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Abstract

Satellite cells (SCs) are the muscle stem cells responsible for longitudinal and cross-sectional 

postnatal growth, repair after injury and which provide new myonuclei when needed. Here we 

review their morphology, contribution to development, and their role in sarcomere and 

myonuclear addition. SCs, similar to other tissue stem cells, cycle through different states such as 

quiescence, activation, and self-renewal and thus we consider the signaling mechanisms involved 

in maintenance of these states. The role of the SC niche, their interactions with other cells such as 

fibroblasts and the extracellular matrix are all emerging as important factors that affect aging and 

disease. Interestingly, children with cerebral palsy appear to have a reduced SC number, which 

could play a role in their reduced muscular development and even in muscular contracture 

formation. Finally we review the current information on SC dysfunction in children with muscular 

dystrophy and emerging therapies that target promotion of myogenesis and reduction of fibrosis.
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Introduction

Skeletal muscles are composed primarily of multinucleated myofibers with their basic 

contractile elements, sarcomeres, arranged in series to provide length and in parallel to 

provide cross-sectional area. Alexander Mauro1 first named the satellite cell (SC) in frog 

skeletal muscle based on its peripheral location in the myofiber, sandwiched between the 

sarcolemma and basal lamina. In terms of location, SCs are similar in placement to skeletal 

muscle myonuclei, i.e. on the periphery of the myofiber but are outside the sarcolemma 

whereas myonuclei are just under the sarcolemma. In other words, SCs represent a distinct 

cell type from myofibers. While the postnatal increase in myonuclear number has been 
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known since the 1960s2, the source of these nuclei during growth and repair has been 

thought to be SCs. This is because adult myonuclei are terminally differentiated, i.e. unable 

to divide, proliferate, or regenerate. Consequently there must be other myogenic tissue 

specific stem cells that can make skeletal muscle. Indeed, isotope tracing experiments 

strongly suggested that the source for postnatal increase in myonuclei comes from mitosis of 

mononucleated SCs3,4.

By definition, an adult tissue stem cell has 2 properties—the ability to differentiate to create 

new tissue and the ability to self-renew5. However, it was not until the 2000s, after 

molecular markers such as the Pax7 transcription factor were identified6, that it was 

convincingly shown that the SCs are indeed the primary muscle stem cells capable of self-

renewal and differentiation7-9. In this review, we will focus on postnatal development of 

muscle, SCs, their functional and regulatory mechanisms and their dysfunction and 

therapeutic implications. A number of excellent recent reviews on specific topics related to 

satellite stem cell biology and their role in myogenesis have been published10-17. For a state-

of-the-art review on the molecular biology of SCs, see Yin et al.17; for a historical 

perspective on the experiments that led to the discovery of the SC as well as recent 

developments, see Yablonka-Reuveni16.

While SCs were initially identified based on their sublaminar anatomical location, specific 

cell surface membrane glycoproteins and intracellular markers have now been identified. 

The most common surface markers are NCAM (CD56), M-cadherin, and CD34 while Pax7 

is nuclear (for a detailed list see Yin et al.17) and is considered the classic SC transcription 

factor6. Currently these markers have been used in human and animal studies to evaluate 

SCs by immunohistochemistry, fluorescence microscopy, fluorescence-activated cell sorting 

(FACS) and/or in vitro cell culture.

Satellite cell quiescence, activation, self-renewal and return to quiescence

The transition from SC to myofiber consists of specific steps that proceed from quiescence, 

to activation, proliferation, differentiation and finally, cell fusion (Fig. 1). During 

quiescence, SCs are located in their microenvironment and express Pax7. Upon activation, 

they enter the cell cycle to progress down the myogenic pathway by expressing myogenic 

regulatory factors (MRFs)18, starting with Myf5, then proliferate (amplify cell number) and 

are considered to be “committed” to the myogenic lineage after they express MyoD, and 

form myoblasts. At this stage, myogenin is expressed, differentiated myoblasts fuse to create 

myotubes and express myosin heavy chain, the major muscle contractile protein. Myotubes 

fuse with existing myofibers in both growth and repair (reviewed in13). At the stages of 

proliferation, differentiation and fusion, cells no longer express purely SC markers but may 

also express myogenic markers. The signaling pathways mediating myoblast fusion are 

multifactorial and complex (for review, see Hindi et al.19).

