquired malapposition [3, 4]. As a 

result, a new concept of the temporary stent or scaffold was proposed. Such a device is 

designed to offer temporary radial strength to avoid the acute vessel closure as a consequence 

of the acute vessel recoil, and at a later stage, it will be fully absorbed, leading to restoration 
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of lumen patency and vascular flow [5, 6]. A series of temporary vascular stents, termed 

“Bioresorbable Vascular Scaffold (BVS),” have been developed and undergone extensive 

clinical evaluation in the past ten years [4, 7–10]. ABSORB BVS (Abbott Vascular, Santa 

Clara, California, US) is one of first developed temporary scaffolds which have been used for 

clinical treatment. It consists of a backbone of poly-L-lactide coated with poly-D,L-lactide 

which contains and controls the release of the antiproliferative drug everolimus (Novartis, 

Basel, Switzerland) [11]. The thickness of backbone with coated drug layer is 158 µm. 

ABSORB BVS will be fully absorbed approximately two years after implantation and has 

exhibited strong positive clinical and angiographic results [12]. 

Intravascular optical coherence tomography (IVOCT) is being increasingly used during 

BVS studies and clinical trials for accurate BVS analysis to assess the rate of bioresorption 

and to inspect the response of vessel walls [13]. As a relatively new optical signal acquisition 

technique, IVOCT imaging has a radial resolution of about 10 µm which is ten times higher 

than its comparable technique: intravascular ultrasound (IVUS). IVOCT has a limited 

penetration of 3 mm, but it provides a better signal-to-noise ratio than IVUS within the 

limitation. Furthermore, IVOCT imaging is particularly suitable for BVS struts as they are 

made of translucent polymers [12]. The transmitted light can readily pass through them and 

backscattering originates from the difference in refractive index between a strut and its 

environment (flush fluid or tissue), which results in bright boundaries. Besides, if a strut 

contains a big fracture which appears as a scattering center, it looks similar to confluent struts 

[14]. An IVOCT image with newly implanted BVS struts in two different coordinate systems 

is shown in Fig. 1. There are different BVS strut shapes; however, struts having bright 

boundaries and box-shape black cores account for 100% of the shapes at baseline, more than 

82% at 28 days and 80% at 24 months of all the struts [15]. Therefore in this paper we will 

focus on the box-shape type of BVS struts. The strut area is measured based on its black core. 

The bright boundary is not included since when a strut is covered by tissue, its boundary 

cannot be precisely defined, while for a newly implanted strut, its thickness will be 

overestimated by measuring the distance between the leading-edges of its adluminal wall and 

abluminal wall [12]. 

 

Fig. 1. A baseline IVOCT image in (a) the Cartesian coordinate system and (b) the polar 

coordinate system. In both images, the imaging catheter (IC), the protective sheath (PS), the 
guide wire, a micro vessel and a BVS strut are marked. 

Many automated metallic stent strut detection methods [16–19] have been published. 

However, to the best of our knowledge, current BVS analyses in IVOCT images still rely on 

the labor intensive manual delineation of struts. Given the large number of struts in a pullback 

run, quantitative analysis is feasible only when struts can be detected automatically. In this 

paper, we present an automated method to detect BVS struts and to measure their black core 

areas in IVOCT pullback runs. 
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2. Method 

To detect struts accurately, a-priori information of the input IVOCT data set type (baseline or 

follow-up) is requested, as the presented algorithm has two slightly different strategies for 

baseline and follow-up images with respect to some different parameters, false positive filters 

and the region of interest (ROI). However, in this section, the described procedures are 

implicitly used for both strategies, unless stated differently in context. As Fig. 2 shows, both 

strategies contain five main steps: 1) Pre-processing. The bright components in the lumen 

including the imaging catheter, the guide wire and the protective sheath should be detected 

and masked; 2) Image transformation. The lumen contour and center are detected so that we 

can transform Cartesian IVOCT images into new polar images based on the lumen center. In 

the new polar images, the shapes of BVS struts are usually more rectangular than these in the 

original polar images; 3) Candidate strut detection. In the new polar images, short candidate 

segments describing black cores are detected and later clustered as candidate struts; 4) False 

positive removal. These are removed using a series of false positive filters; 5) Strut contour 

refining. The strut contours are refined to be smooth and accurate for area measurement and 

center calculation. In the following subsections, each step of the method is described in more 

detail. 

