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Abstract

The endothelial lining of the vasculature performs a vital role in maintaining fluid barrier 

functions despite balancing nutrient and fluid content of tissues, repairing localized damage, 

coordinating responses of a plethora of factors, immune cells and platelets through a multitude of 

endothelial cell surface receptors. Viruses that nonlytically cause lethal hemorrhagic or edematous 

diseases engage receptors on vascular and lymphatic endothelial cells, altering normal cellular 

responses that control capillary leakage and fluid clearance functions with lethal consequences. 

Recent studies indicate that receptors directing dengue virus and hantavirus infection of the 

endothelium contribute to the dysregulation of normal endothelial cell signaling responses that 

control capillary permeability and immune responses that contribute to pathogenesis. Here we 

present recent studies of virally altered endothelial functions that provide new insight into 

targeting barrier functions of the endothelium as a potential therapeutic approach.

Introduction

The endothelium is a tissue that lines capillaries and regulates solute, gas, and fluid 

exchange between tissues and vascular compartments through a complex series of 

endothelial cell (EC) surface receptor interactions [1, 2]. The critical nature of the EC fluid 

barrier is evident from the redundant failsafe mechanisms in place to prevent a lethal 

vascular breach and a discrete lymphatic system designed to clear excess fluid from 

interstitial spaces [3]. Microvascular and lymphatic EC (MEC and LEC) surface receptors 

and the endothelial glycocalyx are keys to fluid management and vascular homeostasis. The 

endothelial glycocalyx is mainly composed of surface-anchored syndecans and glypicans 

carrying highly sulfated, linear glycosaminoglycan attachments such as heparan, 

chondroitin, and dermatan [4]. Interactions between the glycocaylx, cell surface integrins, 

(ie. αvβ3, αvβ1) adhesions molecules (ie. PECAM, ICAM, and VCAM), and inter-

endothelial adherens junctions (VE-cadherin) form a meshwork of EC specific cell surface 

sensors that maintain EC barrier functions [4]. This task is complicated by the requirement 
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for ECs to respond to a plethora of permeabilizing factors (ie. VEGF, TNFα, PAF), tissue 

conditions, damage responses, and immune cell extravasation that require junctional 

plasticity while maintaining a fluid barrier.

Although the endothelium normally prevents adhesion of leukocytes and platelets, pathogen 

activation of the endothelium directs localized immune cell adherence and extravasation 

without EC lysis or hemorrhage [4–12]. However, localized concentrations of cytokines, 

chemokines, clotting cascades, growth factors, and nitric oxide, whose concentrations are 

increased as a result of infection, may engage EC receptors and reduce barrier integrity [1, 2, 

13–18]. Inflammatory mediators such as TNFα and LPS can also cause degradation or 

shedding of the EC glycocalyx [4]. TNFα induces EC activation, attracting mast cells and 

inducing responses of cytokines, proteases, and heparanases that degrade glycocalyx 

moieties and glycan receptors [4, 19].

Altered endothelial barrier functions are implicated as the cause of hemorrhagic disease 

following infection by a number of viruses, including dengue viruses, hantaviruses and 

arenaviruses, that nonlytically infect ECs [5–12, 20]. Changes in EC functions are likely to 

result from EC surface receptor and cytoplasmic signaling responses as well as EC 

interactions with immune cells. Dengue viruses engage EC surfaces through interactions 

with heparan sulfate moieties that direct viral entry [21]. Dengue virus infection of ECs 

results in changes in signaling pathways and cellular gene expression profiles, which in turn 

may influence EC fluid barrier functions both directly and through the induction and 

secretion of immune-enhancing chemokine and cytokine responses [21, 22]. Thus the means 

by which dengue attaches to and enters ECs is central to its ability to direct disease and 

fundamental to therapeutically resolving dengue-induced vascular permeability deficits.