While SCs participate in growth and repair, they must also meet the other functional 

requirement of being a tissue-stem cell, i.e. self-renewal, without which the SC pool would 

be exhausted over time. SCs, like other stem cells, can undergo either symmetric or 

asymmetric division (Fig. 2). Using lineage tracing it was demonstrated that 90% of SCs had 
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expressed Myf5 at some point, indicating they had previously undergone commitment to the 

myogenic lineage and then returned to quiescence—in other words, they had self-renewed20. 

Importantly, since 10% of the SCs never expressed Myf5, this indicated that this subgroup’s 

function was to self-renew rather than differentiate. It was also shown that cellular 

orientation during division critically determined SC fate. Specifically, if the SC division 

were planar (both daughter cells in the traditional position between basal lamina and 

sarcolemma, Figs. 2A, 2B) division would result in two identical cells (symmetrical 

division), which could either increase satellite cell number or create two activated cells that 

proceed down the myogenic path. However, if orientation were apicobasal, (one daughter 

cell touching the basal lamina and the other touching the sarcolemma, Fig. 2C) development 

was likely to split with one cell becoming a myoblast and the other creating a new SC 

(asymmetrical division)20.

Postnatal muscle development

SC nuclear length is 8-12 μm across various species21,22. SC number reduces with age 

during the early postnatal period to reach a steady state value of 5-6% of the myonuclei23 

with greatest number soon after birth (~30% of the myonuclei23,24). At the extreme end of 

life, there is a reported SC number decline24-26. While the functional consequences of SC 

number decline are unclear, it is becoming clear that the SC function changes profoundly 

with aging27. The intrinsic differentiation potential of the aged SCs can remain unaltered but 

they may decline in proliferation potential, which can be rescued with the use of systemic 

factors such as Fibroblast growth factor (FGF)25 and exposure to young serum28.

Sarcomere addition

Postnatal muscle development is characterized by both longitudinal and radial muscle fiber 

growth29. Longitudinal growth increases the range over which a muscle functions while 

radial growth increases muscle contractile force30. During postnatal development in 

mammalian muscles, the number of myofibers does not increase2,31. In a series of seminal 

murine studies32-35, Williams and Goldspink measured skeletal muscle myofiber 

longitudinal and cross-sectional area increases during development. They reported increased 

myofiber cross-sectional area (Fig. 3A) by addition of myofibirils29,35 which occurred by 

fusion of the myoblasts from SCs into existing myofibers. We have recently shown29 that 

between postnatal day 1 and day 28 there was an almost twofold increase in myofibrillar 

packing, a sevenfold increase in myofiber cross-sectional area and a fourfold increase in 

muscle mass29. Longitudinal myofiber length increased fivefold primarily by addition of 

sarcomeres-in-series during the first 4-6 postnatal weeks 29,32,33. It was suggested that this 

sarcomere addition occurred primarily at the ends of the growing myofibers. Importantly, 

this distal region has been shown to be associated with the greatest number and 

concentration of SCs in developing muscles in chicks which was the basis of the 

suggestion22. Additional experiments demonstrated that growing muscle, prevented from 

increasing in length by maintaining a shortened position for 4 weeks, did not increase serial 

sarcomere number to the same extent. However, if it was then allowed to recover33 by 

removing the immobilization, subsequent stretch and growth resulted in rapid serial 

sarcomere number increase. These experiments demonstrate that the postnatal period is 
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particularly plastic for adaptation and suggest that SCs may be involved in the process of 

serial sarcomere addition33

Myonuclear number and domain

In parallel with increased serial sarcomere number (i.e., increased fiber length) and myofiber 

area during the postnatal period there is also an increase in nuclear number2,36 in growing 

myofibers. After the initial 6 postnatal weeks of increase in sarcomere number in mouse 

solei and biceps brachii, the myonuclear addition continues for another 10 weeks suggesting 

a role for myonuclear accretion for radial growth33. However the exact relationship between 

myonuclear addition, cross-sectional and longitudinal growth is not entirely clear36. White 

et al.36 report a significant increase in both myofiber cross-sectional area and length in 

mouse EDL without accretion of any addition myonuclei beyond the first 21 postnatal days.