IVOCT 

images

    Preprocessing:
          Imaging catheter detection

          Guide wire detection

          Protective sheath detection

          Image masking

    Image transformation:

          Lumen contour detection

          Lumen center detection

          New polar image generation

BVS 

struts

False positive 

removal

Strut contour 

refining

    Candidate strut detection:

          Candidate segment detection

          Segment clustering

 

Fig. 2. The flow chart of the BVS strut detection method. 

2.1 Preprocessing 

Bright components inside the lumen, including the imaging catheter, the guide wire and the 

protective sheath, were masked to improve the further processing. The imaging catheter 

center is the center of Cartesian images, and as Fig. 1(a) shows, the imaging catheter produces 

a series of very bright concentric circles, which appear as vertical lines in the polar images as 

presented in Fig. 1(b). After a proper Z-offset correction, the imaging catheter is located in 

the same position in the whole pullback run and hence can be detected in the minimum image 

of the entire pullback run by checking the intensity sum of every column [20]. If a guide wire 

is used during the image acquisition, it blocks the light signal and consequently generates a 

black shadow behind it. According to its intensity profile, the guide wire and its shadow were 

detected using a previously developed method [21]. 

The imaging catheter is always covered by a protective sheath which appears as a ring 

with a certain width dependent on the manufacturer and catheter type. During the image 

acquisition, the imaging catheter moves sideways inside the protective sheath, thus the 

protective sheath position varies during the pullback and therefore must be detected frame by 

frame. First, a ROI was defined for the detection. It started from the outer wall of the imaging 

catheter and was wide enough to cover the protective sheath. As the protective sheath 

diameter and the image resolution are known, a proper width of the ROI can be computed. 

Next, the Prewitt compass edge filter with a kernel sensitive to vertical edges [22] was 

applied to the image, so that the outer (bright-to-dark) edge of the protective sheath was 
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represent by strong negative values. The gradient image was used as a cost matrix to which 

Dijkstra’s algorithm [23] was applied to detect the minimum cost path dynamically. This path 

is the outer boundary of the protective sheath. An example of the detection results of the 

imaging catheter, the protective sheath and the guide wire shadow region is given in Fig. 3(a). 

To avoid creating new dark to bright edges that may influence the lumen contour detection, 

the image region inside the protective sheath was masked using the background intensity 

value. It was computed based on a fixed percentile of the histogram of the entire image 

sequence. An example of the preprocessed image is presented in Fig. 3(b). 

 

Fig. 3. The detected imaging catheter (dashed straight line “1”), protective sheath (solid curve 
“2”) and guide wire shadow region (area “3”) are given in figure (a). The masked image is 

given in figure (b). Inside the protective sheath, it is masked with the background intensity 

value, while the guide wire shadow region is masked as 0. 

2.2 Image transformation 

Our BVS strut detection is applied to polar images. However, the box-shape BVS struts are 

usually distorted like parallelograms in the original polar images, since they are converted 

from Cartesian images based on the catheter center instead of the stent contour center. To 

improve the BVS strut appearance, new polar images should be created from Cartesian 

images based on the stent contour center. As lumen contour is similar to the stent contour in 

most of the cases, its center was used as an approximation of the stent contour center. 