Direct contact with EC surface receptors is also associated with changes in vascular 

permeability via signaling pathway responses resulting in the dissociation of VE-cadherin 

within adherens junctions (AJs) [23–26]. Under normal conditions VEGF directs the 

dissociation of AJs in order to repair vascular damage. However, VEGF is also 50,000x 

more potent than histamine in directing EC permeability, and high altitude induced 

pulmonary edema is the result of aberrant hypoxia-induced VEGF permeability [13, 14, 17, 

26–29]. Hantaviruses bind and inactivate αvβ3 integrin conformers that normally form 

complexes with VEGF receptors, and thus hantaviruses similarly disengage the normal 

regulation of VEGF-induced permeability [7, 30–37].

The endothelium contains a vast array of receptors that play critical roles in the regulation of 

immune cell adherence, capillary permeability, platelet and complement activation, clotting, 

and vasodilation responses, all of which can be greatly altered by virus infection and 

contribute to hemorrhage or edema [10]. In addition, lymphatic tissues and lymphatic 

endothelial cells (LECs) are uniquely regulated by discrete cell surface receptors and 

emerging as a system critical to the regulation of edema, tolerance, and immunity [28, 38–

40]. Although lymphatics are often forgotten, these vessels clear fluid from tissues and in 

lymph nodes LECs constitutively express MHCII and are sentinel antigen presenting cells 

that determine tolerance and clearance responses [38, 41]. Recent studies indicating that 

hantaviruses infect and dysregulate normal LEC functions further suggest roles for 
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lymphatic EC receptor responses that alter pulmonary fluid clearance functions of hantavirus 

pulmonary syndrome (HPS) patients [39, 42, 43]. This review explores the ways in which 

dengue and hantaviruses contact and alter endothelial cell surface receptors and their 

corresponding signaling pathways, leading to hemorrhagic disease and vascular 

permeability.

Endothelial Cells and Dengue Virus

Dengue virus is a mosquito-borne flavivirus that causes a mild febrile illness, dengue fever 

(DF), and two highly lethal vascular permeability based diseases: dengue hemorrhagic fever 

(DHF) and dengue shock syndrome (DSS) [44, 45]. DSS and DHF are edematous and 

hemorrhagic diseases, respectively, that occur in the absence of EC lysis [45]. The presence 

of dengue virus infected ECs in patients rationalizes their contribution to severe dengue 

disease [5, 46–49], and while their role in pathogenesis is still unknown, infected ECs can 

potentially alter barrier functions, permit immune cell targeting, elicit cytokine and 

chemokine responses, and contribute to viremia [50, 51]. Dengue virus reportedly infects a 

variety of cells including immune, dendritic, endothelial, and liver cells through attachment 

to cell surface receptors. The dengue virus envelope protein reportedly binds to Fc receptors, 

DC-SIGN, ICAM3, CD14, mannose receptor, HSP70/90, GRP78, laminin receptor, heparan 

sulfate proteoglycans (HSPGs), and the mannose receptor [52–62]. However, a consensus 

dengue virus receptor has not yet been defined.

Recent studies show that dengue virus infects ~80% of primary human ECs with viral 

antigen present by 24 hours after infection. Infection is rapidly productive, releasing ~105 

FFUs/ml of dengue virus into the media 1 day post-infection [21]. Furthermore, heparin, 

heparan sulfate, heparinase and protease, but not antibodies to a number of other cell surface 

receptors, block dengue virus infection of primary human ECs. Dengue virus binds 

specifically to immobilized heparin and is competitively inhibited by the addition of excess 

heparin [21]. Thus, dengue virus productively infects human ECs via attachment to heparan 

sulfate-containing cell surface receptors. Indeed, carbohydrate moieties of cell surface 

glycoproteins, glycolipids, and proteoglycans serve as receptors for enveloped and non-

enveloped viruses alike [63]. These negatively-charged carbohydrate receptors are also 

commonly responsible for specific tissue tropism, making them key targets for limiting viral 

spread [63].