Myonuclear domain, i.e. the volume of cytoplasm per myonucleus might be a relevant 

parameter that relates myonuclear number to fiber length and size37. It has been suggested 

that myonuclear domain is maintained during atrophy by myonuclear loss38-40 or during 

hypertrophy by myonuclear accretion41 but this is not universally agreed upon24,42. The 

precise relationship between myonuclear domain and fiber atrophy and hypertrophy is thus 

not fully defined (see below).

Satellite cell function

As stated, postnatal muscle development is critically dependent on SCs and Pax743,44. Pax7 

null mice demonstrated a dramatic reduction in both myofiber size and in SC number during 

the postnatal period44. Using a transgenic mouse that allowed conditional inactivation of 

Pax7, Lepper et al. 43 showed that myoblasts from Pax7 lineage fuse into myofibers and are 

indispensible during the postnatal period.

In contrast, the “obligatory” role of SCs for adult hypertrophy and regrowth after atrophy is 

not clear49-51. A 90% reduction in SCs does not prevent fiber hypertrophy in a synergistic 

ablation mouse model, in which the gastrocnemius and soleus are surgically excised and 

compensatory hypertrophy of the plantaris is measured52. However, it is important to note 

that, in control animals, where SCs were not knocked down, there was robust SC activation 

and participation in hypertrophy, indicating that, if present, they certainly do appear to 

participate in the hypertrophic response. This hypertrophy was not different between SC 

depleted and control groups. Similarly, recovery from atrophy was not hampered by a 90% 

knockdown of SCs53. Interestingly, the most recent results54 show that, while hypertrophy is 

possible initially, long-term hypertrophy is blunted and associated changes in the 

extracellular matrix and fibroblasts are observed, implying that hypertrophy in adult muscle 

is not completely independent of SCs.

Conditional SC inactivation during the postnatal period resulted in severely compromised 

muscle regeneration after injury43. A number of studies45-48 have conclusively shown that 

Pax7 expressing SCs are critical for long-term muscle repair capability even in adult muscle. 

While Lepper et al. reported that Pax7-inactivated-SCs could still regenerate normally in the 

short term, suggesting an additional non-Pax7 dependence for SC function in adults, this 
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interpretation was confounded by an incomplete understanding of the timelines of 

deletion48. Günther et al.48 using a similar mouse model demonstrated that conditional 

inactivation of the Pax7 gene led to a delayed but significant loss of SCs and continued 

inactivation of Pax7 led to impaired muscle regeneration even in adults.

Signaling pathways for satellite cell activation, quiescence and self-renewal

Satellite cells have a large number of activation factors55 including mechanical stretch, 

which are important in the postnatal period during bone mediated muscle growth (Fig. 3). 

Local signaling factors such as nitric oxide56, growth factors such as fibroblast growth factor 

(FGF) and insulin-like growth factor (IGF)57 play an important role in SC activation and 

muscle growth. Mechanical stretch is strong regulator of SC activation through hepatocyte 

growth factor (HGF) and nitric oxide58. SCs can be activated after only brief period of 

stretching of 2 hours59 and this mechanical stretch can induce increased expression of the 

matrix metalloproteinases (MMPs) which are responsible for extracellular matrix 

remodeling60. MMPs play an important role in promoting migration of activated satellite 

cells permitting robust regeneration61 (see section on satellite cell niche below).