 

Fig. 4. The gradient images of a baseline image and a follow-up image are given in figures (a) 
and (b). They are used for lumen detection. Yellow curves indicate the detected minimal cost 

paths. In figures (c) and (d), the original polar images are presented with lumen contours 

(white curves). The new polar images transformed based on the lumen center are shown in 
figures (e) and (f) in which most of the BVS struts are more rectangular than in original polar 

images. 
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The lumen boundary was detected in the original polar images. First, the images were 

denoised using a median filter [24] to smooth the lumen boundary. Next, a gradient image 

was generated by applying the Prewitt compass edge filter with the kernel for vertical edges 

to the smoothed image. Two examples are given in Figs. 4(a) and 4(b). In the gradient image, 

the lumen boundary is represented by strong negative values and hence Dijkstra’s minimum 

cost path detected in it was treated as the lumen boundary as Figs. 4(c) and 4(d) demonstrate. 

The detected lumen boundary was converted into the Cartesian coordinates system and its 

center was detected using a distance transformation method presented in [25]. Based on the 

lumen center, a Cartesian image can be transformed into a new polar image like Fig. 4(e). 

Compared with the original polar images, the shapes of most BVS strut are more rectangular. 

However, in some cases, the lumen contour is highly irregular, so that BVS struts are still not 

rectangular after the image transformation as Fig. 4(f) shows. They have irregular shapes and 

different thickness in the vertical direction. The proposed method contains procedures to 

detect these irregular struts in the further steps, but in the worst situation, these struts cannot 

be detected. 

2.3 Candidate strut detection 

In the new transformed polar images, candidate BVS struts were detected. As mentioned in 

the beginning, the presented method has two different strategies to detect baseline and follow-

up struts, separately. There are three main differences between them: 

1. Different ROI for strut detection. For baseline data sets, the struts are usually aligned 

with the lumen boundary or malapposed, which means most of the struts are inside the lumen 

contour as Fig. 4(e) demonstrates. However, the lumen detection may be affected by 

confluent struts or struts placed inside the tissue, so that the detected lumen contour may 

follow the front wall of these struts instead of the back wall. To cover all the baseline struts, 

the detected lumen contour needs to be extended with an offset equal to BVS strut thickness. 

The ROI of baseline strut detection is between this extended contour and the previously 

detected protective sheath contour. In contrast, in the follow-up data sets, most of the BVS 

struts are outside the lumen contour as Fig. 4(f) shows, but when some struts are not covered 

by tissue, the detected lumen contour could pass behind them mistakenly. To include all the 

follow-up struts, we need to shrink the lumen contour to the lumen center direction with an 

offset equal to BVS strut thickness. Therefore, the ROI for follow-up strut detection is 

between the shrunken lumen contour and the image boundary. 

2. Different thickness threshold. After implantation, BVS struts start to be degenerated 

and covered by healing tissue. Hence, the boundaries of the follow-up struts are less sharp 

than newly implanted struts. Consequently, the method uses a slightly bigger thickness 

threshold to detect follow-up struts than the newly implanted struts. This parameter is set 

based on the image resolution and will be described later in this section. 

3. Different degree of the boundary completeness. The boundary of a newly implanted 

strut usually contains many small gaps as Fig. 4(c) shows. Because a baseline strut is not 

covered by tissue, its box-shape boundary is mostly created by the backscattering at the strut 

surfaces which could be affected by the strut position and orientation. Parts of the boundary 

could be blurred or even missing. Moreover, the residual blood and other artifacts also can 

affect the completeness of the box-structure. At follow-up stage, struts are usually covered by 

tissue which helps to generate bright boundaries as Fig. 4(d) shows. Compared with the newly 

implanted struts, the follow-up struts have a more complete box-shape boundary and hence 

the method is stricter with regard to their boundary shape and completeness. 

In the ROI, we first detected the candidate line segments between the front and back walls 

of BVS struts scan-line by scan-line and later clustered these segments into candidate struts. 