Dengue nonstructural proteins may also enhance DV pathogenesis through a variety of 

cytoplasmic and cell surface receptor directed signaling mechanisms. In particular, the non-

structural 1 (NS1) protein is expressed in cytosolic, secreted, and cell-surface expressed 

forms [64–66]. Secreted NS1 is highly abundant, highly antigenic, and shown to bind 

cellular heparan sulfate E present on liver and lung ECs [67]. Likewise, high quantities of 

adherent cross-reactive NS1 antibodies circulate in infected patient blood and are known to 

bind glycan surface receptors on platelets and ECs [68–70], triggering immune cell and 

complement activation [71, 72]. Furthermore, the secreted form of dengue NS1 also 

modulates classical complement activation by binding to the C4b binding protein, thereby 

inactivating C4b [72]. NS1 and NS1 antibodies form a potent combination capable of 

eliciting or regulating immune and complement responses through critical cell surface 
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glycan interactions [73]. Interestingly, dengue virus infected ECs elicit immune enhancing 

cytokine and chemokine responses that may enhance immune responses and contribute to 

DSS and DHF diseases during secondary infections perhaps by targeting non-neutralizing 

dengue antigens in ECs. These interactions, and the intracellular signaling responses they 

trigger, may contribute to EC dysfunction and vascular leakage in dengue-infected patients 

[5, 68–70]. The differential role of dengue virus regulation of EC MHCII responses in 

primary and secondary dengue virus infections has yet to be considered but may also factor 

into pathogenic mechanisms during infection by a second dengue serotype. Consideration of 

barrier-stabilizing effectors that target the endothelium may also effectively reduce vascular 

leakage and associated inflammatory effects that contribute to dengue pathogenesis [74, 75].

Hantavirus Endothelial Cell Interactions

Diverse pathogenic hantaviruses that cause hemorrhagic fever with renal syndrome (HFRS) 

or hantavirus pulmonary syndrome (HPS) were found to commonly use αvβ3 integrins to 

enter primary human ECs or CHO cells expressing recombinant human αvβ3 receptors [34, 

76–79]. Interestingly, nonpathogenic hantaviruses failed to use αvβ3 integrins and instead 

entered cells consistent with the use of β1 integrins, suggesting a fundamental difference in 

EC receptor usage that is tied to vascular permeability [34, 76]. αvβ3 integrin deficits cause 

vascular diseases and subsequent studies found that pathogenic hantaviruses bind inactive 

αvβ3 integrin conformers [34, 76, 78, 79]. αvβ3 integrins normally regulate permeabilizing 

responses of VEGF directed by VEGFR2 receptors and pathogenic hantavirus infections 

cause the hyperpermeability of ECs in response to VEGF days after infection [77, 80, 81]. 

These responses are mediated by increased VEGFR2 phosphorylation and increased 

internalization of VE-cadherin from AJs and suppressed by blocking VEGFR2-Src signaling 

pathways. The occurrence of these responses days after viral entry suggests that newly 

emergent cell-associated virus regulates αvβ3 responses (Figure 1). In fact pathogenic 

hantavirus accumulation on the EC surface was shown to occur through αvβ3 interactions 

and to recruit quiescent platelets to ECs [80]. These findings define EC receptors as targets 

of dysregulated VEGF-directed permeability responses and potential mechanisms by which 

hantaviruses inactivate platelets and contribute to thrombocytopenia. They also suggest 

quiescent platelet recruitment to infected ECs as a means of evading immune surveillance.