Maintaining the balance amongst the states of quiescence, activation, proliferation, 

differentiation and self-renewal is critical for continued myogenic potential. Lack of 

maintenance of quiescence or self-renewal leads to depletion of the stem cell pool while 

prevention of activation leads to impaired regeneration. There are many signaling 

mechanisms involved in this dynamic balance. Notch is an extrinsic signaling pathway 

whose influence on cell function has been studied extensively. SCs in the quiescent state 

(Fig. 1) are maintained actively rather than it being in a default inactive state. Active notch 

signaling is required to maintain this state62,63. Transgenic mice, in which canonical notch 

signaling was conditionally ablated, demonstrated increased propensity for spontaneous 

differentiation and dramatic depletion of the satellite cell pool62. Interestingly, SCs with 

impaired notch signaling progressed immediately to differentiation without initially dividing 

and simply fused to existing myofibers63. During aging, muscle regenerative potential 

decreases, which can be improved via notch-mediated pathways64. Recently it was shown 

that the quiescent state might not actually be a single homogenous state, rather it is 

heterogeneous, and progresses from a mitotically quiescent G0 phase to a GAlert (pre-

activation) phase, where it is primed for activation65.

Wnt signaling plays an important role during SC activation, proliferation and helps 

determine stem cell fate66. Symmetric expansion likely occurs through wnt7a utilizing the 

planar cell polarity pathway, i.e. a non-canonical pathway not involving β-catenin67. This 

pathway might be critical for maintaining the SC pool, since muscles without wnt7a show 

decreased SC number after regeneration21. After activation, while Notch-1 signaling has 

been implicated in SC proliferation68, to progress from proliferation to differentiation, a 

switch in signaling from notch to wnt is required69. Wnt and notch signaling interact to 

create sufficient proliferation prior to differentiation to maintain efficient repair and 

appropriate progression down the myogenic lineage. Furthermore, it has been shown that, in 

aging, increased canonical wnt signaling during SC proliferation can convert the SC 

myogenic lineage to a fibrogenic one resulting in aberrant fibrosis70. Importantly, this 
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conversion can be suppressed with wnt inhibitors, suggesting a critical role of wnt signaling 

in altering SC fate.

An emerging research area is SC self-renewal and how activated SCs revert to quiescence to 

maintain the SC pool. Elevated activity of p38 mitogen-activated protein kinase (MAPK) in 

aging was shown to be involved in loss of self-renewal71 while transient inhibition of this 

pathway expanded the stem cell population72. Sprouty1 (spry1), a tyrosine kinase inhibitor, 

is expressed during SC quiescence, downregulated during proliferation and re-expressed 

during return to quiescence73. Conditional ablation of spry1 in SCs led to a dramatic 

reduction in SC pool after activation due to injury. This indicates that spry1 is required for 

restoring the muscle stem cell pool after activation, i.e. for reversible quiescence and self-

renewal73. Homeodomain transcription factor six1 has also been implicated to play a role in 

limiting SC self-renewal, as evidenced by the increased SC pool observed in Six1 knockout 

mice74. Recently it was shown that forkhead box O3 (foxo3), which is most widely known 

as the factor controlling the skeletal muscle atrophy pathway75,76, also promotes quiescence 

during self-renewal77. Together, these results point to an intricate interaction among 

signaling pathways to control the state of muscle and its resident stem cells. A number of 

signaling pathways are required to maintain the dynamic balance between quiescence, 

activation, return to quiescence and self-renewal, all of which are necessary to maintain a 

healthy and functional SC pool (Table 1).