To detect candidate segments, both original and gradient images were used. Again, the 

Prewitt compass edge filter for vertical edges was applied to generate gradient images in 

which dark-to-bright edges are represented by negative values and bright-tot-dark edges are 
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positive values. The intensity profile and the gradient profile of a scan-line that passes 

through a BVS strut are given in Fig. 5. According to these profiles, one can state that the 

BVS region starts with a relatively high intensity (front wall) followed by a certain low 

intensity region (black core) and it ends with another relatively high intensity (back wall). As 

a result, candidate segments constituting BVS struts were detected with four main rules: 

 

Fig. 5. Figures (a) and (b) show a scan-line (white line) passing through a BVS strut in a 
baseline image and a follow up image, respectively. The corresponding gradient images are 

presented in figures (c) and (d). The intensity profile (yellow curve) and the gradient profile 

(white curve) are given in figures (e) and (f). A BVS strut always has low intensity values in 
the black core region and strong gradient values along the boundary. 

1. It has low intensity black core region. In this method, the low black core intensity 

threshold was calculated based on a fixed percentile of the histogram of the pullback run. 

2. It has a strong positive gradient value in the beginning and a strong negative gradient 

value in the end. Both the gradient value thresholds were computed according to fixed 

percentiles of the histogram of the gradient images. 

3. It has a reasonable length. Segment length represents the strut thickness in scan-line 

direction. Ideally, the thickness of BVS struts in a pullback run should be the same in each 

scan-line. However, BVS struts could still appear distorted after the image transformation in 

section 2.2, since the lumen is not always circular. Moreover, the strut boundary thickness can 

be influenced by the distance and orientation of the struts. Struts close to the imaging catheter 

or uncovered by tissue usually are characterized by a wider boundary. Therefore, the 

thickness of the strut cores in a single pullback run can be different from the standard 

thickness. In our approach, a range of acceptable thicknesses of BVS strut cores was set based 

on the standard thickness. 

4. Candidate segments should not be overlaid in the same scan-line. In case the noise has 

stronger edge than real struts, the algorithm allows more than one candidate segment in the 

same scan-line. However, when two candidate segments were found overlaid in the same 

scan-line, only the one having the highest intensity sum of the front and back walls was 

selected. If they both had the same intensity sum, the longest one was saved. 
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For example, the candidate segment results for Figs. 6(a) and 6(b) are presented in Figs. 

6(c) and 6(d), which still contain some false candidate segments. They are generated due to 

the residual blood, micro-vessels, plaques and weak signal region deep in the tissue. 

 

Fig. 6. Figure (a) shows a new polar baseline image that is transformed based on the center of a 

highly irregular lumen contour. The BVS struts in figure (a) still appear distorted and their 

thickness in the vertical direction is very different. Figure (b) demonstrates a follow-up image 

transformed based on the center of a circular lumen contour. The BVS struts are less distorted 

than these in figure (a). The detected candidate line segments (short white lines) are presented 

in both figures (c) and (d). Both white and black arrows point out the candidate segments 
caused by residual blood or noise in tissue. These candidates will be clustered as false 

candidate strut during the clustering. After the false positive removal, only real struts are left as 

figures (e) and (f) shows. 

After having obtained the BVS candidate segments, a clustering method was applied to 

merge these segments into candidate struts. As Figs. 6(c) and 6(d) show, the candidate 

segments belonging to the same BVS strut are connected, while the false positives are usually 

randomly distributed. In this method, the segments were clustered according to their position. 

It started from the first un-clustered candidate segment and searched for the next segment 

close to it. A candidate segment can be added to the cluster if it is connected with the last 

segment in the cluster. The searching continues until no more segments can be attached. Next, 

we checked if a cluster has top and bottom boundaries as BVS struts should have box-shape 

boundaries. The follow-up BVS strut boundary is usually complete due to the tissue coverage 

so that only clusters having both top and bottom edges were saved. In baseline data sets, the 

BVS strut could have an incomplete box-structure, so that the method allows a cluster to miss 

its top or bottom boundaries. 