HPS patients are acutely hypoxic and hypoxia is a known inducer of VEGF directed 

permeability and edema. Similar to patient responses, hantaviruses enhance the permeability 

of chemically- or O2 level-induced hypoxia in MECs and LECs. This constitutively 

activates a downstream mTOR-directed pathway that normally regulates hypoxic responses, 

VEGF signaling and cellular quiescence [42, 82–85]. Interestingly, hantavirus infected 

LECs are also hyperresponsive to VEGF and hypoxia and activate mTOR signaling 

responses that are inhibited by rapamycin as well as VEGF-C, which exclusively acts on 

LEC VEGFR3 receptors [42, 86, 87]. These findings link hantavirus pathogenesis to LEC 

receptor usage and further suggest a role for hantavirus infection of LECs as a determinant 

of fluid accumulation within HPS patients. Furthermore, these results suggest that VEGF 

permeability responses contribute to vascular permeability and clearance deficits and are 

potential targets for therapeutic intervention [88–93].
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Therapeutic regulation of these responses appears to go hand in hand with the receptor and 

pathway specific regulation of VEGFR2-, Src-, and mTOR-directed responses that control 

EC barrier functions. Antibodies to VEGF suppress EC permeability and have the potential 

to antagonize VEGR2 signaling pathways as a means of reducing acute pulmonary edema in 

HPS [14, 27, 74, 81, 94–101]. In addition, well studied VEGFR2 and Src inhibitors, the 

mTOR inhibitor rapamycin, and other components which target intermediary steps in EC 

pathway activation are in clinical trials for treating human cancers but also have the 

potential to reduce the severity of viral EC permeability-based diseases [28, 81, 94–98, 101–

103]. These include Ang-1, S1P, and the drugs pazopanib and dasatinib. Angiopoietin-1, an 

EC specific growth factor, binds Tie-2 receptors and blocks VEGFR2 directed permeability 

[100, 104–109] and S1P, a platelet derived lipid mediator, stabilizes vascular barrier 

functions through Edg-1 receptor signaling [74, 95, 96, 110–113]. The redundant regulation 

of EC barrier functions provides several mechanisms by which EC receptors may contribute 

to permeability deficits, but also provides a target rich environment for restoring MEC 

barrier and LEC fluid clearance functions during viral infection. Understanding these 

receptor and pathway specific mechanisms is likely to provide a means for resolving viral 

hemorrhagic and edematous diseases by therapeutically targeting EC responses.

Conclusions

These studies highlight important cell surface targets that have the potential to regulate 

virally induced vascular permeability and for which there currently are clinically available 

therapeutics. Targeting EC responses may be broadly applicable to counteracting the 

severity of additional viral infections that disrupt normal endothelial cell function.
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Highlights (for review)

• Viruses that nonlytically cause vascular leakage infect the vascular & lymphatic 

endothelium.

• Dengue infected ECs elicit immune enhancing chemokines and direct immune 

cell targeting of ECs.

• Hantaviruses increase vascular permeability of AJs in response to VEGF 

signaling in MECs and LECs.

• The endothelium is a therapeutic target for resolving hemorrhagic and 

edematous disease.
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Figure 1. 
The figure depicts the inability to αvβ3 to regulate endothelial cell responses to hypoxia or 

VEGF at late stages of hantavirus infection resulting a localized increase in vascular 

permeability [7, 43, 79, 81, 86, 114]. αvβ3 integrins form an extracellular complex with 

VEGFR2 receptors that normally restrict the permeabilizing effects of VEGF [115–118]. 

The schematic indicates the effect of pathogenic hantavirus binding to inactive αvβ3 integrin 

conformers [79]. Consistent with hantavirus dysregulation of αvβ3-VEGFR2 responses, days 

after infection cell associated hantavirus coats the surface of endothelial cells [80, 119]. 

Hypoxia induced VEGF responses of HPS patients [120–123] are likely to enhance 

VEGFR2-Src signaling responses, which direct VE-cadherin internalization and dissociate 

adherens junctions (AJs) [7, 42, 43, 81, 86, 114]. VE-cadherin internalization decreases fluid 

barrier functions of the endothelium [97, 98] and may contribute to localized increases in 

vascular permeability [17, 29, 124] and edema during hantavirus infection [6, 18, 89, 121, 

125]. Thus dysregulation of αvβ3 functions may contribute to the enhanced VEGF 

responsiveness and permeability of hantavirus infected lymphatic and microvascular 

endothelium.
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