Satellite cell niche and interactions

Unlike the initial impression that a SC had a fairly simple extracellular localization, it is 

becoming clear that the SC “niche” (defined as the microenvironment where the quiescent 

SC resides) is complex, important and thus, highly regulated. The niche composition and 

structure is critical because extrinsic environmental cues are important determinants of SC 

functional state, i.e. maintenance of quiescence, activation, and return to quiescence. SCs 

have a complex interaction with their associated extracellular matrix (ECM). During 

quiescence, they interact with both the basal lamina and sarcolemma, but, once activated, 

actively remodel the local extracellular matrix via increased levels of matrix 

metalloproteinases (MMPs)78. This interaction apparently is partly responsible for SC 

quiescence since simple mechanical disruption of this contact results in immediate 

activation. During postnatal development79,42 and in adulthood80 proliferating myoblasts are 

fairly motile and can rather easily cross the ECM between fibers depending on where they 

are needed. Biomechanical and biochemical properties of the niche may influence SC 

response. In vitro methods have demonstrated that the elastic stiffness of the extracellular 

matrix might be important for functional differentiation81 and for self-renewal of SCs82.

Furthermore, tamoxifen-induced experimental ablation of 90% of the SCs 83 revealed that 

SCs have a regulatory effect on fibroblasts (identified as Tcf4+) since their ablation and 

chemical injury to the muscles led to increased fibrosis along with poor regeneration. 

Similarly, experimental ablation of 42% of fibroblasts and chemical muscle injury impaired 

SC ability to proliferate, leading to premature SC differentiation and smaller regenerated 

myofibers83. Connective tissue fibroblasts have also been shown to regulate myogenesis and 

expression of myosin heavy chain (MyHC) isoform84. In another study evaluating the role 
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of SCs on adult muscle hypertrophy and ECM remodeling54 it was shown that after ~90% 

SC ablation and synergistic ablation of the gastrocnemius and soleus, while compensatory 

hypertrophy of the plantaris was possible, there was dysregulation of the connective tissue 

with an increased accumulation of the ECM and an expansion of the fibroblasts. 

Additionally, in vitro studies suggested that activated SCs exerted negative regulation of 

fibroblasts. Together, these studies show that ECM, fibroblasts and SCs interact to regulate 

their function and myogenesis. Interestingly, in other organ systems such as in the liver, 

similar feedback processes are at play wherein hepatic stellate cells interact intimately with 

other cells such as hepatocytes and endothelial cells, particularly after injury and 

inflammation, to ensure appropriate repair. Inappropriate interactions amongst these cells 

leads to fibrosis85-88.

Apart from the ECM, quiescent SCs are present in close proximity with muscle 

microvasculature89. On activation, interaction with endothelial cells is facilitated, which is 

important for angiogenesis to coordinate myogenesis. Furthermore, change in factors 

associated with the niche can influence SC function. With aging, aberrant signaling within 

the niche can lead to increased loss of quiescence and SC depletion90. Our current 

understanding of the composition, cellular interactions and molecular control of the SC 

niche is quickly evolving.

Cerebral Palsy Palsy & Muscular Dystrophy

Our laboratory has a particular interest in cerebral palsy (CP), which is the most common 

developmental motor disorder affecting 2-4 children per 1000 every year91. After perinatal 

brain injury, these children present with significant clinical problems that are related to 

impaired longitudinal and cross-sectional muscle growth. A most obvious impairment is 

weakness, that is due in part, to decreased muscle fiber size92 and decreased neural 

drive93,94. However, more complex musculoskeletal changes are also noted95,96, 

specifically, the formation of contractures97,98. Paradoxically, these shortened muscles are 

accompanied by overstretched sarcomeres within the tissue98. Changes in contracture 

extracellular matrix97, i.e. fibrotic changes and transcriptional profile99,100 also highlight the 

deranged nature of the muscle tissue. Grossly, there may be changes in the fascicle length95 

and tendon length101. Overall it is clear that CP muscle has reduced capacity for longitudinal 

and cross-sectional growth during the postnatal period. It is our hypothesis that this inability 

to accommodate growth, because of SC loss and dysfunction leads to contractures (Fig. 3B).

In light of the discussion above where we presented evidence that SCs play a significant role 

in muscle growth, we speculated that contracture formation may, in part, be due to SC 

dysfunction. Using flow cytometry of muscle biopsies from children with CP102, we showed 

that, indeed, compared to typically developing children, children with CP had a significantly 

reduced (~60%) SC population, expressed as a percentage of all mononuclear cells (Fig. 