2.4 False positive removal 

During the clustering, many false candidate struts were generated from false candidate 

segments as presented in Figs. 6 (c) and 6(d). Therefore, a series of false positive filters were 
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applied to the clustering results to remove them. First, the strut size was used for filtering. A 

BVS strut should contain a certain number of candidate segments. Small clusters are usually 

caused by random noise or artifacts in the images. In our research, clusters containing less 

than 3 candidate segments were removed as false positives. A second filter was applied to 

search for overlaid struts in each scan-line, because there should be at most one strut in any 

radial direction, but some false positives can share parts of the boundary with real struts. As a 

result, when two clusters were overlaid in the radial direction, only the one with complete 

box-structure was saved. If both clusters had complete box-structures, the bigger cluster was 

kept. 

The third filter is only applicable for follow-up data sets. After the first two filters, a few 

false positives may still exist in the deep tissue region which contains much random noise due 

to the weak signal. Compared with the true positives, these false positives were commonly 

located deeper in the tissue; therefore, a filter was applied to remove outliers based on the 

thickness of tissue coverage (the distance between struts and the lumen boundary) for each 

candidate strut, so that a candidate strut having a very different thickness of tissue coverage 

with the majority was considered as a false positive, since the thickness of tissue coverage 

changes smoothly in the follow-up data sets. After the previous filtering, the majority of 

current results should be true positives. Therefore, the median coverage thickness was 

computed for outlier detection. To be accurate, the clusters in the neighboring frames were 

used to estimate the median coverage thickness as well. This filter also removed most of the 

false positives caused by micro vessels and plaques. However, it is not applicable for baseline 

data sets, as the malapposed struts could have very different distances to the lumen boundary. 

Examples of the false positive removal results are given in Figs. 6(e) and 6(f). 

 

Fig. 7. The original boundaries of clusters formed by white points in figure (a) and the 

smoothed boundaries in figure (b). 

2.5 Strut contour refining 

After false positive removal, the main bodies of the strut black cores were detected. As the 

candidate segments were always selected with the strongest boundary intensity, the detected 

adluminal and abluminal walls of BVS struts were usually rough. Besides, the original 

boundary could be fluctuating because of the noise, inside fractures and low image quality. 

Examples of the unsmoothed BVS strut contours are shown in Fig. 7(a). Therefore, the front 

wall and back wall of each detected strut were smoothed using a median filter. Any outliers 

were replaced by the interpolated point between the nearest neighboring points. The 

smoothing results are show in Fig. 7(b). 

The main bodies of the strut cores were formed by line segments with a range of 

acceptable thickness. However, an irregular shape strut could contain sharp tips in one or both 

ends as Fig. 8(a) shows. The core regions in the sharp tips have smaller thickness than the 

acceptable thickness and usually contain more noise than the main body. As a result, the 

sharp tip regions might be missed during the detection. To recover these tip regions, a post-

processing was applied. First, the adluminal and abluminal boundaries were fitted into lines 

using the least-square error method and the fitted lines specify the ROI for tip refining. Due to 

the irregular lumen contour, a long BVS strut could be curved, so its front and back walls 

cannot be fitted into one single line. To be accurate, we fitted two separated lines for the top 

and bottom boundary of the struts containing more than 20 candidate segments as Fig. 8(b) 
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presents. Next, along the fitted lines, the adluminal and abluminal walls for the missed sharp 

tip regions were recovered by searching continuous boundaries in the Prewitt edge filtered 

polar images. The searching ended when the fitted line met the top or bottom edges. The 

recovered boundary can be seen in Fig. 8(c). In the end, a spline contour was generated for 

each BVS strut based on the refined boundary as Fig. 8(d) shows. At the same time, the center 

of each BVS strut was calculated. 

 

Fig. 8. Figure (a) shows the smoothed boundaries of a cluster in yellow dots. In figure (b), two 

white lines are fitted to the top part of the strut boundary and two light blue lines are fitted to 
the bottom part of the strut boundary. Along the fitted lines, the missed boundaries in the sharp 

tip regions are recovered as figure (c) demonstrated and the final refined strut contour is 

generated as (d) presents. 