4A). However, as noted, children with CP have extracellular matrix abnormalities that may 

systematically bias flow cytometry results in that it may be more difficult to extract SCs 

from CP muscle. To test this idea, we used the more labor intensive in situ 
immunohistochemistry method to quantify SCs103 using antibodies for SCs (anti-Pax7) the 

basal lamina (anti-Laminin) and a nuclear stain (DAPI). By systematically sampling large 
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volumes of tissue, we quantified SC number in situ without significant tissue manipulation 

(Fig. 5). It turned out that SC number quantified from these sections, as number per 100 

myofibers, similarly showed a 70% decrease compared to age-appropriate controls (Fig. 

4B). Since total nuclear number was not different between groups, we speculate that SC 

reduction occurred later during development. Together, these two studies using different 

methods and different human subjects, demonstrate that it is highly likely that there are 

significant changes in the SC population in children with CP and suggest possible future 

avenues for therapeutic intervention using regenerative medicine.

Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy that 

results from a genetic defect leading to a lack of the cytoskeletal muscle protein 

dystrophin104. Becker muscular dystrophy (BMD) is also associated with a defect in the 

dystrophin gene but is functionally milder. Clinically, children with DMD have progressive 

weakness starting at age 3-5 that leads to premature death by late adolescence/young 

adulthood105,104. The impairment in dystrophin and its associated proteins causes an 

interruption between the myofiber, its sarcolemma and extracellular matrix (ECM)106 

leading to altered mechanical stress, reduced stiffness, inflammation, and consequent muscle 

regeneration107,108. Transgenic mouse models for DMD (mdx, mdx/mTR, mdx/utrophin−/−) 

have defined the phenotype of muscle dysfunction in DMD and have been used to evaluate 

the role of SCs in the progressive weakness associated with DMD109. Sacco et al.110 showed 

that pathological muscle progression in DMD could be related to an inability of the SCs to 

maintain the capacity to repair following multiple damage-repair cycles, i.e. an early 

exhaustion of the stem cell pool. Consistent with the idea that dystrophic muscle experiences 

multiple cycles of regeneration, it has been shown that telomere shortening110 occurs in 

DMD patients’ muscles111. Most interestingly, somewhat similar to the extracellular matrix 

changes in CP, there are marked fibrotic changes observed in DMD patients’ muscles and in 

transgenic mouse models110,112,113. Currently, novel therapies targeting muscle stem cell 

dysfunction are being evaluated as a means to improve muscle function in 

dystrophies114-116. Recently focal treatment in mdx mice with wnt7a results in structural 

improvements such as increased SC number and fiber hypertrophy111. In addition, as would 

be expected, antifibrotic therapies can improve muscle function by reducing fibrosis and 

improving muscle regeneration capacity109.

Conclusions

In summary, we have reviewed the role that skeletal muscle stem cells, SCs play during 

postnatal development and repair. SCs, on activation participate in myogenic function and 

provide the biological basis for longitudinal and cross-sectional growth. Their activation and 

subsequent return to quiescence is controlled by complex molecular mechanisms that ensure 

participation in growth, regeneration and repair while maintaining the SC pool. The SC 

niche facilitates intimate interaction between SCs and other cell types and allows feedback 

control among cells to coordinate participation in myogenic function. Children with cerebral 

palsy have significant problems with longitudinal and cross-sectional muscle growth. Our 

recent work showed that SC dysfunction could explain that finding and provide new 

therapeutic directions to enhance muscle function. Children with muscular dystrophies also 
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show similar features of SC depletion and fibrotic changes that may also lend themselves to 

novel therapeutic treatments.
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Abbreviations

BMD Becker muscular dystrophy

CD Cluster of differentiation

CP Cerebral Palsy

DAPI 4′, 6-diamidino-2-phenylindole

DMD Duchenne muscular dystrophy

ECM Extracellular matrix

FACS Fluorescence- activated cell sorting

FGF Fibroblast growth factor

FOXO3 Forkhead box O3

HGF Hepatocyte growth factor

IGF Insulin-like growth factor

NCAM Neural cell adhesion molecule

MAPK Mitogen-activated protein kinase

MMP Metalloproteinases

MRF Myogenic regulatory factor

MYF5 Myogenic factor 5

MYHC Myosin heavy chain

PAX7 Paired box 7

SC Satellite cell

SPRY1 Sprouty1
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Figure 1. 
Satellite cell (SC) location and function. A) The SC is anatomically located between the 

myofiber basal lamina and sarcolemma. B) The relationship between gene expression and 

SC activation, self-renewal, proliferation, differentiation and fusion with existing myofiber.
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Figure 2. 
Satellite cell division, quiescence, and activation. A) Quiescent SC symmetrically divides 

into two quiescent cells, B) Quiescent SC symmetrically divides into two activated cells C) 

Quiescent SC asymmetrically divides into one quiescent cell and one activated cell, which 

can then continue down the myogenic path. Pax7+/Myf5− indicates quiescence and Pax7+/

Myf5+ indicates activation. Using lineage-tracing experiments, it was shown that 10% of 

SCs never express Myf5 indicating that this subset functions to maintain self-renewal. If the 

situation shown in B were the only process occurring, it would lead to depletion of the SC 

pool.
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Figure 3. 
Schematic of postnatal muscle growth. A) Unimpaired muscle growth resulting from bone 

growth. Myofiber length increase is associated with adding sarcomeres, myonuclei and girth 

by adding myofibrils (Inset, Cross-sectional or Longitudinal growth). This allows normal 

joint range of motion (Bottom Inset) B) In developmental disorders such as cerebral palsy 

(CP), longitudinal sarcomere growth may be impaired leading to overstretched sarcomeres 

as well as reduced cross-sectional growth of myofibers (Inset). In the case of children with 

CP this can lead to contracture development (Bottom Inset).
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Figure 4. 
Satellite cell populations in children with typical development (TD) and cerebral palsy (CP) 

measured using two different methods. (A) Satellite cell percentage measured by flow 

cytometry (B) Satellite cell percentage measured by immunohistochemistry. Both of these 

methods, using different human subjects, demonstrate a decreased number of SCs with in 

CP muscle contractures. Data are replotted from Smith et al.102 (A) or Dayanidhi et al.103 

(B). Asterisks indicate significant difference, p<0.05.
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Figure 5. 
High-resolution immunohistochemical identification of satellite cells in a representative 

gracilis cross-section from a child with cerebral palsy. Because satellite cells are 

indistinguishable from myonuclei based on morphology at the light microscope level, it is 

necessary to use immunohistochemistry for the basal lamina (laminin, red), a transcription 

factor (Pax7, green) and DNA stain (DAPI, blue) to unambiguously distinguish satellite 

cells from myonuclei and other mononuclear cells within muscle tissue. Satellite cells 

identified based on a positive label for Pax7 (a), co-localization with DAPI (b) and location 

outside of the basal lamina (c). The merged image is shown in d. Square box in a, b, c and d 

show the location of the satellite cell. Inset shows magnified view. Scale bar is 50μm except 

for inset which is 5 μm.
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Table 1

Various signaling pathways involved in the dynamic balance among maintaining quiescence, activation, 

proliferation, differentiation, return to quiescence and self-renewal. Numbers refer to respective references.

Signaling Pathway SC function References

Nitric oxide Activation 56,58

Growth factors (IGF, FGF) Activation 57

Notch Maintenance of quiescence,
proliferation, SC fate

62,63,64,67

Wnt Differentiation, SC fate 66,68,69

MAPK Self-renewal 70,71

Spry1 Quiescence, return to quiescence after
Self-renewal

72

Six1 Self-renewal 73

Foxo3 Return to quiescence after self-
renewal

76
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