3. Validation and results 

The automatic BVS strut detection and measurement method was developed using the 

MeVisLab toolbox (Fraunhofer MeVis, Bremen, Germany) together with in-house developed 

C++ modules. For validation purposes, 6 pullback runs were used which were acquired using 

a C7-XR FD-OCT intravascular imaging system together with a C7 Imaging catheter (St. 

Jude Medical Inc., St. Paul, MN, USA). The automated pullback speed was 20 mm/s with a 

data frame rate of 100 frames per second. All the pullback runs are in the original 16-bit polar 

format and each contains 271 frames. Three pullback runs were acquired at baseline, while 

the other three at 6 to 24 months, respectively. In both baseline and follow-up groups, one 

pullback run contains no guide wire and the other two contain a standard 0.014 inch steerable 

guide wire. Temporary blood flushing was performed with a contrast infusion. All the stents 

are the ABSORB 1.1 bioresorbable vascular scaffold (Abbott Vascular, Santa Clara, CA, 

USA). Overtime struts are absorbed. According to the trails for the ABSROB BVS [15], there 

is about 9% reduction of struts in IVOCT images over 6 months and 35% reduction over 24 

months. Already due to the difference in position of the IVOCT catheter for the same scaffold 

at the same time point, there could be a difference in the number of struts. In our study, the 

baseline and follow up data sets are from different patients and therefore the number of struts 

is different. Part of the BVS struts could become undetectable after 24 months, but every 

visible strut in the 6 in-vivo IVOCT pullback runs were used for validation purposes, 

including struts without box-shape and the struts partly blocked by guide wire shadows. 

To generate the ground truth, one observer manually drew all 4691 black cores of BVS 

struts in the 6 pullback runs, 2183 cores from the baseline group and 2508 from the follow-up 

group. A second independent observer manually drew all the struts in a subset containing one 

baseline data set and one follow-up data set. The second observer drew one contour for a strut 

with big fractures. These struts contain more than one black core, and have similar 

appearance as confluent struts. Therefore, the ground truth from the second observer contains 

some bright regions between black cores compared with that from the first observer as Figs. 
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9(a) and 9(b) shows. For incomplete struts, both observers marked the contour based on 

experience. In total, 726 newly implanted struts and 795 follow-up struts were marked by the 

second observer. In the same subset, the first observer marked 783 baseline cores and 819 

follow-up strut cores. The agreements for BVS strut were given in Sensitivity and the core 

area agreements were computed using the Dice’s coefficient. The inter-observer agreement of 

the BVS struts was 98.8% for baseline struts and 99.6% for follow-up struts. The strut area 

similarity was both 0.83 in the baseline group and the follow-up group. The area difference is 

mainly because the first observer did not include the bright region caused by big fractures. 

 

Fig. 9. Figure (a) shows two black cores marked by the first observer and they were marked as 
a big strut by the second observer as figure (b) presents. A comparison of the ground truth 

(solid white contours) from the second observer and the algorithmic results (dashed yellow 

contour with white translucent mask) in a baseline image is presented in figure (c) and another 
comparison of the ground truth from the first observer and the algorithmic results in a follow-

up image is given in figure (d). The enlarged images of the white rectangle regions are given in 

figures (e) and (f). 

During the evaluation, if a detected strut overlays the area of a ground truth, it was 

counted as a true positive. Otherwise, it is a false positive. The accuracy of black core area 

was measured by Dice’s coefficient as well. According to the first observer, on average, the 

method correctly detected 90.0 ± 3.2% struts with 3.1 ± 0.7% false positives in every baseline 

data set and the Precision was 97.0 ± 0.1%. The Dice’s coefficient for the BVS strut area was 
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0.83 ± 0.02. If we measure only the area of the correctly detected struts, the Dice’s coefficient 

was 0.86 ± 0.01. For the follow-up group, the method detected 96.6 ± 2.0% struts correctly 

with only 0.8 ± 0.8% false positives and the Precision was 99.2 ± 0.1%. The Dice’s 

coefficient for the strut area was 0.85 ± 0.02. For only the true positive struts, the number was 

0.86 ± 0.01. According to the second observer, the method successfully detected 90.8% of 

baseline struts with 4.3% false positives and the Precision was 95.9%. 92.6% of follow-up 

struts were detected with 2.2% false positives and the Precision was 97.7%. The Dice’s 

coefficient for baseline and follow-up strut areas was 0.76 and 0.75, separately. Counting 

only true positive areas, the Dice’s coefficient was 0.79 and 0.77. Some examples of the 

ground truth from both observers and algorithmic results are given in Figs. 9(c)–9(f). The 

strut detection and the area measurement performance for each individual pullback run are 

presented in Table 1 and Table 2, separately. 

The center position error of the correctly detected strut was computed as well. The 

average distance error of the strut centers was 17.0 ± 22.5 µm for newly implanted struts, 13.9 

± 11.1 µm for follow-up struts and 15.3 ± 21.0 µm for all struts. The median distance errors 

for two groups were both 11.1 µm. 

Table 1. The strut detection results of the presented method for each validation data set. 

For each data set, the number of frames containing struts (Frame No.), the numbers of 

struts in the ground truth (GT), the percentages of true positive (TP) and false positive 

(FP) are given 

Strut status Data set 
Frame No. 

(with struts) 
No. of GT TP (%) FP (%) 

Baseline 

1 89 630 85.5 3.8 

2 94 770 92.2 3.3 

3 93 783 92.5 2.0 

Follow-up 

4 97 868 93.7 0.0 

5 91 819 98.0 0.6 

6 97 821 90.4 1.8 

Total - 561 4691 93.7 1.8 

Table 2. The strut area measurement performance of the present method in each 

validation data set. The area of the ground truth (GT) and the Dice’s coefficient between 

the ground truth and the algorithmic results are given for all struts and only successfully 

detected struts 

Strut status Data set Area of all struts  Area of only true positives 

  GT area (mm2) Dice  GT area (mm2) Dice 

Baseline 

1 16.4 0.81  15.0 0.86 

2 14.3 0.82  13.7 0.85 

3 15.9 0.85  15.4 0.87 

Follow-up 

4 20.1 0.87  19.9 0.88 

5 19.8 0.83  19.0 0.85 

6 18.3 0.84  18.0 0.85 

Total - 104.8 0.84  101.0 0.86 

4. Discussion 

According to the validation results, the algorithm successfully detected 96.6 ± 2.0% follow-

up struts with only 0.8 ± 0.8% false positives and 90.0 ± 3.2% newly implanted struts with 
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3.1 ± 0.7% false positives. The strut center error was 15.3 ± 21.0 µm. Generally, the 

presented method is accurate and robust under different image circumstances. The 

performance for the follow-up group is slightly better than the baseline group, because 

follow-up BVS struts have more complete box-shape boundaries due to the tissue coverage. 

Backscattering on the interface between struts and tissue creates strong bright boundaries. By 

checking the boundary completeness during the clustering, the algorithm can easily remove 

most of the false positive from the follow-up pullback runs. In contrast, the contour of newly 

implanted struts can be influenced by noise in the lumen, such as residual blood, and hence 

contains many gaps. The algorithm keeps the clusters that have mild incomplete boundaries to 

avoid removing too many true positives, but fails to keep the real struts having severe 

incomplete boundaries. On the other hand, it also leaves more false positives in the results 

than the follow-up data set. Most of these false positives can be later removed by the filters, 

but still a few could leave as they are difficult to distinguish. Actually, most of the final false 

positives are from the baseline group. Similarly, the strut area performance in the follow-up 

pullback runs (0.85 ± 0.02) is also better than in the baseline pullback runs (0.83 ± 0.02). 

When a BVS strut fractures, it generates bright scattering regions that separate the strut 

into several black cores as Fig. 9(a) shows. In this case, the first observer marked each cores 

separately, while the second observer drew one big contour for all the cores including the 

bright fractures as Fig. 9(b) presents. Hence, the manual results from the second observer 

contain fewer struts but more strut areas than those from the first observer, and the false 

positive rate according the second observer is 3.2% and the Dice’s coefficient for the strut 

area is 0.75. However, if we count only the agreed areas between two observers, 95.1% and 

96.9% of these areas were correctly detected for baseline and follow-up groups, separately. It 

suggests that the algorithmic results have a good agreement with the black core regions from 

both observers. The area errors in the baseline data sets are largely caused by incomplete 

boundaries, because the strut areas may be overestimated or underestimated. The area errors 

for follow-up struts are mainly due to the blurred boundary edges, because struts are slowly 

bioresorbed after implantation. Tissue coverage also weakens the sharpness of strut 

boundaries. As this method prefers strong edges when detecting struts, the final follow-up 

strut contours could be distorted. 

The strut detection also replies on the proper preprocessing. The imaging catheter, the 

guide wire and the protective sheath should be removed to facilitate the lumen detection. 

Besides, these bright components also can negatively impact the baseline strut detection. The 

lumen center is used as an approximation of the stent contour center. After transforming the 

Cartesian image to a new polar image based on the lumen center, we could get more 

rectangular strut contours. However, when the lumen contour is highly irregular, the BVS 

strut in the transformed polar image could be still distorted like a parallelogram and in many 

cases, the strut edges are not straight. Therefore, the thickness and the shape of these struts 

could vary a lot during in the pullback run. To handle this situation, the presented method 

allows a range of acceptable thickness instead of only the standard thickness to detect as 

many candidate segments as possible, and in the end, refines irregular strut contours to be 

more accurate. In a rare case, a strut can be highly distorted in the new polar image and 

therefore, cannot be detected by this method. 

Most of the parameters used in the presented method are related to the image size and 

image resolution, while the remaining three parameters were set based on the histogram of the 

original images or the gradient images. These parameters are the minimum intensity threshold 

for strut boundary, the minimum absolute gradient threshold for edges and the maximum 

intensity threshold for black core regions. One data set from each group was used for 

parameter tuning. The same parameter setting was applied to all the pullback runs during the 

validation. 

The presented method also has limitations. The BVS struts can have four different 

appearances: preserved box, open box, dissolved black box and dissolved bright box [15]. 
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This method can only detect the majority of the cases, being the preserved box, which has a 

closed high intensity boundary and a low intensity core. All other three types cannot be 

detected. It also has limitations to handle struts with an incomplete boundary. Moreover, in a 

few cases, BVS struts can be overlaid after the implantation, but our method cannot detect the 

overlapping BVS struts, because a false positive filter checks all the overlapping results in 

radial direction. Only one of these struts could be left in the results. This research is based on 

the ABSORB 1.1 BVS struts; hence our results cannot be directly generalized to other type of 

BVS struts which may have different appearance with ABSORB 1.1 BVS after implantation 

and during the follow up. 

5. Conclusion and future work 

In conclusion, with the ongoing development of BVS technology, automated BVS strut 

detection methods become important as they can simplify and speed the quantitative analysis 

for both clinical research and medical care. In this paper, we implemented an automatic 

method to detect and measure BVS struts based on the black core region in both baseline and 

follow-up IVOCT image sequences. The validation results suggest that the proposed 

algorithm is very accurate and robust, which could be a helpful tool for tissue coverage 

thickness measurement, strut distribution analysis, 3D visualization, BVS bioresorption 

validation and vascular response research. In future, we plan to improve the current detection 

method and to detect BVS struts without box-shape contours. 
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